This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Godw. 58 Subt.
-

A
 S U R V E Y
 OFTHE

Widdom of God in the Creation:

ORA
 COMPENDIUM

$$
0 \mathrm{~F}
$$

Natural Philofophy.

In TWO VOLUME ERT

VOL. I.

Thefe are thy glorious Works, Parent of Good, Almighty! Thine this univerfal Frame, Thus wondrous fair! Thyfelf how wondrous then!
Milton.
$\begin{array}{lllllll}B & R & I & S & T & O & L\end{array}$
Printed by William Pine, 1763.

[iii]

THE

P R E F A C E.

$$
1 .
$$

 Have long defired to fee fuch 2 Compendium of Natural Philofophy, as was, 1. Not too diffufe, not expreffed in many Words, but comprized in fo moderate a compafs, as not to require any large Expence, either of Time or Money: 2. Not maimed or imperfect, but containing the Heads of whatever (after all our Difcoveries) is known with any degree of Certainty, either with regard to the Earth or Heavens. And this I wanted to fee, 3. In the plaineft Drefs, fimply and nakedly expreft, in the moft clear, eafy and intelligible manner, that the Nature of the things would allow : Particularly free from all the Jargon of Matbematics, which is mere Heathen Greek to common Readers. At the fame time I wifhed to fee this thort, full, plain Account of the vifible Creation, directed to its right End: Not barely to entertain an idle, barren Curiofity, but to difplay the invifble things of God, his Power, Widom and Goodnefs.
2. But
2. But I cannot find fuch a Treatife as this in any Modern, any more than Antient Language. And I am certain, there is none fuch in the Englifh Tongue. What comes neareft to it of any thing I have feen, is Mr. Ray's Wijdom of God in the Creation, Mr. Derbam's Phyfico and Aftro-Theology, Niewentyt's Religious Pbilofopher, Mather's Cbrifian Pbilofopher, and Nature delineated. But none of thefe, fingle, anfwers the Defign. And who will be at the fains, to extrack the Sabftance of thom all, and to add the later Difcoveries, of which they had little Knowledge, and therefore could take but little notice? This is a Defideratum ftill; and one that a Lover of Mankind woutd rejoice to fee even tolerably fupplied.
3. I AM throughly fenfible, there are many who have far mere Ability, as well as Leifure, for fuch a Work than me. But as none of them undertakes it, I have myfelf made fome little Attempt in the enfuing Volumes. Herein follawing Mr. Derbam's Plan, I divide the Work into Text and Notes. The Text is in grear Meafure tranflated from the Latin Work of Foomn Francis Buddceus, the late celebrated Profeffer of Philofophy, in the Univerfity of Tema, in Germary. But I have found oçcafion to retrench, inlarge or alter every Chapter, and almoft every Section. So that it is now, I believe, not only pure, containing nothing falfe or uncertain, but as futt as any Tract can be expected to be, which is comprized in fo narrow a compafs; and likewife plain, clear and intelligible to one of a tolerable Underfanding. The Notes contain the Sum of what is moft valuable, in the above-named W riters: To which are added the choiceft Difcoveries both of our own, and of the Foreign Societies; chiefly extracted from that great Treafury of Learning, Mr. Chambers's Diftionary. Thefe

[v]

Thefe likewife, I truft, are as plain and clear, as the Nature of the things fpoken will allow : Altho' fome of them, I know, will not be underfood, by an unlearned oi inattentive Reader.
4. Meantime I muft apprize the Reader, that I have fometimes a little digreffed, by reciting both uncommon Appearances of Nature, and uncommon Inflances of Art: And yet this is not properly a Digreffion, from the main Defign I have in view. For furely in thefe Appearances alfo, the Wifdom of God is difplayed : Even that manifold Wildom, which is able to anfwer the fame Ends by fo various Means. And thofe furprizing Inflances of Arr, do likewife reflect Glory upon Him, whofe Spirit in Man giveth that Wiflom, whofe In/piration teacheth Under/fanding.
5. It wilt be eaflly obferved, that I endeavour throughout, not to account for things, but only to difcribe them. I undertake barely to fet down what appears in Nature, not the Caufe of thofe Appearances. The Facts lie within the reach of our Senfes and Underfanding; the Caufes are more remote. That things are fo, we know with certainty : But why they are fo, we know not. In many cafes we cannot know; and the more we inquire, the more we are perplext and intangled. God bath fo done bis Works, that we may admire and adore: But we cannot fearch them out to perfection.
6. And does not this open to us another Profpect? Altho' one we do not care to dwell upun. Does not the fame Survey of the Creation, which thews us the Wifdom of God, fhew the aftonifhing Ignorance and Phort-fightednefs of Man? For when we have finifhed our Survey, what do we know? How inconceivably linde? Is not every thinking Man conftrained to cry out, And is this.

All? Do all the boafted Difcoveries of fo enligbtened an Age, amount to no more than This? Vain Man would be wife! Would know all things ! But with how little Succefs does he attempt it? How fmall a Part do we know even of the things that encompafs us on every fide? I mean, as to the very Fact: For as to the Reafons of almolt every thing which we fee, hear or feel, after all our Refearches and Difquifitions, they are hid in imponetrable Darknefs.
7. I trust therefore the following Tract may, in fome degree, anfwer bath thofe important Purpofes. It may be a means, on the one hand, of humbling the Pride of Man, by fhewing that her is furrounded on every fide, with things which he can no more account for, than for Immenfity or Eternity: And it may ferve, on the other, to difplay the amazing Power, Wifdom and Goodnefs of the great Creator; to warm our Hearts, and ta fill our Mouths with Wonder, Love and Praife!

> Fobn Wefley.

A

$$
V \underset{\text { OF }}{\boldsymbol{I}} \underset{\mathrm{TB}}{\mathrm{E}} \mathrm{~W}
$$

Wifdom of GOD in the CREATIon:

$$
\mathbf{O R} \mathbf{A}
$$

COMPENDIUM OF

Natural Philofophy.

The Introduction.

Of the gradual Improvement of Natural Philofophys:

1. The Order afomead in 4 4.Tbe diffirout Mixbodporthis Treatife: 2
2. Tbe Merthod of phildos. phixing among the Hebrews and Egyptians:
3. Aboany the Greeks : Tbe Pbilofopby of P 1 ythagoras Platos Arifotle: Fined by the four Greek Seet: 5. The Pbilafopbeg of the Schoolmen :
4. Ther Revival of PbiloSopby by Lourd Bacon;
5. Greath promsted by Pbilefoticical Sccioties:
6. Tbe
7. The Improvement made in evey Branch of it: In Anatomy, the Difcovery of the Circulation of the Blood, of the Lacteal Veins, and the Tboracic Duct;
8. Of the Generation of all Animals from Eggs;
9. Of the Transfufion of Blood;
10. Difeafes themfelves and the Operations of Medicines give Occafion for farther Difcoveries.
11. Many Anatomical Difcoveries bave been made by Microfcopes:
12. Many, with regard to Brutes, particularly Fijhes and Infects:
13. Many likewiff, with regard to Plants, Stones, Metals and Minerals:
14. Great Improvements from the Art of Chemiltry:
15. Difcoveries concerning the Loadfone;
16. Concerning Glafs and Burning Glafes.
17. Tbe Nature of the Air is more accurately difoovered, by meass of the Barometer, the Thermometer and the Air- Pump:
18. Dijcoveries relating to Water :
19. Difaveries wbicla Berw tbe Nature of Fire: Of Gurpowder, Pbo/phorus, Aurum Fulminans:
20. Of the Eartb, and tbe chref Syfenms of the Univerfe:
21. Of the Sun, the Planets and tbeir Satellits:
22. Of the caufes of Na tural Bodies:
23. Of Spirits and Divine things.
${ }^{3} 1 \mathrm{~N}$ ATURAL Philofophy treats both of God Himfelf, and of his Creatures, vifible and invifible. Of thefe I purpofe to fpeak in fuch a manner, as to afcend from the Confideration of Man, thro' all the Orders of things, as they are farther and farther semoved from us, to God the Ceater of all Knowledge. (I mean, of vifble things: Of the invifible World we cannot know much, while we dwell. in Houres of Clay.) Thus Speculative Philofophy afcends from Man to God, Practical defcends from God to Man.
24. The moft antient Nations, the Egyptians and Hebrews in particular, philofophized much concerning God, and concerning Genii, good or evil Spirits, of an Order fuperior to Man. What they taught concerning
cexning the vifibleWorld, rolated chiefy to its Origin, the Changes it was to undergo, and its final Difolu. tion. But on all thefe Heads they only delivered to their Pofterity, what they had received frots their Forefathers,
25. Among the Grecks, Thales/Mikfous, and his Foh lowers, applied themfelves, with great Induftry, to difcover, with the bell Helps thoy had, the materiad Caufes of intural things. They were fucceeded by others, who more curioufly fearched into the Structure of Natural Bodies. Here the Foundation of Natural Friftory was laid, in various Obfervations on Plantsx Animals and other thinge: And herein the Endeavours of Ariffotla, and Theopbraftur in pacticular are to be commended. Yet in other refpects, Ariforle did not promote, but rather obffyuct the Enowledge of $\mathrm{Na}-$ ture: For he made Philofophy as unintelligible by his abfirait and metaphyfical Notions, as Plato, Bybagoras and others did, by their Ideass Nlumbers and Symbols.
26. In fucceeding Times, when the four Greck Seets, the Phaionic, Peripactic, Epicurean and Staic divided the World betwoen them, the Platonifts almot confined. themfelves and their Opinions to the Subjectof Divinity; the Peripatetics regarded liftle but Logic; the Stoise little but Moral Philofophy; and the Epicurcans had fmall concern about any, being immerfed in fenfual Pleafures: So that none of them made any confiderable Improvement in any branch of Natural Philofophy.
27. When the utter Barbarifm which followed was
little difpelled, Arifotle began to reign. His Followers (the Scbool-men, as they were called) might have improved Natural Philofopfy, if (like their Mafter) they had diligently cultivated the Knowledge of Nature, and fearched out the Properties of particular things: But it was their Misfortune, to negleet what was commendable in him, and to follow only what was blame-worthy; fo as to obfcure and pollute all Philofophy, with abftrac, idle, vain Speculations. Yet fome of them, after the Arabians bad introduced the Knowledge of Chemiltry into-Europe, were wife atove
above the Age they lived in ; and penetrated fo far into the fecret Receffes of Nature, as fcarce to efcape the Sufpicion of Magic. Such were Roger Bacon and Albertus Magnus.
28. After the Revival of Learning, as all other Branches of Philofophy, fo this in particular received new Light. And none was more ferviceable herein than Lord Bacon; who well underftanding the Defects of the School-Philofophy, incited all Lovers of Natural Philofophy, to a diligent Search into Natural Hiftory. And he himfelf led them the way, by many Experiments and Obfervations.
29. After this, not fingle Perfons only, but whole Societies applied themfelves carefully to make Experiments; that having accurately obferved the Structure and Properties of each Body, they might the more fafely judge of their Natare. And the Advantages which hiave arifen from hence manifefly appear from the Memoirs of the Royal Society at London, of the Academy of Sciences-at Paris, and thofe of the fame kind in Germany, as well as feveral other Parts of Europe.
30. To mention but a few of the late Difcoveries in each branch of Natural Philofophy. With regatd to the Structure of an Haman Body, how many thing: have modern Anatomits difcovered, which were either little underfood by the Antients, or wholly unknown to them? Such for inftance, is the Circulation of the Blood, difcovered by Dr. William Harvey, whore "Anatomical Exercitations" concerning it were firt publifhed in the Year 1628. Such were the Lacteal Veins, difcovered firf in Brutes by Cafpar Afelliss, of Cremona; and foon after in Men: Such the Thoracic Duct, and Receptacle of the Chyle, obferved firlt by Dr. Jobn Pecquet, of Paris, whereby the whole Courfe of the Blood is now clearly underfood.
31. Dr. Harvey improved Natural Philofophy, by another no lefs eminent Difcovery : For he was the firt of the Moderns that fitewed all Animals to be generated from Eggs. That the Antients knew and taught this, (Orpheus in particular) cannot reafonably be doubted. But as the knowledge of it was intirely loft,
loft, to revive was the fame thing as to invent it. It is obvious, how great a light this pours upon that dark Subjett, with regard to the Generation of Men, as well as of other Animals.
32. Another remarkable Difcovery in the laft Century, was that of the Transfufion of Blood. The Blood of a young, lively, healthy Animal was transfufed, by means of a fmall, filver Tube properly adjufted, into the Veins of another, which was old; weak and fickly. And the Effect has amazed all the Beholders. When the Experiment was tried before feveral of the Royal Society, a feeble, worn-out Dog; ready to die with Age, and hardly able to trail his Legs afier him, was no fooner filled with young Blood, than he leaped up, as from Sleep, fhook himfelf, and ran up and down, as lively and active as a Puppy. In France the Experiment has been made upon Men, and with as furprizing Succefs. What pity, that fo important an Experiment fhould ever fall into difufe! That it is not fill repeated upon propen Occafions? Efpecially where all other Means fail:
33. It cannot be denied, that Pbyficians have fignally improved this Branch of Philofophy, as they have continual Opportunities of making new Difcoveries in the Human Body. In Difeafes themfelves; the wonderful Wifdom of the Author of Nature appears: And by means of them many hidden Receffes of the Human Frame are unexpectedly difcovered. The Powers of Medicines alfo varioufly exerting themfelves, lay open many Secrets of Nature.
34. And how many things in all Bodies, as well as in the Human, which eluded all the Art and Induftry of the Antients, have the Moderns difcovered by tle Help of Mierofcopes? Altho' thefe are not properly 2 modern Invention : It being certain, fomething of this kind was in ufe, many hundred Years ago. There are feveral Works of great Antiquity fill extant, the Beauties of which cannot even be difcerned, much lefs could they have 'been wrought, by the fineft naked Eye, which ever was in the World. Such is that Seal, now in the Cabinet of the King bf France, allowed to
be at leaft fifteen hundred Years old, Six-tenths of an Inch long, and four broad, which to the naked Eye prefents only a confufed Groupe, but Gurveyed with a Microfcope, diftinetly exhibits Trees, a River, a Boat, and fixteen or feventeen Perfons.
35. Now whatever affifis us in fearching out the Structure of an Human Body, equally helps us to find out the Nature and Properties of other Animads. Hence in thefe likewife we have received great light, from Anatomical and Microfcopical Obfervations. Thofe efpecially who have beftowed their whole Time and Thoughts on one kind of Animals; (as Dr. Willongbby, on Finhes, Dr. Swammerdam; of Amfendam; on In. feets) have illufterated to a furprizing degree, the Subjects on which they wrote.
36. Many have diligently fearched into the Nature of Plants; particularly Mr. Ray, who has net only ranged them in a new Method, but alfo wrote an elaborate Hiftory of them. Others have defcribed with equal Diligence either Plants in general, or thofe of a particular Country. And others have thewn the like Induftry in finding out and explaining the Nature of Stones, Metals, Minerals, and other Foffils.
37. Nor is it ftrange that the Moderns have penetrated farther into the Receffes of Nature than the Antients, confidering the Advantages they have received, from the Art of Cbemiftry. Not that this is an Invention. of later Ages: It was in fome meafure known long ago. But as this art has been cultivated in our. Age, with far greater Accuracy than ever, fo by this means many Properties of Natural Bodies have been difcovered; of Foffils in particular.
38. Bur none of thefe have fo much engaged the Study of the Learned, or fo well deferved it, as the Loadfone. Its attractive Force was known to the Antients, and the Origin of that Difcovery is recorded by Pliny. But it does not appear that they knew of its pointing to the Pole, or of the Ufe of the Compars. This (the Compals) was invented by Jobn Goia, in the Year 1300 . But it has been fince obferved, that the magnetic Needle feldom points exactly to the Pole,
but varies from it fome Degrees to the Eaft or Waft, in a fixt and regular Order.
39. Nearhy related to the Nature of Foffils, is Glafs, which was well known to the Antients, being mentioned by Plutarch and Lucian among the Groeks, by Lucretius, Pliny and others amoag, the Latins. Yet the Art of making Glafs has been fince their times abundantly improved. One Branch of this is, the Art of making Burning-Glaffes, which are now brought to fo great Perfection, as either to melt or reduce to athos the moft folid Bodies, in a very few Moments. If thefe were known to the Antients at all, (which may reafonably be doubted) yet the Art was wholly loft for many Ages, and not recquered till of late Years.
40. Latbr Ages have likewife made many Difcoveries, with regard to Earth, Water, Fire and Air: The laft of which, Air, tho' it be of fo fine a Texture as to be wholly invifible, yet producing fuch amazing Effects, has excited the moft diligent Enquiries of the curious. Nor does any Part of Philoiophy, afford a wider field for Experiments and Difcoverics. The Weight of it we can afcertain by that curious Intryment, the Baromefer, invented by Torricellias, the Degrees of Heat and Cold, by the Thermoineter. By the Air-pump (inveuted by Otuo Guerick Mayor of Maguteburg) the Air is drawn out of any Bodies, or more Jargely thrown into them. And hereby many Effegts are produced, which deferve qur diligeat Confideration.
41. Wixh regard to Water, the Difcoveries of later Times are numerous and important. Such are the Diving-Bell, inveuted by George Sinclair ; the DivingMacbine of Alphonjo Borelli, a kind of Boat, which is fo contrived as to be navigated under water : And the Art of making Salt-water frefh, which is now dope with littie Fxpence, fo far that the Saltoefs is taken away, and it is fit for almoft all Ufes.

20 The Nature and Properties of Fire alfo have been accurately traced in Jate Ages: For which, new Occafion was given by the Invention of Gunpowder, by

Vol. I.
B
Eertbold

(. 14)

Bertbold Scbrvartz; in the fourteench Century. Aurum Fulminans, a yet later Invention, goes off with a louder Explofion than Gunpowder. Other Bodies there are, which do not burn, and yet emit Light. Such is the Bononian Stone, which placed in the dark, diffures Light like a butning Coal. It is well known that the preparation called $P b o f$ phborus, has the fame Property.
21. Various Theories of the Eartb have lately appeared. But they are no more than ingenious Conjectures. The fame may be faid of the Syftems of the Univerfe, a few particulars excepted. The Ptolamaic Syftem, which fuppofes the Earth to be the Centre of the Univerfe, is now defervedly exploded: Since Copernicus has revived that of Plythagoras, which was probably received by moft of the Antients. Tlycbo Brabe's, which jumbles both together, is too complex and intricate, and contrary to that beautiful Simplicity, confpicaous in all the Works of Nature.
22. The Telefcope however (invented by Galileo) has difcovered many Stars unknown to the Antients, together with the Nature and Motion of the Planets, both Primary and Secondary. By this alfo have been difcovered the Spoits on the Sun, the Inequality of the Surface of the Moon, the Nature of the Galaxy or Milky Way, and many other Particulars relating to the Heavens.
23. Wirh regard to Body. in general, it is commonly fuppofed, that our Age has a vaft advantage over Antiquity, by having found out new Principles and Hypothefes, whereby we can account for all the Secrets of Nature. But this will bear a Difpute. For befide that the chief of our Hypothefes are not new, but known long ago, the Learned have hitherto very little profited by all their Hypothefes. And in truth all their Difquifitions touching the Caufes of Natural Bodies, terminate in mere Conjectures: One whereof is often more probable than another, but none admits of any folid Proof.
24. What remains of Natural Philofophy, is The Doctrine concerning God and Spirits. But in the tracing of this, we can neither depend upon Reafon

(15)

nor Experiment. Whatfoever Men know, or can know concerning them, muft be drawn from the Oracles of God. Here therefore:we are to look for no new Improvements, but to fand in the good old Patbs: To content ourfelves with what God has been pleafed to reveal; with the faith once delivered to tbe faints.

$1 \times \times$

a

$x \times X C X X X X X X X X X X X X X X X X$

(16)

Part the Firft, Of Man.

C HAP. I.

Of the Structure of the Muman Body.

1. Tbe Similar, falid Parts, |l. 16. The Difimilar Parts,
2. A Fibre,
3. A Bone,
4. A Cartilage,
5. A Membrane,
6. An Artery,
7. A Vin,
8. Fbe Tympbatic Talfels,
9. A Nerve,

10: The Flefb,
11. A Gland,
12. A Mafcle,
13. The Cuticula and Skin,
${ }^{1}+$. The Fat,
15. Tbe PanniculusCarnofus,
is particular tbe Head, Cersbrum, Cerebellam, Medulla oblongata,
17. Tbe Meninges,
18. Tbe Brain,
19. The Origin of the

Nerves.
20. The Pineal Gland.
21. Tbe Guards of ibe Eje,
22. The Mufcles of the Eye,

Tunica Adnata,
Structure of the Eyc,
23. Tbe Coats of the Eyc,
24. TheHumours of theEye,
25. The Exigrnal Parts of the Ear; the Internal, particularly, the Drum,
26. Tibe Bones, Paffages, Windows, Labyrinth,
27. The Nofiris,
28. ThbeT ongue, and Teetb,
29. Tbe Palate,
30. Tbe Uvila and Tonfils,
31. Tbe Hair,
32. The Heart,
33. The Pericardiusn,
34. Tibe Lungs,
35. Tbe Tborax, Intercofal Mu/cles, Diaphragm,
36. The Pleura ध ${ }^{\circ}$ Mediafinum:
37. The External Parts of tbe Middle Cavity,
38. The Stomach,
39. The Intefines and Mejentery,
40. Tbe Lacteal Veins,
41. Tbe Omontwen, Pascreas,
42. Tbe Liver,
43. Tbe Gall-bladder, DuERs, Spleen,
44. Tbe Kidneys, Ureters; Bladder,

45: The Hands.
46. The Feat,

47: T.he Animal Spirits;
48: T.be Secretion of the otber Fluids,
49. The Blood,
50. What are the firf Elements of the Rody?
n. A S Man ought to know Himfelf beft, we begin our Treatife here. And firf,' let us contemplate the Human Body. The Parts of this are either folid or fluid. Thofe of the Solid, of which the reft are formed, are termed Similar Parts. Such are Fibrer, Bones, Membranes, Ligaments, Arteries, Veins, Lymphatic Veffels, Nerves, Flefh, Mufcles, Tendons: And thofe General Coverings of the Body, the Cuticle, the Skin, Fat, and the Panniculus Carnofus.

2: A: Fibre is a kind of flender Thread, of which all the other Parts of the Body are woven : According to the Difference of which, the Subfance of the. Fibres is different:alfo.
3. The hardeft Part of the Body, white and void of Senfe, is termed a Bone. The Bones are covered with a thin Skin, called the Periofteum, extremely fenfible. ${ }^{2}$

[^0]4. Annext to the Bones are the Cartilages, white, flexible and fmooth; moft of which in procefs of time become Bones, hard and quite void of Senfe.

5. The

there, but are continued tranfverfely, and as it wert arched, the Fibres of one fibe meeting aid uniting with thore of the other, ind this at each Extremity.

Thise Plates are differendy difpofed in different Bones; In thofe that have' a large Cavity, they are contiguous on each fife, and very clofely united. In thofe whofe Cavities are fmall, many of the inner Plates are diftant from each other, having little long Cells betwean 'them. In Bones whofe Phates are contigtous, there are Pores thro' and between them, (befide thofe for the BloedVeffels.). The firft pierce them tran(verfely, from the Cavity to the-external Surface of each Plate. The fecond run lengthways between the Plates, and diffure an oil with which they are fupplied. by the tranfverfe Pores.

Tiн. Bones are generally bigger at each End than in the Midde, that the Joints may be firm, and the Bones not fo exfily diflocated. Bit to ftrengthen the middle of the Bone, the Fibres there are mone clofely compacted.: Likewife the Bone, being large and hollow, is not fo eafily broke; as if it had been folid and fmaller : For of two Bones of equal Length ant equal number of Fibres, that is ftronger which has the larger Diameter:

Tui Blood-Veficls ufually enter the Ends of the Bones, the Arteries at one end, the Veins at the other: The Medullary Veffels cammonly enter the Sides of the Bone, and that obliquely.

Tes Marrow is covered with a Membrane; wherein are inclofed Fittle Bags. In thefe Baga are glandulous' Bladders, ferving both to Aecern the Marrow from the Blood, and to receive it. Both there and the Bags have Paffages into each other, whereby the Marnow ting free courfe. It paffes firt thro the tranfiverfe Pores of the firt internal Plate into the longitudinal ones. Thence it procoeds into othier tranfverfe Pores, when it alters its courfe again, and exfudes farther. Thus it pafes 'alternately thro' and between the Plates, till it is diffufed throughout. In this manner it is diffufed thro Bones, whofe Plates are contignous. Bdt where the Plates are at a diftance; the fmall Cells contain Glands, which direetly fupply the Plutes with Mirrow.

Tuy Marrew not only ferves to keep the Sabfance of the Bome moir, but to lubricate the Joints, and to hinder the Ends of the Bure, from being worn or over-heated with Motion. It alfo moiftens the Ligaments whigh tie them to each other: As do likewife the Glands found in all the Joints. The Back-bone hath thefe two 'Things peculiarly remarkable. I. Its different Articulations from the other Joints of the Body. For here mot of the Joints are flat, and withal guarded with Afperitics and Hollows, mave iur catching and holding; fo as firmily io locik and keep the
5. Tere varions Parts of the Body are clothed with Membrazes, which are whitih Tunicles, extremely thin and flexible, compofed of Fibres interwoven with each other, as a piece of Cloth is of Threads. They are faftened together by a kind of Cartilages, which are termed Ligaments:

Joints from Luxations, but withal to afford them-fuch a Motion, as is neceffary for the Incurvations of the Body. 2. The difference of its own Joints in the Neck, Back and Loim. In the Neck the. two upper Vertebra, are curioully made, and jointed (different from the reft) for the commodious and eafy bending ant turning the Head every way. In the Yborax, and Beck, the foints are mare clofe and firm; and in the Loins, more lax and pliant; as alfo the Spines are different, and the Knobs and Sockets turned a quite contrary Way, to aniwer the Occafions the Body hath to bend more there, than higher in the Bark. So that its Strudure is the very beft that can be contrived; for had it been all Bone, we could have had no Motion in our Body; had it been two or three Bones articulated for Motion, the Medulla Spinalis muft have been neceffarily bruifed at every Angle or Joint $;$, befides, the whole would not have been so pliable, for the feveral Poftures we have Orcafion to put our-felves in. If ic had been made of feveral Bories without intervening. Cartilaget, we thould have had no more'Ufe of it, than if it had. been but one Bone. If each Vertabra had bad its own ditinet Cartilage, it might have been eafily difocated. And laftly, the oblique Pioceffes of each fuperior and inferior Vertabra, keep the middle one that it can neither be thruft backwards nor forwards to comprefs the Medulla Spinalis.

The Pelvis made in the Belly by the lliwm, Offa Coxendicis and. Pubis, is larger in a Female than in a Male Skeleton, that there may be more room for the lying of the V_{i} feera and Faetus. So the Cartilage bracing together the two Sbarebones, is twice thicker and laxer in Women than Men. As alfo is the Cartilage, that ties the Os Sacruse to its Kertebra; and all to give way to the Paffage of the Fetus.

Anotirir confiderable Difference is in the cartilaginous Production of the feven long Ribs, whereby they are braced to the Breaft-bone. Thefe are harder and firmer in Women than in Men; the better to fupport the Weight of the Breafts, the fucking Infants, \&c.

It is remarkable in the. Joints, and a manifeft Act of Cantion and Defign, 1. That altho' the Motion of the Limbs be circular, yet the Center of that Motion is not in a Point, but an ample fuperficies. In a Point, the Bones would wear and penetrate one another, and the Joints would be exceeding. weak. But the Joint confifting of two Jarge Superficies, concave and convex, fome furrowed and ridged, fome like a Ball and Socket, and all lubricated with an oily Subr
6. An Artery is an hollow Canal, compofed of Pibres clofely twifted together, which conveys the Blood from the Cavity of the Heart to all the Parts of the Body. All the Arteries Spring from Two, the Aorta: or Great Artery, and the Pulmonary Artery. The latter canveys the Blood from the Right Ventricleof the Heart, thro' the Lungs, into the Left Ventricle. The former conveys it from the Left, to all other Parts of the Body. The Pulfe which is in every. Artery is only a Continuation of the Motion impref: upen it by the Motion of. the Heart. b.
7. A
ftance, they are incomparably prepared both for Mötion and Strength. 2. That the Bones next the Joint ate not foungy, as their Extremities commonly are, nor hard and brittle, but capped with a ftrong tough, fmooth, cartilaqinous Subftance, ferving. both for Streagth. and. Motion.

Foi affording this oily Matter, there are Glardules very commodiounly placed near the Joints, fo as not to fuffer too great Compref: fion by the Motion of the neighbouring. Bones, and yet to receive a. due Preffure, to caufe a fufficient Emiffion of the Oil into the Joints. Another Thing confiderable is, that the excretory Duets of the Mucilaginous Glands have. fome Length in their Paffage from their Glands to their Mouths; which is a good Contrivance, to prevent their Mouth being oppreffed by the Mucilage, and alfo to hinder the too plentifol Effurion thereof, but yet to afford a due Expreffure of it at all Times, and on all Occafions; particularly in violent and Long-continued Motions of the Joints, when there is a greater than oldinary Expence of it.
b The Arteries ordinarily confift of Three Coars or Membranes; The Outermoft has been generally thought to be compofed of fine Blood veffels. The Second is Mufcular, and siade up of firm and ftrong.circular, or rather fpiral Fibres: Of which there are more or fewer Strata, as the Artery is farger or fmaller. Thefe Fibres are extremely elatic. The Inmof Coat is a fine, denfe, tranfparent Membrane, containing the Blood; which otherwife would eafily -oze thro' the Spiral Fibres.

On a more accurate Examination it has been found, that the Outermoft Cuat of all Arteries is a Cellular Subftance, compofed of fine, pellucid Membranes, which may be ftretched even fuddenly to a great Extent without breaking. And they as fudjenly collapfe, when that ftretching Force is removed. Thefe Cells contain an aily Liquor, whi ch their Coats fecern from the Branches of the Artery that are fpread over them. This cellular Subftance of the Arteries ferves to conneet them with the furrounding Parts, withouthindring their Actions or.Motions. It gives a fafe Paflage to

(2x):

7. A Vein is a hollow Canal, which receives the Blood from the Artery, and conveys it back to the Heart. The chief Veins are three, The Vena Cava, which pours the Blood thro' a wide Paflage into the Right Ventricle of the Heart, the Pulmonary Vein, which in like manner pours it into the left Ventricle : And the Vena Porta, which does not, like the two former, end in a large Trunk, but fpreads itfelf as each Extremity into numerous Branches.

Is the Cavity of the Veins, there are certain thin Tunicles, which are termed Valves. Thefe, during the regular motion of the Blood, lie clofe to the Side of the inner Coat: Bat in cafe of any Obftactions. recede from it and clofe the Paffage, to prevent the Blood's falling back.
8. The Lympbatic Veffels are fmall Canals full of Valves, confifting of a thin, tranfparent Tunic, which convey an extremely clear Liquid into the Mafs of Blood. Probably thefe (as well as the Veins,) and all the other Veffels, are only Continuations of the Arteries.
9. A Nerve is a whitifh, round, flender Body arifing from the Brain, which is fuppofed to convey the Animal Spirits, to all Parts of the Body. What thefe Spirits are none can fhew: Nay we are not fure, they have any Being. For none can certainly tell, Whether the Nerves are hollow Canals, or only folid Threads, inclofed in proper Integuments.

10. This

the Veffels of thoir otber Conte, and fapplies eil for lebricating them. Thear is alfo moother. Colluler Sabfance, betwee the Membranous and the Mufcelat Cont.

Als the Arteries begin with a lanter Trank, and grow lefe and lefa till they are oo longer feen by the naked Rye. Heare they are continued, 'till they inosfulate with the Veiss, and fo form one uninterrupted Channel.

TuI r appear whita, becuute their Conte are of fo denfe a Conterture, that the Blead is vifible thro' thern. This proceading from wider to parrower Ceanh, is continually obfructed in its Pa /fage. Byt being puihed on by the Motion of the Heart, it diftende the Coate, and caufes that leaping Mcotion called the Pulfe. By this, as wall as by thcir Whitenefa, Artecies are diatioguithed frosim V eins.
ro. The fibrous, foft; reddith Part of the Body is.. termed Flefh. All flethly Fibres are hollow, and dividod thro' their whole length into little Caverns, whetein the Blood is detained, as occafion requires.
1.1. A. ©land is a foft and fiongy Body, which feparates fome particular Liquid from the Blood. The: Iarger Glands contain Arteries, Veińs and Lympha-tie Veffels: But the Glands of the Inteftines are only the Tops of the Arteries. ${ }^{-}$
12. A Mifde is a bandle of Pibres joined and faftened together, with their proper Veins, Arteries and. Nerves. It is divided into little Cells by tranfverfo Fibres, paraliel to eacli one, whereby it may be contrefled and fhortened, or relaxed and lengthened again. Its extreme Parts are more clofely compacted; which: we term Tondons. By theft the Mufeles are connected, with the neighbouring Parts. A Mufcle generally conflits of Three Parts; The Upper, termed the Fkead, the middle; termed the Bally, and the lower: Part, or Tail:

Every Mufcle is divifible into fmaller Mufcles. and thofe into others fill fmaller: And fo on, beyond al Imagination. The laft and fmalleft Parts are Muf-.

[^1]eular Fibres. But there is no affignable point in any Murcle, wherein there is not fome Nerve. And here all the Nerves difappear ; (In other Parts their Extremities expand into Membranes.) It is therefore probable, that the Mufcular Fibres, are only the Nervous continued.
13. The Cutick or Scarf-Skin is an extremely thin and tranfparent Membrane, void of Senfe, and covering the Skin all over. ${ }^{+}$The Skin covers almoft the whole Body, and is formed of whitiin Fibres, intermixt with numberlefs Branches of Nerves, Veins and Arteries. On its Surface are many Furrows or ina dented Lines, having generally Hairs on each fide, and Pores, or little holes of various fizes, ferving for the Tranfpiration of fuperfluous Particles. Under the Skin lie the Subcutaneous Glands, which are fuppofed to tranfmit thro' the Pores an infenfible Steam, commonly believed to be of the fame kind with what, when fenfibly thrown out, is called Srueat. ©
14. Fat,
d The Cutiele ficks fatt to the Surface of the Skin, to which it is alfo tied by the Veffets that feed it. It confifts of feveral Layers of exceeding fmall Scales, which cover one another where it is thick. But in the Lips; where it is extremely thin, they litule more than touch one another.

In Some Creatures, (as Fithes) thefe Scales are only the excretory Duets of the Glands of the Skin. In others thofe Glands have their proper Duets; opening between the, Scales.

It is fuppofed, there are in one Scale 500 Excretory DuCts, and that a grain of Sand with cover 250 Seales! If fo, a Orain of Sand will cover 125000 of out Pores.

Tri Cuticle ferves to defend the Nerves of the Skin, both from the Air, which would dry and make them lefs fenfible, and from rough and hand Bodies, which would make a painful Impreffion on the naked Nerves.

Negrozs have a Skin betweea the Cuticle and the trueSkin. They are born white; but the middle Skin, in a fittle Time turns black and gives that Colour to the whole Body.
e Thro' the Pores there continually tranfudes a fubtle Vapour from every Point of the Body, being what redounds of the Aliment, ${ }^{3}$ comminuted to the higheft Degree, and fent to repair every Particle of it. And the Matter thus evacuated is more than is thrown out, by all the other Paffages together.
A PZR $30 N$ of middle Age found what he perfired was five Eights of the Food takes in: So that there remained only three Eights for
14. Fat, 2 whitifh, oily Subftance, void of Semfe, is fecreted from the Blood, and lodged in fmall, oval, membranous

Nourifhment and all other Evacuations. He obfervid-ille, that as moch in perfpired, in oneDiay, wis paffes bysmel inffourteen: And more.particutarly, that in a Nightyrtimaghant-Siztean. Ounces are ufually thrown out by Urime, four by Stool, and about Forty by infenfible Perfíration.

Ir a. Maneats und drinke Eighe Poonde in a day, ifive Pounds of it uparfiby Perfpiracion : Nathely, about Oae: Pound within five. Hours
 the fifth to the twelfth Hour, about three Ppunds, andifrom the 12th. to the 16 th. Fcarce half a Pound. Exercife increafes Perfpiration mach. But it is naturally lefs in Women than'Mep.

UNenil is this Stoam flows from our Body, it cosifpnity imbibes a Supply :of Moilture from the Air, which Serres to dreap all its Parts foft, pliant and fit for Motion. Heace, from the greater Moifture of the Air, we.perfire lefí in Winter than in Summer, and in rainy Weather than in fair. Live therefore if polfible, in a clean Houfe, and in a pure, dry Air.
This Inialation is very confiderable, Dr. Keil found his Body to have imbibed in one Night Eighteen Ounces of Moifture. And on a fudden Change of Weather from dry to wet, the Infpiration fometimes exceeds the Expixation: There being Abboubent-Weins, which accompany the numberlefs Arteries from which the Perfpitation is difcharged. To the Matter thus imbibed (not the Ohftruction of the Pores) he afcribes what we term a Cold. Sweating cures this, by throwing out the noxious Matter which was imbibed before.

The Benefits of infenfible Perfpiration are fo great, that life cannot be preferved without it. And the Subtil:y, Equabiiity apd Plenty of what we perfinie, are the grand Symptoms of Health.

But how little do we know even of pur own Frame! It has hitherto paffed as an unqueftionable Truth, that the fame Matter which paffes by infenfibie Perfpiration, paling in greater quantities, is Sureat. Whereas an ingenions. Phyfician now alive, has found by numerous Experiments, That a perfon perfpires abundantly lefs, when be Sweats than when he does not: That ane who perfpizes 24 Ounces in feven Hours Sieep, if he fweat, does not peripire atove Six. This he has tried many Times, and gever found it to fail. Whence he infers, 1. That is is not the fame Matter which is cvacuated by infenfible Perfiration and by Sweat: 2. That it is not evacuated thro' the fame Pares: 3. That the Sweat-Pores ase abundantly larger and fewer, than thofe which ferve infenfible Perfpiration:.4. That Sweat greatly binders that Perficiration, both by covering thofe Pores with a clammy Liquor, and by conftringing thein fo that they cannot open; which muft be the Cafe, when the Sweat-Pores are dilated. What a Field does this open!
smembranous Bags, which fhoot out of the Arteries. It is found in various Parts, but chiefly under the Skin, where (unlefs a man be emaciated) it runs co-extended with the Skin over mofl Parts of the Body.
15. The Fourth General Integument is the Panmiculus carnofus, which in fome Parts is of a flefhy Subfance, in others a mere Membrane, lying juft under the Fat.
16. The Diffimilar Parts are compofed of the Similar. The chief of thefe is the Head. The Cavity of the Skull is nearly filled with a foft Subftance, termed in general The Brain. But this is properiy that Part of it which lies forward. The Hinder Part (confiderably fmaller) is called the Cerebellum. Under both, but chiefly the latter, and fringing from the internal Subfance of both, is the Medulla Oblongata. g Vol. I. C 17. Alf

[^2]17. Alit thefe are irvolved in two Membranes, the Inner (called Pia Mater) extremely thin; the Outer, (called Dura Mater) confiderably harder and thicker. Where they involve the Cerebellum, there is interpofed between them the Aracbnoides, a very fubtle and tranfparent Membrane, which defcending thro' the hinder Part of the Skull, together with them involves the whole Spinal Marrow.
18. The Outer Part of the Brain (called the Cortex or Bark) is of an afhy or greyif Colour. It is formed from the minute Branches of the neighbouring Arteries, which being wove together in the Pia Mater, inclofe the Inner Part, ordinarily to the thicknefs of about half an Inch.

It confifts therefore of innumerable little Glands, contiguous to each other, (fuppofed to fecern the Atilmal Spirits) which are of themfelves oval, but by their mutual Preffure become angular, and run waving with each other.

The Inner Part (called the Medulla) is white, and terminates in another medullary Subftance, very white and hard, called the Corpus caliofum. The Medulla is thnught to confift of fine Tubes, which when collected into little Bundles, and covered with Membranes, are termed Nerves.
19. To trace this a little farther. From every point of the Outer Brain arife minute Fibres, which in their Progrefs uniting together, are eafily perceptible. Thefe conftitute the Subftance of the Inner Brain, and of the Spinal Marrow. In their farther Progrefs they are diftinguifhed by Coats detached from the two Membranes of the Brain, into feveral Bundles called Nerves, refembling fo many Horfe-tails, each wrapt up in a double Tunic.

Several of thefe partfrom the reft in the Brain itfelf, of which there are Ten Pair; One on each fide. From the Spinal Marrow there arife Thirty pair more.

IT is divided into pieces by its Sutures. This makes it lefs liable to break, gives paffage to the Membranes of the Pericranium, and Vent to the Matter of infenfible Perfpiration.

All thefe, while within the Skull or the Spine, are. pulpous; but afterwards harden, acquire a Coat, and Spread thro' the fmalleft points of the folid Parts of the Body. Their Coats are every where furnilhed with Blood-veffels, Lymphatics, and Veficles of a very tight Texture, which ferve to collect, ftrengthen and contract their Fibres. And if we confider 1. The great Bulk of the Brain, Cerebellum and. Spinal Marrow (whereof the whole Subftance goes to: conflitute Nerves, being continued into, and ending in them): 2. The great Number of Nerves diftributed hence, throughout the whole Body: 3. That theBrain and Spinal Marrow are the Bafis of an Embryo, whence the other Parts are afterward formed: And laftly, That there is fcarce any Part of the Body, which does not feel or move: It may feem not altogether improbable, that all the folid Parts of the Body, are woven out of nervous Fibres, and wholly confift of them.
20. The Brain is divided t into four Ventricles. Near the rife of the Fourth, there is a round Hole,
C 2 over

[^3]over which is fuffended the Pineal Gland, fo callect from its refembling the Shape of a Pine-Apple. It is furnifhed with Veins and Arteries, and inclofed in a ${ }^{\mathbf{d}}$ thin Membrane, derived from the Pia Mater. Des Cartes imagined this to be the Seat of the Soul; bat without any folid Reafon. Nor has any one yet beend able to difcover, what is the Ufe of it. Is it fuctif a Refervoir of Blood for extraordinary Occidions, at fome imagine the Spleent to be'?
21. The Edes next offor themfelves to our Obletva:tion, guarded by the Eye-lids, Eye-Laßbes and Eye-brotus. The Eyelide confift of the Cuticle; the Skin, a thin Expanfion of the Panniculus carthofus, and an linwara Coat. A Pallfade of fhort, but fiff Hairs grows out of their cartilagitous Edgé, both to break the tod fierce Impreffron of the Rays of Light, and to prevent any thing ffom getting into the Eye, when open, Thefe Hairs oinly grow to a convenient Length, and their Points fland out of the way, thofe of the Uppet Eye-lids being bent upward, and thofe of the Lower, downward. Medntinte thie Eye-bitows hinder S'weat, or aty thing elfe which might be hurfful, from falling down from the Forehead.

Вотн the Eye.lids are moveable, but chiefly the Upper. Animals which have hard Eyes, as Lobfters, need none, and therefore have no Eye--lids. But moft Brutes have ath additional Eye-lid (called the Niftitating Membrate) which draws like a Curtain, to wipe off what might incomtriode the Eye. The Monkey indeed has it not, as being furniffed with Hands like a man.
22. The Eye can move apward, downward, ff either fide, and round, either toward the Right of
with the Spinal Marrow. Mr. du Veindy took out the Brain and Cerebellum of a Pigeon: Yet it tived and walked about. Monf. Cbiractook out the Brain of a $\mathrm{Dog}_{\mathrm{g}}$; yet he liver. On taking out the Cerebellum, he feemed dead; but revived, when he blew into the Lungs and continued alive an hour. Nay, there are many Inftances of Infects living a long time, atter their Head is cut off. Hence it appears, that the Spinal Martow alone may, for a feafon, fuffice both for Life, Senfation and Motion.

Left. For thefe fix Motions fix Mufcles are allotted, which fpread theirTendons far into the Eye. At each inner Corner of the Eye, there is a Gland with two or three Ducts, which opening on the inner Surface of the Eye-lid, keep the Eye-ball moift, to facilitate its Motion. By thefe Glands Tears alfo are fecerned. The Eye is connected with the furrounding Bones by the Tunuca adnata, commonly called, The White of the Eye: In the midf of which is a large Hole for the Tunica Cornea, thro' which the Iris and Pıpil appear. The whole Ball of the Eye rifes from the Optic Ncrue, and is formed of three Coats propagated from it, and as many Humours; Two of which have each a Coat of its own alfo. The Eyc therefore has five Coats in all: Three Common, and Two to contain their feveral Humours.
23. The Outermof Coat, proceeding from the Dora Mater, and furrounding the whole Eye, is termed the Sclerotica: The Forepart of it being tranfparent like Horn, is thence filed the Cornea. This is more convex than the reft of the Eye. It is compoíd of feveral parallel Plates, which are nourihed by many Blood-veffels, but fo fine, as not to hinder the fmalleft Rays of Light. It has an exquifite Senfe, that on the leall touch of any thing, the Tears may be expreffed, to wafh off any Filth, which by adhering to it might render it dim or cloudy. The reft of the Sclerotica is opake, and of the fame culour with the Dura Mater.

The Second Coat is called the U vea. It is much thinner than the former, tho' thicker than the Pia Matcr, from which it pro-1 ceeds. In the Forepart of it is a round Hole, which with the Chryftalline Humour interpofed, confitutes the Pupil, furrounded by the Iris, fo named from its fuppofed refemblance to the Cctours of the Rainbow. The Third and inmoft Coat is termed the Retina. It is extremely thin and foft, and darker-coloured than the lower Part of the Opric Nerve, of which it is a Con:inuation.

A late Writer afterte, "The Retina is not, as is Suppofed, the great Organ of Vifion. By-late Experiments it appears, that it is as tranprarent as the limemers, and culfequently not a proper lathuant,
to ftop and terminate the Rays of Light, or to receive the Images of Objects. The Light paffes thro' this, and can only be ftopt by the Choroides, which is opake'; and confequently bids much fairer, for being the principal Organ of Vifion: As, being black, it abforbs all the Rays and refleets none. Likewife the Action of Light is ftronger Biack than any other Colour. The Situation of the Choroides behind the Retina, is another Circumftance in its favour. So the Skin, the principal Organ of Feeling, is placed beneath the Cuticle. The Retina feems to be a kind of Secondary Organ, ferving to preferve the Choroides, (as the Cuticle the Skin) ahid to break the too ftrong Impreffion of the Rays upon it. Add to this, that the Retina is infenfible, as proceeding from the Medulla of the Brain: But the Chorot ides, arifing from the Pia Mater, is ac/utely fenfible. The Optic Nerve is not compored of Fibres, like the other Nerves; but is only Part of the Medulla, in: clofed in a Canal. This fhews that the Retina is not a Membrane (as has been hitherto fuppofed) but only a Dilatation of the Medulla, inclofed under two Membranes. Perhaps it may ferve to filtrate the Spirits neceffary for the Action of Vifion. But the Vifotation whereon the Senfation follows; muft be made on a mote firm and folid Part."
24. The Aqueous Humour, refembling the Colour and Confiftence of Water, lies in the forepart of the Eye, juft behind the Cornea: Its anterior Surface is convex, the other a little concave. Whence this Humour is derived we cannot tell: but its Source muft be plentifull; For if the Coat containing it be fo wounded; that all the Humour runs out, it needs only to keep the Eye clofe for a Seafon, and the Wound will heal, and the Humour recruit.

Indeed an eminent Italian affirms, That he has fit the Pupil of divers Animals, and fqueezed out all the Humorrs, and has afterwards reftored them perfectly to fight: Nay, that the Eyes of many, inftead of being damaged thereby, feemed more lively and vigorous than before.

The Second Humour, termed (improperly enougb) the Cbrygaliine, confifts of many thoufand Filaments,
teniding from the Citcumference to the Eenter, and clofely woven together into thin Scales. It is a little convex before, and more behind. It fetves to refract the Rays of Light, fo that they may meet and form an Image, on the bottom of the Eye. It is fet in the Forepart of the Vitreous Humour, like a Diamond in its Collet, and is retained there by a Membrane that furrounds it, theience called its Cappula. It is toward the Outfide like a Jelly, but toward the Center as hard as Salt. The Figure of the Outer Part is varied by a Ligament annext, which can kither make it more or lefs convex, or move fit to or from the Retina. And this is abfolutely neceffary, in order to diftinct Vifion: For as the Rays of different Objects diverge lefs than thofe of near Objects; the Chryftalline muft either be made lefs convex, of be fet farther froff the Retina.

Whin dried, it appears to confift of a vaft number of thin, round Scales one upon another, 2000 of which have been counted in one Chryftalline. Each of thefe confifts of a fingle Fibre, wound this way and that, in a ftupendous manner, fo as to run feve. ral Courfes, and meet in as many. Centers, and yet not interfere or crofs in any place.

The Third, which is termed the titreows Humbut, is not unlike melted Glafs. It is covered with an exceeding thin Coat. The Forepart is concave, as receiving the Chryfalline; the othet fide is Con: vex.

1 The whole Apparatus of the Eye tend's to this, that there be - produced in the bottom of it, a diftinct Collection of all the Rays, which proceeding from any point of an Objeet, penetrate the Chryflalline Humour, that fo an Image of that Object may be painted there. In order to this, the Rays ftriking on the Cornea, are reflected toward the perpendicular, and thus direeted thro' the Pupil to the Chryftalline. Meantime the Iris, contracting or dilating the Pupil, admits fewer or more Rays, as the Object is more or lefs vivid.

Now the flatter the Cornea is, the fewer Rays does it collect and tranfmit to the Chryftalline, and thofe more diverging. The rounder it is, the more Rays does it collect and tranfmit, and thofe more converging. It is too flat in Old men; it is too round in them that are fhort-fighted.

The Rays tranifmitted thro' the Pupil to the Chryftalline Humour, are there refracted anew, collected and rendered converging, and thofe that come from the fame point, art

- 25. We proceed to the Ear, formed with exquifite Wildom, for the Reception of Sounds. The Outward Ear confifting of an Oval Cartilage, externally convex, concaye within, leads by various Windings
thrown in one point on the bottom of the Eye. But if the Chry fal. line be too denfe, the Focus (or Point wherein they unite) will be too near: If that be not denfe enough, it will be too remote. And this is another Caufe of Chort fightednefs, or the contrary De?eCt.

In all. Vifion both the Eyes are ufed at once. And both together (as any. one will find,upon trial) behold an Object in ano:her Situation than either of them apart would do. Hence a Gentleman who had one of his Eyes fruck out, for fome Months after was apt to miftake the Situation of things: And when he atternpted to f our Liquors inta Phials, often poured them quite befide the Ntcis of the Phials.

Thi Form of the Eye is the moft commodious which can be imagined. It is fittef both to contain the Humours within, and to receive the Images of Objects from without. Was it Square, or of any multangular Form, fome of its Parts would lie too far off, and fome too nigh thofe lenticular Humours, which by their Refractions caufe Vifion. But by means of this Form, the Humours are fitly placed to perform their office of Refraction, ard the ittle darkened Cell neatly adapted to receive the Image of the Objcet.

Aoain. As it is neceffary for the Eye to move various Ways in order to adjuft itielf to various Objects, fo by this Figure is is well prepared for fuch Motions, and can with eafe dirtel itfelt as occafion requires.

No lefa commodious is the Si:uation of the Eye : In the moft eminert Part of the Body, and near the moft fenfible Par:, the Brain. By its Eminence in the Body, it can take in tue more Objects: And by its Situation in the Head, befide its nearnefs to the Brain, it is moft conveniently placed for Defence and Security. In the Hand it might hase been more ready for Service: But to how many Dangers would it have been expofed? The fame may be faid, as to its Site in any other Part but where it is. Bat the Head is a part that feems contrived and made, chicfly fot the Uie of the principal Senfes.

In fome Men the Iris has a Faculty of dar:ing sut Light. Dr, Wilis mentions one, who after drinking Wine plenififuly, could lie to read in the da:keft Night. And P'iny records of T.b.rius Cefar, that if he awaked in the night, be cculd fee ejery thing tor a while, as in the broad day light. Dr. Briggs gives a paraliel Lhalance of a Gentleman in Bedfordfoire.

We find various Subnitutes for the Ufe of the Eses, in many blind Perfons. In fome the Defect has been fupplicd, by an exceilent Gift of remembring what they had feen: In C me by a delicuie Senfe of Smeliing: Ia others, by a fine Senifit of Hearing. So Ricbard Clutterbuck of Realorucigb in Glousifierjikire, whu was: cneblind, had fo curious an Eiar, that be could heur the fan Sios ua a
to the Meatus Auditorius, which is firf Cartilaginous, and then bony. It is filled with a vifcid Matter, called the" Ear-wdx which is fupplied from the Veffels plated in the Skin, farrounding the Meatus, to hinder any hurtful Animal from creeping into the Ear. The Mreatus is clofed within by a thin, dry, tranfparretht Membiatie, affixt to a boony Circle, which. is cafled the Meintrana Iympaini. Bohind it is that Cavit' of of the Os Petiojfing, which is termed the

26. In

Hour-Gliafs fint. In fomè it has beeh fưpplied by añ exquifite Senfe of Feeling: So the fante Ricbata Cluetithed was athe to perform all. Sorts of curious Works: He could not only take \# Whth in pleceis. and fet it together again, butt could alfo make all fotts of Sutingmulical Inftruments. He likewife played on them by Notes qut in thelir uflat Forth, abd fet upon protuberant lines on the Wood. Yee evien this batdiy cutre upi to the Skill of Van-Eyck, the Organit of Utretbt, who, tho' he had been blind fromt two yeafs old. played on all Sorts of Inffrumento.

Others haye been able to take a Face by the Touchs and: mould it in Wax with the utimof Exactneff: As was the blind Scuiptot, who thits thook the likeriefs of the Diuke de Bracciane, and mitate a mimble Sratue of King Cbarlis the Firft extremdly will.

But more than all this, fome Perfons have been able even todiftinguifh Colours by the Touch. Peter of Maefricbt, tho' perfecthy brind; diftinguiftret by his rouch the diferemt Colours of Cloth. Fobn Vermaajen of Utrecbt did the fame, judging by the different De-griées of'Roúghne'ts which hé fètt.

पет bitiod Perfons, even tho they difinguith them by the T'ouch, have no Idea of Vifible Objecti. Thus the Gentleman couched by Dr. Cbefelden, tho he knew the Colours in a good Lighe during bis former Stare, yet when he faw them after Couchings coúld rot diftinguiin them, by the faint Ideas he bad of them before. It was ev̈ēh a cönfiderable time before he could remember, which was the Cat, and whick the Dog without feeling thèm. Add to this, that he had no Idea of Dittance, but imagined ait the Objectshe faw, touched his Eyes, in the fame manner as thofe he fete dit. his Skin.
\mathbf{x}^{\prime} ' The outikard Edr hà two Parts, That which ftandé out from the Head, called the Auricley and the nartow Pablage which entiters the Skull, called Meatus Auditorius.

The Auricle is furrowed with divers winding Canals, whigh receive and collect the various Undulations of the Air. They whed have loft this, hear very confufedfy, unlefs they ufe a Trumpeny of form a Cavity round the Ear, with their hando.
26. In this, befides a little Branch of Nerves, there are four little Bones, two Paflages, and two Windows. Three of thofe Bones, from fome imagined. refemblance, are filed the Hammer, the Anvil and the Staple: The Fourth is termed, The orbicular Bone. Thefe are faftened by frong Ligaments to each other, and to the neighbouring Parts. The Paffages go from the Side of the Drum : One of which, termed the Labyrinth, by a very winding way, carries a Part of the Auditory Nerve to the external Mufcles of the Head. The other paffes from the bottom of the Drum to the Palate; whereby not only Air, if needful, may be received, but the Defect of Hearing, in fome meafure fupplied by fpeaking to the Mouth.

The Labyrintb contains, befide the Entrance, three bony, femicircular Cavities, and a bony Canal, in the form of a Screw, divided into two Parts, from the top to the bottom. The Labyrinth is lined throughout with a thin Membrane, furnihed with Veins, Arteries and Nerves. And this Membrane may not improbably be the Organ of Hearing.

The curious Structure of the Labyrinth and Screw tend to make the weakef Sounds audible. Thofe Canals, by their Winding, contain large Portions of

Ir is a wife Provifion, that the Subftance of the Auricle is cartilaginous. Had it been hone, it would have been troublefome, and migint by many Accidents have been broken off. If Flefl, it would neither have remained expanded, nor fo well have received or conveyed the Sounds. Rather it would have tlunted them, and setarded their Progrefs into the Organ. But being hard, and curioufly fmooth and winding, Sounds find an eafy Paflage, with a regular Refraction, as in a well-built Arch.

It is obfervable, that in Infants in the Womb and newly born, the Meatus Auditorius is clofe fhut up, partly by the Conftriction of the Paffage, and partly by a glutinous Subftance, whereby the Drum is guarded againft the Water in the Secundine, and againft the Injuries of the Airs as foon as the Infant is born.

It is remarkable, that in the Ears of mont if not all Asimals, where the Meatus Auditorius is long enough to afford Harbour to Ear-wigs, or other Infects; Ear-wax is conftently to be found. But in Birds, whofe Eart are covered with Feathers, and where the Drum lies but a little within the Skull, no Ear-wax is found, becaufe none is neceffary to the Ears fo well guarded, and folittle tung elled.
the Auditory Nerve, upon every point of which at once the Sound being impreft becomes audible; and by their Narrownefs the Sounds ate hindered from dilating, which muft have weakened them proportionably.

The Strength of the Imprefiion is likewife encreafed by the Elafticity of the Sides of the Bony Canal, which receiving the firft Impulfes of the Air, reverberate them on the Auditory Nerve.

The Anditory Nerves are diftributed, One to the Ear, the other to the Eye, Tongue and Parts adjoining. By the Diftribution thereof to different Parts, an admirable Confent is effablifhed between them. Hence it is, that moft Animals, hearing a ftrange Sound, erect their Ears to catch it, open their Eyes, and are ready with their Mouth, to fhriek or call for Help. A farther Ufe of this nervous Communication between the Ear and the Mouth is, that the Voice may correfpond with the Hearing, and be a kind of Echo thereof: and that what is heard with one of thefe Nerves, may readily be expreffed by the help of the other.

And now what lefs than an infinitely wife God, could contrive fo fine à Organ, and fuch a Medium, fo fufceptible of every Impreffion, that the Senfe of Hearing hath occafion for, To impower all Animals to exprefs their Meaning to each other, with endlefs Variety? Yea, what lefs could form fuch an Economy as that of Mufic is? So that the Medium conveys the melodious Vibration of every Animal Voice or well-tuned Inftrument, and the Ear receives them, to allay the Perturbations, and calm and chear the Heart of Man? 1

27. The

1 Tho' the Ear be the ordinary Organ of Hearing, yet it is not the only one. We may hear by the Teeth. For if one End of a Knife be applied to a Spinet, and the other held between the Seeth, the Mufic will be diftinetly heard, thg'ane Ears be ever fo clufely Atopped ${ }^{\text {OH }}$ This is not by the Teeth but By the Auditory Nerve which paffies from the Drum to the Palate.

In thofe who are born Deaf, the Eyes may in fome meafure ferve in the place of Ears. Some can underftand what is laid, by nicely obferving the Lips and Tongue of the Speaker: And may eves
27. The Nafrils are made not of Flefh or Bane, but of Cartilage, the better to be kep: open, and as occafion requires, to be dilated or contract d: For which purpofe they are fyrnilied with proper and curious Mufcles. The Tubes therein growing narrower and narrower, lead into feveral little Cells and winding Cavities, covered with a foft Coat, and provided with Arteries, Veins, Glands, and Filaments of the Olfactory Nerves. This therefore is without all doubt the proper Organ of Smelling.

And forafmuch as it is by Breathing, that the odorant Particles are drawn in, the Laming with which the upper Part of the Nofe is barricaded, ferve two excellent Purpofes, partly to prevent any thing hurtful from entering the breathing Paffages in our Sleep (for which end likewife the Hairs placed at the Entrance of the Noftrils ferve) and partly to receive the Divarications of the Olfactory Nerves, which are here thick fpread, and by this means meet the Smells entering with the Breath.
28. The Tongue has for its Bafis that forked Bone, called the Os Gutturis. It confifts of various Mufcles interwaven together, that it may be fit for various kinds of Motion. To thefe are added very many fmall Branches of Nerves, which pafs thro' the Middle of it to the Outfide, and being gathered into little Bundles,
accuftom themfelves to ufe their own, 'till they learn a kind of Speech. Thus a Phyfician at Amferiam taught feveral Children born deaf, to underfand what was faid, and to give pertinent Anfwers.

Mr. Goddy's Daughter of Geneva loft her Hearing at two years old. Yet by obferving the Lips of others, the had acquired many Words, whereby fhe would talk whole Days with thofe that could underftand her. But fhe knew nothing of what was faid, unlefs fhe faw the Mouth of the Speaker : So that if :hey wanted to fpeak to her in the Night, they were obliged to light a Candle Only the knew what her Sifter faid even in the Dark, by laying her hand on her Mouth.

But many deaf Perfons can hear, if a loud Noife be made while you Speak. Dr. Willis mentions one, who, if a drum was beat in the room, could hear very clearly. So that her Húband hired a Drummer for his Servant, and by that means converfed with her drily.

Bundles, conftitute thofe Papille, which make its Surface rough and uneven. Befide thefe there appear alfo on the Surface of the Tongue, certain pointed Fibres, not unlike the Ends of Birds Claws, inclining toward the Bafis of it, with which are interfperfed innumerable Salival Glands. And all thefe are in their feveral Ways fubfervient to the Senfe of Tafing.

The Time of cutting the $\mathcal{T}_{\text {eet }} b$ is ufually from the Seventh to the Seventeenth Month. It is commonly preceded by an itching of the Gums, and by Convulfions, Fevers and Loofenefs : moft of which Symptoms happen to Birds alfo, upon moulting or calting their Feathers. The Seed of the Teeth is a mucous Matter, like the white of an Egg , contained in the Cells of the Jaw-bone, which grows harder and bigger till it breaks thro' the Gum.

That Part of the Tooth which flands out of the Gum, is covered with a peculiar Subftance called : Enamel. It is compofed of an infinity of little Tubes, which grow on the Bone by their roots. If any part of this be broken off, fo that Bone is left bare, it grows carious; there being no Bone which will bear the Air.

We may farther obferve, i. That the Teeth only of all the Bones, grow in length during a Man's whole Life : which is pruvidently defigned, to repair the Wafte that is continually made by Attrition; 2. That the Teeth are the only Bones which are not covered with that exquifitely fenfible Membrane, the Perioffeum; 3. That they are harder and firmer than any other Bone, that they may be more durable and fit to chew the moft folid Aliments; 4. That for their Nourifhment, there is a Cavity contrived in each Side of the Jaw-bone, in which are lodged an Artery, a Vein and a Nerve, which thoo' fmaller Cavities fend their Twigs to every Tooth; 5. That as Infants are defigned to live on Milk for fome Months, they are fo long withour any Teeth: Whereas Animals that need them, have them fooner, and fome are even born with them. 6. The different Shape of the Teeth is remarkable. The Fore teeth Vol. I.
are formied broad, and with a thin and sharp Edge, like Chiffels, to cat off a Morfel from any fodid Food. The Next, One on each fide, are ftronger, deeperrooted, and more pointed, to tear teugher Aliments: The reft are made flat and broad at top, and withal fomewhat uneven, that thereby they may the bettor retain, grind and mix the Aliment. 7. Becaufe Biting and Chewing require mach Strengeth, party in the Teeth themfelves, partly in the Inftrunents that move the lower Jaw, which alone is moveabte; Ni ture has given it Arong Mufcles, whin make it bear forcibly againft the Upper Jaw: And has not only fixt each Tooth in a diftint Cavity, as in a clofo, ftrong and deep Socket, but has given Holdfafts to the feveral Sorts of Teeth, fuitable to the Strefs that is to be laid upon them. So whereas the Cutters and Eye-teeth have only One Root, the Grinders, defigned for harder Work, have Three: In the Upper ${ }^{j} 2 \mathrm{w}$, often Four, becaufe they are pendulous, and the Subftance of the Jaw fomewhat fofter. 8. The Situation of the Teeth is moft convenient. The Grinders afe behind, near the Center of Motion, becaufe chewing requires a confiderable Force: The Cutters before, ready for their eafier Work.
29. The Palate is of a bony Subfance, a little concave, and cloathed with a thick Membrane, which has the fame kind of nervous Papille and fmall Glands, that are feen in the Surface of the Tongue. And hence it is qualified to affif the Tafte as well as the Speech.

Ir would be endlefs to fpecify the curious Mechanifm of all the Parts that concur to form the Voice. However let us note two things. I. There are Thirteen Mufcles provided for moving the five Cartilages of the Windpipe. 2. It is amazing that the Glottis (the upper part of it) can fo exquifitely contract or dilate itfelf, to form all Notes. "s Suppofe (fays Dr. Kail) the greateft Diftance of the two Sides of the Glottis to be one Tenth of an inch, in Younding Twelve Notes, (to which the Voice eafily reaches) this Line muft be divided into 12 Parts, each of which gives
the Aperture requadie foy fuch a Note. But if wa confodar the Subdivifion of Notes into which the Vaice can run, the Motion of the Sides of the Glotis is aidl valdy nicer: For if of twa Chords, founding exactly Unifons, One be Chortened but the two thoufandth partof its Leagth, juft Ear will perceive the Difagseement and a good Voice will found the Differonce: And yet this is onky the one hundred and ninety fixth Part of a Note. But fuppofe the Voice can divide only into an hundred Parts, it follows, that the different Apertuyes of the Glotis, actually divide the Tenth. Part of an inch, into twelve hundred Parts, the Effert of each of which produces a fenfible Alteration upon a Good Ear.
30. Tha Urowla is a round, oblang, flefty Subtance, furpended near the Paffage from the Mouth into the Noftrils, and probably defigned to hinder the cold Air, from rushing too fall into the Lungs. Tho Fanfits, or Almonds of the Ear, are two fmall Glands, placed at the Root of the Tongue, which fupply an Humaur, to keep the Mouth and the Tongue contiamally moif.

The Wind-Pipe is wonderful in its Conformation: Decaufe continual Refpiration is neceffary, it is made with Annular Cartilages, to keep it conftantly open, that its Sides may not fall together: And left, when we fwallow, any Particle of Food fhould fall in, which might caufe Convulfions, or even Death, it has a frong Shutter, or Lid, called the Epiglottis, which, whenever we eat or drink, falls down of itfelf, and covers it clofe, §o that no Crum or Drop can enter. It is for the more convenient Bending of our Necks, that the Wind-Pipe is not made of one entire continued Cartilage, but of many circular ones.

What is farther remarkable in thefe Cartilages is, that all the Way where they are contiguous to the Gullet, they are membranous, to give an eafy Paffage to the Food: But after that, they are, fome completely round, fome triangular. Another obfervable is, in the Wind-Pipe, the Cartilages run paralle! to each other: Bat, in the Lungs, the lower Parts of the fuperior CarD 2
tilages,
tilages, receive the upper Parts of the Inferior : Hereby enabling them to contract themfelves in Expiration, and to dilate in Infpiration.
-31. The Hairs are all hollow. The Root of each Hair is fixt in a mucous Globule, of an oval Figure, which often adheres to it, when it is pulled up by the Root. They are dijointed like a Reed or Cane, and fhoot out into fmall Branches. They ferve not only for a Covering, but alfo for the Excretion and Expiration of an oily Matter.

Every Hair does properly live, and receive Nourifhment like the other Parts. The Roots do not turn White or Grey in Age, any fooner than the Extremes. But the whole of each Hair changes Colour at once. Or (to fpeak more properly) the Hairs of another Colour fall off, and white ones grow in their Place.

YET, its Life is of a peculiar Kind, and approaches to the Nature of Vegetation. Hairs grow much as Plants grow out of the Earth, or as fome Plants grow upon others: From which they draw their Nourifhment, and yet each has its Life diftinct from the other. So Hair derives its Food from fome Juices in the Body, but not from the nutritious Juices. Accordingly the Hair may live and grow, while the Body is farved to Death. ${ }^{m}$

All

[^4]All Hairs appoar round. But the Microfcape difcovers fome of them to be fquare, others triangular; which Diverfity of Figures arifes merely from the Diverfity of the Pores. Their Length depends on the Quantity of Humours proper to feed them, and their Colour on the Quality. And heace the Colour ufually differs in the different Stages of Life.

The Hair of a Moufe is a tranfparent Tube, with 2 Pith of fmall Fibies convolved, sunning in fome Hairs fpirally, in fome traniverfely, in others from Top to Battom.
32. We proceed to the Middle Cavity of the Body. Herein the principal Part is the Heart, confifting of a ftrong Tendon, extended obliquely from the Baff: or broader Part, to the Cone, into which the flefly Fibres are inferted, in an elegant Series, with a fpiral Bending, one Half oppofite to, and croffing the other: BK which Means the grand Muscle is admirably fitted both to receive and to propell the Blood. It has two great Cavities, ufually termed The Ventricles of the Heart. They are divided from each other by an intermediate Part, called The Septum, conflituted by the fame Fibres, which is convex on the Side next the Right Ventricle, and concave on the other. The Kara Carya is inferted in the Right Ventricle, and two Inches from its Infertion, divides into the Upper and Lower. The former brings the Blood into it from the Upper, the latter, from the lower Parts of the Body. The Pulmonary Artery carries the Blood from that Ventricle into the Lungs, which the Pulmonary Vein brings D 3
lies pretty deep in the Skin: And by this they imbibe their proper Nourifhment, from the adjacent Humours. Their Extremes alio fplit into two or three Branches, efpecially if they ate very dry, if too long. So that what appears a fingle Hair to the naked Eye, to the Miferofcope appears a Bruth. They are grey on the Porepart of the Fead, firft, particularty about the Temples : The Back part of fords them Nourifhment longer. For the fame Reafon they fall from the Crown of the Head firf. Their Thickners depends on the fize of the Pores they iffue from: If thefe are frnall, the Hair is fine. If the Pores be Atrait, the Hairfest Arrit ; if oblique or finuous, the Hairs are curled.
from thence into the Left Ventricle. At the upper Side of thefe Veins, there is added to each Ventricle, a Kind of Purfe, called the Auricle, which is an hollow Mufcle of the fame Structure with the Heart, in order to ftay the Blood, that it pour not too violently into the Ventricle. Before the Orifices of the Veins of the Heart, there are triangular Valves, and Semilunar in the Orifices of the Arteries, to hinder the Reflux of the Blood, from the Ventricles into the Veins, and from the Arteries into the Ventricles.
33. The Heart is covered with a fine Membrane; and near the Bafe of it on the Outfide, there is a little Fat, probably defigned to facilitate its Motion. It is placed near the Middle of the Breaft; only its Cone inclines a little to the Left. It hangs by its Bafe on Veins and Arteries, communicating with all Parts of the Body. The other Part of it is loofe in the Pericardium, that it may be the more commodioully confringed and dilated. The Pericardium is a Kind of Membrane, that like a Kind of Purfe, loofely inclofes the Heart. The Shape of it is fuited to that of the Heart, and it contains a thin, faltifh, reddih Humour, doubtlefs proceeding from certain Glands, which may be obferved on the Infide of it. n
n Thi Brain has an alternate Contraction and Dilatation, anfwering thofe of the Heart. It is highly probable, theWeight of the Atmofphere is the Counterpoife to the contractile Force of the Heart. That of the Brain, being not near fo ftrong, does not need fo ftrong a Counterpoife.
In the Bafis of the Heart of fome Animals, there is a Bone frequently found. Such an one was found in the Heart of Pope Urban. Probably it was only the Tendons of the Heart affified.

Wounds of the Heart aze not always fo immediately mortal, as is generally fuppofed. A Soldier was brought into one of the Hofpitals in Paris, with a Wound in the upper Part of the left Breaft. He feemed very well for three Days; but on the Fourth was taken with a Fever and Difficulty of breathing and died on the Tenth. On opening the Body, it was found the Sword had pierced the Pericardium, traverfed the Right Ventricle of the Heart in its lower Part, pierced the Pericardium on the oppofite Side, and gone thro' the Diaphragm and an inch deep into the Liver.
34. The Heart is placed in the Middle of the Lungs, which confifts of two Parts, the Right and Left Lobe. Each of thefe is divided into two other Lobes; One of thefe frequently into three, fometimes into four, by Fiffures, fometimes deeper, fometimes fhallower, running from the interior Margin towards the Back Part. The Lungs are divided into Cells, which are no other than Expanfions of the fmall Branches of the Trachea or Wind-Pipe. And there is an eafy Paffage from one Branch into many Cells, and again into it from them all. The upper Part of the Trachea opens into the Mouth; The Lower, divided into Two Branches, floots out into variousRamifications, which are termed Broncbia. And theie little Canals running on, confitute the Lungs, whofe Cells are wonderfully connected together, and intermixed with numberlefs Branches of Veins and Arteries.

The upper End of the Trachea is called the Larynx. At the fourth Vertebra of the Back it divides and enters the Lungs. Its Cartilages, ranged at fmall and equal Diftances, are fmaller and fmaller as they approach the Lungs.

These Cartilages have two Membranes. The External, compofed of circular Fibres, covers the whole Tracbea. That which lines it within, confifts of three diftinct Membranes, the firft woven of two Orders of Fibres, Part Longitudinal, to fhorten it, by drawing the Cartilages together, Part, Circular, to contract them. Both thefe, together with the External Membrane, affift in breathing, coughing and varying the Tone of Voice. ${ }^{-}$The Second Membrane is glandulous;

[^5]glandulous; and its Glands opening into the Cavity of the Trachea, feparate a Liquor which moiftens and defends it from the Acrimony of the Air. The Thisd is a Network of Nerves, Veins, and Arteries.

Cutting

peculiar Sounds, whereby they underftand each other. Whereia do thefe'Organs refemble Ours, and wherein do they differ ?

The Human Voice is almoft wholly formd by the Glottis, and various Tones are produced by the various Modifications of it. But all thefe depend on one only, the Separation and Junction of its Lips. This comprehends two Circumftances, the One capital and primitive, the other, 2 Confequence of it. The firft is, That the lips are more and more bent, from the loweft to the higheft Note. The Second, that the more they bend, the nearer they draw to each ther. It follows from the firf, that their vibrations will be more frequent, as they come nearer the higheft tone, and that the Voice will be exact when they are equally bent, and the reverfe when upequally: which correfponds perfectly well, with the Nature of String-Inftruments. It follows from the Second, that the higher the Tone, the nearer they draw to each other. And this agrees perfectly with thofe Wind-Intruments which are governed by Reeds. From thefe fimple and almoft imperceptible Variations proceedp the infinite Variety of Sounds.

In moft Quadrupeds too the Gloitis is the principal Organ of the Foice. So it is in Cats, Sheep, and reveral others. But many have fomething more than a Glotis. As Horfes, Affes, Mules and Swine. Some of thrfe have alfo a tendinous Membrane, which concurs in forming the Voice. Others have feveral- Membrases: Others a kind of Bags, which in fome are membranous, and in others bony. Others have both Membranes and Bags. Others hatly have in their Larynx a kind of Cavity or Drum, which affifts thern in uttering very trong and long continued Notes.

Aile founde are produced by at. \{wift fucceffion of Vibrations from the Particles of fonorqus Bodies, which agitate the Air. But the vibrations of the Lips of the Glottis would not fuffice to produce the neighing of a Horfe. This begins by more or lefs acute interrupted tones, accompanied by Quaverings, and ends by tones more or lecto grave, which is performed by Jirks. This Second Part is done by tho Lipe of the Glatis : theother chiefly by a fmall, elaftic Membrane. This is tendinouse, very, thin, of a triangular Figure, asd lies fat on each extremity of the lips of the Glottis. At it adheres but loofely to thefe, it can eafily flutter up and down : And it is the Play of this Membranc up and down, which produces the acme Sounds of Neighing. Thefe are more or teff acute, as the Membrane is more or lefs thin, and its Adhefion mare or lefs facke. The grave Sound that conctode the Neighiag, are excired by the futterioge of the thick Arings which form the lips of the Clatich

Cutting the Trachea was long reputed mortal. But it is now ufual to open it in dangerous Quinfies. This Phyficians were at firft encouraged to do, from the Cafe of a Corni/b Gentleman, who had his WindPipe quite cut through, and yet was cured and fived feveral Years after.
35. In order to the Admiffion and Expulfion of the Air by the Lungs, it is neceffary the Breaft fhould be contracted and dilated. This End is ferved by the Bony Part of the 'Tborax, the intercofal Mufcles, and the Diapbragm, a broad, mufcular Part, reaching crofs the Breaft, and dividing the middle from the lower Cavity. It runs obliquely from the Sternum and Ribs before, to the Vertebre of the Loins behind.

36. The

This hoarfe Sound of the Affes Voice is not fo much produced by the lips of the Glottis, as by a tendinous Part which adheres loofely on the Aperture of a kind of Drum, fituate under the Extremity of the lips of the Glottis : Above which are alfo found two large and thick bags, one on the right, the other on the left. Each of thefe has a roundifh Aperture, cut much like the Stopple of an Organ.

SUCH are the Organs which form this amazing Sound. A kind of Drum is the principal: And the two bags above the lips of theGlottit, are the main Auxiliaries : While thofe lips, as plain Experiments fhew, contribute very little thereto. The Mules. Voice much refembles that of his Sire, and is formed by mach the fame Organs: The Drum of fo fingular a Compofition, being found in Mules alfo.

Theri is another Animal which affords us a partiçular Difpofitition of the vocal Organs. This is the Hog: whofe fhrill Cries are. more infupportable than his ufual Grunting. Yet neither are thefe excited by the lips of the Glottis, but by the fluttering of two large membranous Bags : Gituated on each fide, above the lips of the Glottis. What is moft remarkable is, that each lip is cloven, atmoft its whole length. By this cleft each lip has a communication with the bag belonging to it. And the Motions of thefe bags produce moft of the Sounds peculiar to this Animal.

Tho' the voice of Birds bears a nearer refemblance to ours than that of Quadrupeds, yet their Organs have far lefs refemblance to Ours, and contain a greater number of Singularities. They, like. us, have a G.ottis at the top of the Trachea: But they have another at the bottom of it, which much contributes both to the freng:hening and moditying of their Voice. Thefe have different Membranesmore or lefs fine, more or lefs bent, and in a varicty of Pofitions. In fome Bird', as in Geefe, there are four of thefe, figured and difo. pofed like the R.eeds. in Haut-boys.
36. Tur wholeThorax is eovered on the Infide with a firm, white Membrane, called the Pleura. It is domble throughout, confiliag of two Folds, the innermot: whereof has a fmooth Surface that it may not burt the nender Subtance of the Lungs, the Surface of the Outer is rough and uneven. From the Rleura rifem the Mediafinum, which is a doubled Membrane, that divides the Lungs and the Cavity of the Thorax lengetways into two Parts.
37. On the flighteft Obfervation we cannot but agn knowledge, the confumpate Wifdom wherewith tha Extornal Parts of the middle Cavity are formed, for Beauty as well as for the Defence of the Internal. This is commodioully connected with the Head by the Nech, The Breaft, or Forepart of the Thorax, which begins at the Throat, and ends at the Sternum, or Breaft-bone, is an admirable Guard to the nobleft Parts. To the fame End ferve the Sboulder-blactss and the Bach.bown, as well as to fupport the whole Fabric.

The Breafss confift of numberlefs aval Glands, intermixed with globular Veffels of Fat. Their Ducts as they approach the Nipple unite together, till thay farm Eight or more fmall Pipes, communicating with each other by crof Canals, which are of great Ufe, when fome of them happen to be obftructed. There Tubes are in fome Paxts narrower, in fome wider, 50 as to form Cells, which hinder the Effux of the Milk. The Paps confiut chiefly of the Concurrence of thefe Tubes, but with a glandulous Subfance intern mixt. There are likewife joined herewith Abundance of Fibres, from the external Teguments of the Breato, by Means of which the Tubes are conflininged, and the Motion of the Mitk is modified.

In Virgins the Glands of the Breafts are fo contracted, that no Blood can enter them. But when the Womb fwells with the Fatus, and comprefles the defcending Trunk of the great Artery, the Blood forces its Way into them. They admit thicker and thicker Serum, till after the Birth, they run with a thick Milk.

Ir is more difficult to account for the Milk, which fome Men have in confiderable Plenty. Thus in tho Year

Year iG84 a Countryman called Billardino di Billo; living ina Village near Nockra in Umbria, when his Wife was dead, rook the Child, and putting the Nipples of his Breafts into its Month, invited it to fwok, which the Infatit did, and after feveral Tinstes drawing fetched forme Milk. After a while it brought down the Milk fo pleacifully, as to nourifh it for thany Months, till it was weaned.
38. In the lower Cavity firft occurs the Stomach with the Osfopbagus or Gutht, which reaches vo it from the Mouth. The Inner Coat of the Stomach is Nertouss. The Second is Villous, or as it were hairy, in which are innumerable fine Blood-veflels, which are fuppofed to yield a Liquid that helps to diffolve the Nu triment. The inner Surface of the Stomach has many Wrinckles or Folds, which hinder its Contents from paffing out too foon. It has two Orifices, the Left and the Rigbt. The Left is a Continuation of the Gultet, and defcends almon perpendicularly, which hinders the food from eafily regurgitating. It opens for the Defcent of the Food, and clofes again, by the Contraction of its Fibres. The Right Orifice, called the Pylorus, tranfmits the digefted Food to the Inteftines. It is narrower than the other, as being defigned to tranfmit nothing, 'till it is reduced to a kind of Liquid. And it goes by a long and oblique Defcent into the Duodenum, that the Chyle may not pafs out, either too fwiftly or too flowly.
39. The Intefines are a Continuation of the Alimentary Tube from the Pylorus, wound together in various Wreaths, yet without Confufion, and to keep them in their Situation, faftened together by the Mefentery. The Inteftinal Duct is really but One; but becaufe the Parts of it differ in Figare and Ufe, the upper Part of it, divided into the Dwodenum, Iejunum and Ileon, is termed The finall Guts; the lower Part, divided into the Caecum, Colon and Recium, is called The great Guts. All there are full of Turnings and Windings, efpecially the Small, that the more fabtle Part of the Chyle, both thro' the Length and Narrownefs of the Paffage, and the Agitation of the Inteftines, may enter the Lacteal Keins, and palf from thence into the Receptacle of tbe Cbyle.

When the Inteflines are feparated from the Mefentery, they are ufually fix times as long as the Man. They have all a kind of vermicular Motion, called The Perifaltic Motion from the Stomach downwards; and are lubricated with much Fat, efpecially the Great ones, whofe Surface being more uneven, and their Contents lefs fluid, they need fomewhat more to make them nide eafy.

The Duodenum, (fo called becaufe it is ufually ten or twelve inches long) receives the Gall and Pancreatic Juice, which are here mixt with the Chyle. The Iejunum is fo termed, becaufe it is generally more empty than the reft. This may be occafioned partly by its Capacity, which gives a free Paffage to its Contents; partly to its Irritation thro' the Bile, which falls in a little above it. It takes up almof the whole umbilical Region, and is ufually twelve or thirteen hands long. The Ileon, fituate below the Navel, fills the Ilia with its numerous Convolutions. It is much the longeft of all the Inteftines, generally one and twenty hands long. In both this and the Iejunum the inner Coat is much wrinkled, and lies in loofe Folds. They are formed (as the Folds in the Stomach) only by the inner Coat being larger than the outer.

The firt of the Great Guts, called the Cacum, is laterally inferted at the upper End of the Colon. It is not perforated at the other End, but hangs to it, like the Finger of a Glove, and is three or four Inches long. In new-born Children and in Beatts it is found full of Excrements; but in Adults it frequently hangs like a Worm. In a Frtus it is doubtlefs a Receptacle of the Faces, during the time it does not difcharge by fool. And may it not occafionally ferve the fame End in Adults? Perhaps in thofe Animals wherein it is very large, it may likewife ferve as a kind of fecond Sto. mach. But it is not abfolutely neceffary. The Cæcum of a Dog has been cut out, without any perceivable Prejudice.

The Colon is the largeft of the Greàt Guts. It runs in various Circumvolutions from the Cæcum to the Rectum. It has many Cavigies, formed by two Ligaments, running
running on each fide of it, oppofite to each other the whole length, and as it were guiding it in at certain Diftances. The Rectum, which reaches from the' Os Sacrum to the Anus, is ufually about an hand and an half long.
40. The Lackeal Teins, which are of a whitifh Colour, are in all the Inteftines, fmall and great, and receive the Chyle by imperceptible Paffages, throughout the whole Canal. And for this End the Food remains fo long in the Inteftines, and is carried thro' various Windings, that whatfoever of Nourihment it contains, may be expreft before it leaves the Body.
41. The Inteflines are covered with the Omentum or Carol, which is contained within a very thin double Membrane, and wholly confifts of little Bags of Fat. Its Ufe is, to keep the Inteftines warm; to promote their perifaltic Motion by lubricating them with its oily Subftance: By following them in their Doublings and Windings, to ferve them as a Bolfter to flide upon, and by filing up their Hollows, to prevent their being too much diftended by flatulencies; yet giving way to them when filed with Aliments.
Under the Stomach behind lies the Pancreas, (exfended toward the Spleen) which tranfmits to the In teftines a Liquor of the Nature of Spittle, helping to diffolve the Food.
42. Under the Diaphragm, on the right Side, lies the Liver, whence it extends over the RightPart of the Stomach, below the Sternum, toward the left, growing gradually fmailer, that it may not hinder the Diftention of the Stomach. It confifts partly of GallDucts, partly of fine Ramifications of the Vena Porta. The Blood contained in thefe depofits oily Particles in the Ducts, and then returns, chiefly thro' the Vena Cava, to the Heart. It is thus the Bile is fecreted, for which purpofe the Gall-bladder alfo is defigned. This both receives and retains the Bile, by which Delay the Power of it is greatly heightened. Part of the Bile is conveyed to the Inteftines by the Hepatic Duct, which pours it into the Ductus Cboledocbus. Part goes firft into the Gall-bladder; thence into
Vol. I.
the Ductus Choledochus, and then into the Duodenum.

The principal Ufe of the Bile is, to abfterge and ftimulate the Inteftines, to affimilate crude things to things concocted, to bruife and blunt Mharp and faline Particles, to divide thofe that are coagulated : To excite Appetite, to open the Paffages for the Chyle, and where need is, act the part of a Ferment.
43. The Spleen is an elegant Net-work of numberlefs Veffels, inclofed in a double Membrane. It is placed on the Left Side, between the Short Ribs and the Stomach. Some fuppofe it to fecrete a peculiar Juice, which paffes with the Blood thro' the Vena Porta. Others imagine it to be a kind of Refervoir, wherein on extraordinary Occafions, that Blood may be received, which would otherwife opprefs the Vifcera and difturb the Animal Functions.
44. On the Mufcles of the Loins on each fide lie the Kidneys, to feparate from the Blood that part of the Serum which is fuperfluous, and would be hurtfull were it retained in the Habit. This is carried by the Ureters into the Bladder, which is placed in the loweft Part of the Belly. What remains of the Blood is conveyed to the Heart by the Veins and Lymphatic Veffels.

The Bladder is compofed of Three Coats: The Firft is an Extenfion of the Peritoneum; the Second confifts of Mufcular Fibres; the Third is both glandulous and nervous, and full of wrinkles, that it may be capable of Contraction and Dilatation. Its Glands feparate a llimy Matter, which defends the Bladder from the Acrimony of the Uiine. The involuntary Emiffion of this is prevented, by a fmall Mufcle which goes round the neck of the Bladder.
45. We proceed to the Limbs. The Hand (phyfically fpeaking) is divided, into the Arm, the Cubit, and the Hand, properly fo called. In this there are Twelve Bones, befide Fifteen in the Fingers, all oblong, flender, hollow, and fo fitly joined together by Ligaments, fo wonderfully provided with various Mufcles, adapted to fo many different Motions, that the
the Hand alone gives us an abundant Argument of the admirable Wifdom of God.
46. The Tbigh confifts of One Bone, the largeft and longefl in the whole Body. It is a little crooked, bending forward before, that there may be more room for the Mufcles. The Bones of the Leg are two, diftant from each other in the middle, but joined together at each End. They are nearly of the fame Length, but the Inner is much thicker than the Outer. The Bones of the Foot are twelve, befide Foutteen in the Toes, which like thofe in the Hands, are moft aptly connected by Ligaments, and fitted with Mufcles of various kinds, ferving for equally various Motions.
47. Thus far we have fpoken concerning the Solid Pares of the Body. Among the Fluid are ufually reckoned The Animal Spirits, fuppofed to be fecreted in the Brain, to flow thro' the Nerves, and to be the InItruments of Senfe and Motion. p
p " Bu t are the Nerves in general hollow Canals, which contain a circulating Fluid? Or are they folid Threads, which being highly elaftic, vibrate varioufly to occafion various Senfations" ? The latter Suppofition is wholly overthrown, by the Phenomena of wounded Nerves. A Nerve cut afunder does not retract its divided Extremities, but becomes rather longer, extruding its Medulta into a round Tubercle. Again, were it elattic, it thould be compofed of hard Fibres, having their Extremities fixt to fome firm Bodies: Since Strings otherwife conftituted and difpofed, have no Elafticity. But it is evident, all Nerves are foft at their Origin, as well as void of tenfion : And fome foft in every part, as the Olfactory Nerve, and the foft Portion of the Auditory Nerve. Yea, they all grow foft in the Vifcera, the Mufcles and the Senfories, before they exert their Functions. Befides, fome Nerves are fo fituate, that they cannot vibrate, as thofe of the Heart, which are faftened to the great Veffels and the Pericardium. Further, the Influence of an irritated Nerve is never propagated upwards; whereas an elaftic Chord, communicates its tremors to both ends from the point of percuffion. Hence it is plain, the Nerves do not act by their Spring, but by the Motion of their proper Fluid. The extreme Smallnefs of thefe Canals, which no Microfcope can reach, is no valid Objection to this: Neither our Inability to difcern that Fluid. This only proves the Imperfection of our Senfes.
"But what is this Fluid?" Who can tell ? We may very probably conjecture, it confifts of the fame Principles with the circulating Fluids from which it feems to be derived, and with the ner-
48. Of the other Fluids, fome ferve to prepare the Chyle; Some to thin the Blood and preferve it from Putrefaction. Others only remain till they can be thrown out of the Body, as being ufelefs and fuperfluous. All of thefe, but the Chyle, arife from the Blood, being fecreted from it by proper Glands. But as to the Manner of Secretion, after all the moft accurate and laborious Enquiries, it ftill remains abfolutely uncertain, and every one abounds in his own Senfe. Some believe it depends, on the Suitablene/s of the Fluid fecerned, to the Shape of the fecerning Pores. Some lay the ftrefs rather on the various Size and Diameters of thofe Pores: Others on this, That the conftituent Particles, fuppofe of the Bile, from their peculiar Proportion, Texture and Figure, 'may be more eafily united to each other, than to the Particles of Lymph, or any other Flaid.
49. THE chief of all the Fluids in our Body, and the Fountain of Life is the Blood. It confifts of a warry Seram, fibrous Particles and red Globule,, which laft are fcarce a twelfth Part of it. It is generated thus. The Meat and Drink beipg digefted into Chyle, paffes from the Inteflines, thro' the Laçeal Veins and the Thoracic Duct into the left Subclavian Vein, and thence into the Vena Cava, where it mixes with the Blood, and then circulates with it, till it is wholly affimilated.

Blood frelo drawn appears to the naked Eye pniform and homogeneous. But when cold, it feparates into two Parts, the one red and fibrous, which clots together, the other thin and trapfparent, called the Serum, in which the former fwims. The Serum is in Bulk three fourths of the Blood, in weight fifteen Seventeenths.

A Red Globule is computed to be 25000 times fmaller than the fmalleft Grain of Sand.

Sомz
vous Fibrids which we fuppofe it is defigned to nourifh and repair. But it may likewife confift, and perhaps chiefly, of fome fubtle Fire or Ether, diffured thro' the whole Syftem of Nature, and acting by Laws unknown to us.

Some fuppofe the Heat of the Blood may rife from the Action of the Heart, and the Re-action of the Aorta. For the Blood driven by the Heart obliquely againft the Sides of the Aorta, violently preffes them and is by the Elafticity of this Veffel preffed back again. Every Particle of it therefore acquires every moment a new Motion and Rotation. Hence follows a perpetual Attrition, Attenuation and Affimulation of all its Parts. And hence they think the Mafs derives its Heat as well as Fiuidity. q

But to what Caufe is its Colour owing ? Borchi took fome of the Red Part, and wafhing it frequently in Water, found it feparable into a vifcous, Ilippery Subflance, confifing of colourlefs Fibres, which rofe and gathered into a Scum on the top of the Water, and a deep-red Powder, which precipitated plentifulty to the bottom. Hence it appears, that the Rednefs of the Blood fprings from red-tinging Particles, as in the the Cafe of Dying.

However this red Colour, though generally found in the Blood of Land Animals, is not abfolutely neceffary, there being fome Species, whofe Blood is white or limpid. Nay Dr. Drake let out of the Median Vein of a Man, a pure, white Blood, like Milk, which when cold, did not feparate into two Parts, as the Red ufually does. Nor yet did it yield any Skim on Cream, neither turn four as Milk ufes to do. Dr. Beal gives an Inflance of the fame kind; and Dr. Lower relates one as ftrange. A Perfon bled at the Nofe, till at length the Broth he drank flowed out very little altered. :

$$
\text { E } 3 \text { 50. Thasi }
$$

q Bux others deny, that the Motion of Fluids generates any Heat. The truth is, this is one of the ten thoufand Secrets, which the Mind of Man cannot penetrate.

I 1 is amazing to fee, how careful Providence has been, to prevent the Bloods running into Concretions which might deftroy Lifes by the very Difpofitions of the Veffels it is to run thro'. Thefe are fo contrived, as to caufe the Globules to come together with a brifk Collifion. The Arteries which convey the Blood from the Heart to the Extremities, continually leffen, as they recede from their Source; in confequence of which, the Globules of Blood muft
50. These are the Parts, of which this wonderful Machine is compored, which the Chymitts fay, confifts of four Sorts of Matter, Earth, Water, Salt, and Sulphur, the Particles of which being varionlly mixt together, conftitute larger Particles of different kinds; out of which, more loofely or clofely conneeted, all the Parts of the Body, Solid or Fiuid are compofed.

But this is far from being an accurate Account. For what are Salt and Sulphur but Species of Earth ? May not we then much mose properly fay, with the Antients, That the Body is chiefly compofed of Earth and Water, yet cannot enjoy even Animal Life, unlefs Air and Fire alfo be wronght into its Frame? So that at whatfoever time, it is deprived either of Air or Fire, it is aniufelefs, lifelefs Clod. And yet the Manner how thefe are fo intimately mixt, both with oup Fluid and Solid Parts as much exceeds our Comprehenfion, as the manner how the Soul is unittd to its Houre of Clay.

It remains only, to add fome Reflections on the Wifdom of God, displayed in the Structure of the Human Body. And how eminently is this difplayed, Firft, In the Situation of its feveral Parts and Members !. They are fiouated moft conveniently for Ufe, for Ornament, and for mutual Affiftance. 1. For Ufe. The Principal Senfes are placed in the Head, as Centinets in a Watch-tower. How-could the Eyes have been more commodioully fixt, for the Guidance of the whole Body ? The Ears likewife, made for the Reception of Sounds, which naturally move upward, are rightly placed in the uppermont Parts of the Body: And fo are the Noftrils, as all Odours afcend. Again : How could the Hands have been more conveniently placed,
rufh with force againft one another, as they are driven on impetuoufly. And the Veina which bring it back from the Extremicies to the Heart, inlarging all the Way as they go on, while the Streams of feveral continually run into One, each of thefe Ingreffes caufes new Commotions, capabie tho' not of difiolving that Natural Connexion of the Red and ferous Particle s, yet of prexenting any preternatural Concretions or Coazulations,
phead, for all forts of Excrcifes? Or the Heart; to difpenfe Life and Heat to the whole Body ? Or the. Sinks of the Body, than in the moft remote Parts of it ? 2. For Ornament. Nos to. defcend to Particulans, what could be better contrived, than that thofe Mem: bers which are Pairs, fhould be of equal Lengih, and jout anfwer one another on each Side ?: 3. For matral Affitance. So the Eye ftands moft convenientiy to graide the. Hand; and the Hand to defend the Eye. The rame may be faid of the other Parts : they are all So placed, as to dired or help each other. This will clearly appear, if yousuppofe the Poftion of any of them to be changed. Had ourArms been bent backward, what Direction could our Eyes have afforded us in Workieg? Or how could we even have fed ourfelves ? Nay, had one Amm bent backward, and the other forward, half the Ufe of them had boen lott; for one could not have affifted the ocher in any Action.

How is his Wifdom difplayed, Secondly, in the ample Provifion made for the Security of the principal Parts? Thefe are 1. The Heart, the Fountaia of Life. This lies in the Center of the Truak of the Body, covered with , its own Membrane, the Pericardicma, lodged within the foft Bed of che Lungs, incompaft sound with a double Fence, both of thick Mufcles and Skins, and of frm Ribs and Bomes: Befide the Arma conveniently placed, to ward off any Viotence: 2. The Brain, the Principle of all Senfe and Motion, is furrounded with fo trong: a Defence, that it mut bea mighty Force indeed, which is able to injure it. The skull is fo hard, thick and tough that tis almoft as firm 2s an Helmet of Iron. This is covered widh Skin and Hair, which both keep it warm, and fofien the wiolence of a Strake. Yet more, 2 thick and tough Membrane bangs loofe about it, which of ien faves it, even when the Skull is broke. And laftly, A fine Membrane clofely adheres, to keep it from quafhing and thaking.

How is it difplayed, Thirdly, in the abundant Provifion that is made againft evil Accidents and Ioconveniences?
veniences! To this end, 1. The Members which are of eminent Ufe are in Pairs: We have two Eyes, Fars, Nofrils, Hands; two Feet, two Breafts, two Kidneys; that if One fhould be rendered ufelefs, the other might ferve us tolerably well : Whereas had a man but one Hand or Eye, if that were gone, all were gone. 2. All the Veffels have many Ramifications, which fend forth Twigs to the neighbouring Veffels : So that if one Branch be cut or obftructed, its Want may be fupplied, by the Twigs from the neighbouring Veffets. 3. Many Ways are provided to evacuate, whatever might be burtful to us. If any thing opprefs the Head, it can free itfelf by Sneezing; if the Lungs, they can calt it off by Coughing. If any thing burden the Stomach, it can contract itfelf, and throw it up by Vomit. Befide thefe Evacuations, there are Siege, Urine, Sweat, and Hemorrhagies of various kinds. 4. Whereas Sleep is neceflary for us in many refpects, Nature has provided, that tho' we lie long on one fide, we hould feel na Uneafinefs while we fleep, no, nor when we awake. One would think, the whole weight of the Body prefling the Mufeles on which we lie, would be very burdenfome. And we find by Experience, fo it is, when we lie long awake in the Night. Probably this Provifion is made, by an Inflation of the Murcles, making them foft, and yet renitent, like Pillows. That they are inflated during Sleep, appears to the very Eye, in the faces of Children; and from the Common Experiment, that if we fleep in our Cloaths, we muft loofen our Garters and others Ligatures. Otherwife we find uneafinefs in thofe Parts. 5. Becaufe Sleep is inconfiftent with the Senfe of Pain, therefore during Reft, thofe Nerves which convey the Motion to the Brain, which excite the Senfe of Pain, are obftructed. "This I myfelf, fays Mr. Ray, have often experienced, fince I have had Sores on my Legs. Waking fuddenly I find myfelf at perfect Eafe for a while. Then the Pain by degrees returns."

Ir is difplayed, Fourthly, In the Multitude of Intertions God hath in the Formation of the Several Parts, and the multitude of Qualifications they require, to fit them for their feveral Ufes. Galen obferves, "that there are in an human Body, above Six bundred Mufcles. And there are at leaft Ten feveral Intentions in each, and as many Qualifications needful: So that about the Mufcles alone, no lefs than 6000 Ends are to be attended to. The Bones are reckoned to be 284. The diftinct Intentions in each of thefe are above Forty: In all, about an hundred Thoufand: And thus it is in proportion, with all the other Parts, the Skin, Ligaments, Veins, Arteries, Nerves, Glands, Humors : But more efpecially with the Members of the Rody, which as to the Multitude of Intentions and Qualifications, far exceed the Similar Parts. And ahould One of thefe Qualifications fail, great Inconvenience would enfue."

It is difplayed, Fifthly, in the Stature of Man, fo admirably well adapted to the Circumftances of his Exiftence. Had Man been only a foot or two high, he had been quite difproportioned to every thing round about bipn. Had be been much larger, he could not well have been fupplied with Food: All the Edible Animals would not have fufficed. And had they too been proportionably larger, the Surface of the Earth would not have fufficed to feed thene.

It is however a common Opinion, and has heen fo ever fince old Homtr's Time, That the People in the early Ages of the World, were much larger than Us. And it is true, we read of fome Men, of a furprizing. Stature. But they were even then effeemd Giants. The ordinary Stature of Men, is prcbably juft the fape now, as it was at the beginning. This may be: gathered from the Monuments ftill remaining, particularly the Pyramids of Egypt. The Cavities for Bodies now vifible herein, are little larger than our ordinary Coffins : Likewife from feveral embalmed Bodies taken out of them it appears, That Men are of the fame Stature now, that they were when thofe. Pyramids were built, which is at leaft three thoufand

Years:

Google

Years ago:
Eighteen hundred Years agd the Emperor Augufus was five foot, feven inches high. Queen Elizabeth was taller by two Inches, being five foot, nine.

I cannot better conclude this Chapter than by an Extract from the late pious and ingenious Mr. Hervey, which may ferve for a Recapitulation of what has been faid, as well as an Improvement of it.
"Let us begin with the lefs adorned, but more Solid Parts, thofe which fupport, and which contain the reft. Firft, you have a Syitem of Bones, caft in a Variety of Moulds, in a Variety of Sizes: All ftrong, that they may bear up the Machine, yet light, that they may not weigh us down: Bored with an inward Cavity, to contain the moiftning Marrow, and perforated with fine Ducts, to admit the nourihing Veffels. Infenfible themfelves, they are covered with a Membrane, exquifitely fenfible, which warns them of, and fecures them from the Annoyance of any hurtful Friction; and alfo preferves the Mufcles from being fretted in their Action, by the hard and rough Subftance of the Bone. They are largeft at the Extremities, that they may be joined more firmly, and not fo eafily diflocated. The Manner of their Articulation is truly admirable and remarkably various: yet never varied without demonftrating fome wife Defign, and anfwering fome valuable End. Frequently when two are united, the one is nicely rounded and capped with a fmooth Subftance; the other is feooped into an Hollow of the fame Dimenfions to receive it. 'And both are lubricated with an unctuous Fluid, to facilitate, the Rotation.

The Feet compofe the firmeft Pedeftal, infinitely beyond all that Statuary can accomplifh, capable of altering iss Form, and extending its Size, as different Circumflances require. They likewife contain a fet of the niceft Springs, which help to place the Body in a Variety of Attitudes, and qualify it for a Multiplicity of Motions. The undermoft Part of the Heel, and the Extremity of the Sole, are thod with a tough, infenfible Subtance : A kind of Natural Sandal, which never wears
wears out, never wants Repair : and which prevents an undue Compreffion of the Veffels, by the Weight of the Body. The Legs, and Thigbs are like ftately Columns, fo articulated, that they are commodious for Walking, and yet do not obftruct the eafy Pofture of Sitting. The Legs fwell out toward the top with a genteel Projection, and are neatly wrought off toward the bottom : A Variation which leffens their Bulk, while it increafes their Beauty.

The Ribs, turned into a regular Arch, are gently movable, for the ACt of Refpiration. They form a fafe Lodgment for the Lungs and Heart, fome of the moft important Organs of Life. The Backbone is defigned, not only to ftrengthen the Body, and fuftain its moft capacious Store-rooms, but alfo to bring down the Continuation of the Brain, ufually termed The Spinal Marrorv. It both conveys and guards this fllver Cord, as Solomon terms it, and by commodious Outlets tranfmits it to all Parts. Had it been only frait and hollow, it might have ferved thefe Purpofes. But then the Loins muft have been inflexible: To avoid which, it confifts of very Thort Bones, knit together by Cartilages. This Peculiarity of Structare gives it the Pliancy of an Ofier, with the Firmnefs of an Oak. By this Means it is capable of various Inflections, without bruifing the foft Marrow, or diminifhing that Strength which is neceffary to fupport all the Upper Stories. Such a Formation in any other of the Solids, mult have occafioned great Inconvenience. Here it is unfpeakably ufeful, a Mafterpiece of creating Skill.

The Arms are exactly proportioned to each other, to preferve the Equilibrium of the Structure. Thefe being the Guards that defend, and the Minifters that ferve the whole Body, are fitted for the moft diverfified and extenfive Operations : Firm with Bone, yet not weighty with Fleth, and capable of performing all ufeful Motions. They bend inwards and turn outwards; they move upward or downward. They wheel about in whatever Direction we pleafe. To thefe are added the Hauds, terminated by the Fingers, not of the fame Length,

Length, nor of equal Bignefs, but in both refpeets different, which gives the more Beauty, and far greater Ufefulnefs. Were they all Flefh, they would be woak : Wore they one entire Bone, they would be utterly inflexible: But confifting of various little Borres and -Mufcles, what Shape can they not aftume ? Being placed at the End of the Arm, the Sphere of their Actions is exceedingly inlarged. Their Extremities are an Affemblage of fine tendinous Fibres, acutely fenfible : Which notwithflanding are deftined to almoft inceffant employ, and frequently among rugged Objetts. For this reafon they are overlaid with Nails which preferve thetif from any Impreflions.

In the Hand we have a Cafe of the fineft Inftrumetits. To thefe we owe thofe beautiful Statues, this melodi--oue Trumpet. By the Strength of the Hand the talleft Firs fall, and the largeft Oaks deftend from the Mountains. Fafhioned by the Hand they are a floating Warehoufe, and carry the Productions of Art and Nature from Britain to fapan.

The Hand is the original and univerfal Sceptre, which not only reprefents, but afcertains our Dominion over all the Elements and over every Creature. Tho' we have not the Strength of the Horfe, the Swiftnefs of the Greyhound, or the quick Scent of the Spaniel, yet directed by the Underttanding, and enabled by the Hand, we can as it were make them all our own. Thefe fhort Hands have found a way, to penetrate the Bowels of the Earth, to touch the Bottom of the Sea. Trefe feeble Hands can manage the Wings of theWind, arm themfelves with the viotence of Fire, and prefs into their Service the forcible Impetuofity of Water. How greatly then are we indebted to our wife Creator, for this diftinguifhing, this invaluable Member ?

Above all is the Head, for the Refidence of the Brain; ample to receive, and firm to defend it. It has a Contmunication with all, even the remotert Parts; has Outh lets, for difpatching Couriers to all Quarters, and Aptnues for receiving fpeedy Intelligence, on all needful Occafions. It has Lodgments wherein to poft Centinels,
for various Offices: To expedite whofe Operations, the whole turns on a curious Pivot, nicely centrived to afford the largeft and freeft Circumvolutions.

This is frreened fromHeat, defended from Cold, and at the fame time beautified by the Hair: A Decoration fo delicatc, as no Art can fupply, fo perfectly light, as no way to incumber the Wearer.

While other Animals are prone in their Alpea, the Attitude of Man is erect, which is by far the moft graceful, and befpeaks Superiority. It is by far the moft commodious, for Profecution of all our Extenfive Defigns. It is likewife fafeft, Iefs expofed to Dangers, and better contrived to repel or avoid them. Does it not alfo remind us of our noble. Original and our fublime End? Our Original, which was the Breath of the AImighty: Our End, which was the Enjoyment of Him in Glory ?

Thus much for the Rafters and Beams of the Houfe. Let : us now furvey the Lodgings within. Here are Ligamosts, a tough and frong Arrangement of Fibres, to unite the feveral Parts, and render what would otherwife be an unwieldy Jumble, a well-compacted and felf-mapageable-SyAem: Membranes, thin and flexile Tunicles, to inwrap the flefhy Parts, to connect fome, and form a feparation between others: Arteriess the Rivers of our little World, that Atriking out as they gO_{s} into numberlefs fmall Canals, vifit every Street, yea every -Apartment in the vital City. Thefe being wide at, firft, and growing marrower and narrower, check the Rapidity of the Blood. This thrown from the Heart, dilates the Arteries, and their own elaftic Force contragts them; by which lisapsthey, vibate againt thephinger, and much affif both in the Difovery and Cureof Difeades. The - larger Arteries, wherever the Blood, is , forced to bend, rane fituate on the bending Side; left being aretched to an improper Length, the Circulation fhould be retarded. They rare- not, like fereeal of the Veins, near the Sur: face, but placed at a proper Depph. And hereby, they -are more, fecere from. External Injurics. In thofe Parts Which are moft liable to Prefliure, angadminable Expedi,Voz. I.
ent takes place. The Arteries inofulate with each other: breaking into a new tract, they fetch a little Circuit, and afterwards return into the main Road. So that if any thing block up or fraiten the direet Paffage, the Current by diverting to this New Channel, eludes the Impediment, flows on, and foon regains its wonted Courfe.

The Veins receive the Blood from the Arteries, and re-convey it to the Heart. The Preffure of the Blood is not near fo forcible in thefe, as in the Arteries. Therefore their Texture is confiderably nighter. Such an exact Economint is Nature, amidft all her Liberality! In many of thefe Canals, the Current, tho' widening continually, is obliged to pufh its way againft the perpendicular: Hereby it is expofed to the danger of falling back and overloading the Veffels. To prevent this, Valves are interpofed at proper diflances, which are no hindrance to the regular Paffage, bur prevent the Reflux, and facilitate the Paffage of the Blood to the grand Receptacle. But thefe Valves are only where the Blood is conftrained to climb: Where the Afcent ceafes, they ceare alfo.

Here are Glands to filtrate the paffing Fluids, each of which is an Affemblage of Veffels, complicated with feeming Confufion, but with perfect Regdlarity. Each forms a Secretion far more curious than the moft admired Operations of Chymiftry: Mufcles, compofed of the finett Fibres, yet endued with incredible Strength, falhioned after a Variety of Patterns, but all in the higheft Tafte for Elegance and Conveniency. Thefe are the Inftruments of Motion, and at the Command of the Will, execute their Functions quick as Lightning: Nerves, furprizingly minute, which fet the Mufcles at work, diffufe the Power of Senfation thro' the Body, and upon any Imprefion from without, give all needful Intelligence to the Soul: Veficles, diftended with an unctuous matter, in fome places compore a Cuthion; as in the Calf of the Leg, whofe large Mufcles, mixt with Fat are of fingular fervice to thofe important Bones. This flanks

(63)

and fortifies them, like a ftrong ${ }^{-}$Baftion, Supports and cherifhes them, like a foft Pitlow. In other places they fill up the Vacuities, and fmooth the Inequalities of the Flefh. Inwardly they fupply the Machine for Motion; Outwardly they render it fmooth and graceful.

The Skin, like a curious Surtout, covers the whole, formed of the moft delicate Net-work, whofe Mefhes are minute, and whofe Threads are mu'tiplied, even to a Prodigy: The Mefhes are fo minute, that nothing paffes them which is difcernible by the Eye; tho' they difcharge every moment Myriads and Myriads of faperfluous Incumbrances. The Threads are fo multiplied, that neither the point of the fmalleft Needle, nor the infinitely finer Lance of a Gnat, can. pierce any part, without drawing Blood, and caufing an uneafySenfation. Confequently, without wounding. by fo fmall a Puncture, both a Nerve and a Vein!

But a Courfe of inceffant Action muft exhauft the Solids and wafte the Fluids, and unlefs both are properly recruited, in a fhort time deftroy the Machine. For this reafon it is farnifhed with the Organs, and endued with the Powers of Nutrition: Teeth the foremoft, thin and fharp, to bite afunder the Food; The hindermoft, broar and ftrong, indented with fmall Cavities, the better to grind in pieces what is tranfmitted to them. But in Children, the formation of Teeth is poftponed till they have occafion for them.

Were the Teeth, like other Bones, covered with the Periofteum, Chewing would give much pain. Were they quite naked, they would foon decay and perih. To guard againft both, they are overlaid with a neat Enamel, harder than the Bone itfelf, which gives no pain in Chewing, and yet fecures them from various Injaries.

The Lips prevent the Food from flipping out of the Mouth, and affifted by the Tongue, return it to the Grinders. While they do this in concert with the Cheeks, they fqueeze a thin Liquor from the adjacent Glands. This moifens the Food and prepares it for Digetion. When the Mouth is inactive thefe
are nearly clofed. But when we fpeak or eat, their Moifture being then neceffary, is expreft as need requires.
But the Food could not defcend merely by jts own Weight, thro' a narrow and clammy Paflage into the Stomach. Therefore to effect this, Muicles both frait and circular are provided. The former inlarge the Cavity, and give an eafy Admittance. The latter, clofing behind the defcending Aliment, prefs it downward. But before the Food enters the Gullet, it muft of neceflity pafs over the Orifice of the Windpipe: whence it is in danger of falling upon the Lungs, which might occafion inftant Death. To obviate this, a morveable Lid is placed, which when the fmalleft Particle advances is puiled down and fhut clofe, but as foon as it is fwallowed, is let toofe and flands open. Thus the impertant fafs is always made fure againt any noxious Approaehes; yet always left free for the Air and open for Refpiration.

The Food defcending into the Stomacb is not-yetready for the Bowelis. Therofore that great Recelver: is ftrong to bear, and proper to detain it, 'till it is wrought into the fmootheft Pulp imaginabla. Fropm. hence it is difcharged by a gentle Force, and paffee. gradually into the Inteftines.

Neaf the Entrance waits the Gall-bladder, ready to pour its falutary Juice upon the Aliment, whichdiffolves any thing viricid, fcoures the Intefines, and keeps all the fine Apertures clear. This Bag, as the. Stomach fills, is preft thereby, and then anly difchart. ges its Contents. It is alfo furnifiod with a. Values of a very peculiar, namely of a Spiral Fprm; theo': which the deterfive Liquid cannot haltily pout but muif gently ooze. Admirable Conftruction : Which without any care of ours, gives the needful Supply, and no more.

Ther Nutriment then perfues ite way, thro' the Mazes of the Intefints: Which by a ruiorm-like Motion protrude it and force its fmall Particles into the Laizeal Vefils. Thefe are a Saries of the fined Strainh
ers, ranged in countlef Multitudes all along the Sides of the winding Pafinge. Had this been ftrait or fhort, the, Food could nat have refigned a fufficient Quantity of its nourifhing Particles. Therefore it is artfully convolved and greatly extended, that whatever paffes may be fifted throughly. As the Aliment proceeds, it is more and more drained of its nutritious Juices. In confequence of this, it would become hard and paia the tender Parts, but that Glands are poited in proper Places, to difcharge a lubricating Fluid. Thefe are fmaller or fewor near the Stomach, becaufe there the Atiment is moift gnough: Whereas in the Bowels remote from the Stomach, they are either multiplied or inlarged.

The Cbyle drawn off by the Ladeals is carried thro' Millions of Ducts, too fine even for the Microfcope to difcover. To this it is owing, that nothing enters the Blood, but what is capable of paffing thro' the fineft Veffels. It is then lodged in feveral commodious Cells (the Glands of the Mefentary) and there mixt with a thin, dihuting Lymph, which makes it more apt to flow. Hence itis conveyed to the Common. Reftptach, and mounts thro' a perpendicular Tube into the Left Subclavian Vein. This Tube lies contiguoas to the Great Artery, whofe frong Pulfation drives on the Fluid, and enables it to afeend and unlogd its Treafure, at the very Door of the Heart.

But the Chyle is as yet in too crude a State, to be fit for the Animal Functions. Therefore it is thrown into the Lungs. In the fpongy Cells of this amazing Laboratory, it mixes with the External Air, and its whole Sutitance is made more fmooth and uniform. Thus improved it enters the Left Ventricle of the Heart, a itrong, active, indefatigable Mufcle. The large Mufcles of the Arm or of the Thigh are foon wearied: A Days Labour, or a Days Journey exhaufts their Strength. But the Heart toils whole Weeks, whole Months, nay Years, unwearied; is equally a Stranger to Intermiffion and Fatigue. Impelled by thin, Part of the Blood fhooss upward to the Head; Part rolls thro' the whole Body.

Bur how fhalla Stiream divided into Myriads of Channels, be brought back to its Source? Should: any Portios of it be: unable to return, Putrefaction, if not Death, muft enfue. Therefore the All-wife Creator has connected the Extremities of the Arterieg, with the beginaing of the Veins: So that the fame Force which darts the Blood thyo' the former holps to drive it thro' the latter. Thas it is re-conducted to the great Ciftern, and there played off afrefh.

Where two oppofite Cotreats would be in danger of clafhing, where the Streams from the Vena Catra and Vena afcendens co-incide, 2 fibrous Eterefeemee interpofes, which like 2 projecting Pier, breaks the Stroke of each, and throws both into their propler Receptacle. Where the Motion is so be fpeedy, the Channels either forbear to wind (as in the Great Artery which defcends to the Feet) or to leffen in their Dimenfions, as in every Interval between all the Ramifications, When the Progrefl, is to be retarded; the Tubes are varioully convolved or their Diameter contracted. Thus guarded; the living Flood-never difcontinues its courfe, but nigbt and day, whelifer we fleep or wake, ftill perfeveres to run brikly thrb" the Arteries, and return foftly thro' the Veins.

Bot fatther. The great Creator has made us an invaluable Prefent of the Senfes, to be the Inlets of innumerable Pleafures, and the Means of the moft valuable Advantages.

The Eyi, in its clevated Station, commends the moff enlarged Proxpecis. Confiling only of Fluide, inclofed within Coats, it Thews us all the Graces and Glories of Nature. How wonderful, that an Image of the hugett Mountains, and the wideft Landicapes fhould enter the fmall Pupil! that the Rays of Light fhould paint on the Optic Nerve, paint in an inftant of Time, paint in their truet Colours and exacteft Lincaments, every Species of external Objects!.

The Eye is fo tender; that the fightef Touch might injure its delicate Frame. It is guarded therefore with peculiar Care, intrenched deep, and barficaded round with Bones. As the faralleft Fly might incemmode its polifhed
polifhed Sueface, it is farther protefted by two fublane wial Cuxtaim. In Sleep when there is no occation. for the Senfery but a Neceffity to guapd, the Ofgano, shefe Curtaing chofe of theib,owat acopdd. At.gny timpe they 男y, together as quick mi Theought.' Theze are lined with ans oxtremely Gne Spange moift with iks: own. Dew. Ity briftly Palifades keopreass the lean mate, and moderate: the too ftoong Impreffions of the Light,

As in our waking Hours we hawe akpot nimeffant need: for thefe litte Orbes they rum uppo the fineft Caforso rolling every wiay wish the pumol Eafe $\%$ Which Circumftance, added tel the Flenibiliky ef thar Nectef, readers. our Two Eyes as ufefol as at theufand:

The Ear cooffis of an Outwayd Porch and TonerRooms. The Ronch fomewhat prominente from, the: Head, is of a Castilaginour Subittinca, covered with. tight Membranes and wrought into finuous, Cavitiqpe. Thefe; like ciecling: Hills, molleot the wandring Undulations of the. Aing and tramfait, thens, wish a vigorous Impulfe, to the findly firtatied Monabrane of the Drum, This is expanded upena Circle of Bones, ouer a polifhed, reverberating Cavity. it It is fuarmibed with Bracer, that; ftrain or relax; as the Sound is faintor Agong. The Hamr mer and the Anvil; the winding Labyrintby and the founding Gelleries; thefinadother pieces of Mechanifm, all inftrumental to Hearing, aro inexprefibly carious.

Anatongla omact mult be the Tonfion of the Audif tory Nerpits. fince thay anfwer thic malleft Tgemors, af. the. Atmoifphers, andidifinguifh theis, mof fubtla Varin ations: Thefe dividg Chordes tuned bey fap Almighty Hand, and Gpread thro' the echoing Iflesy receive all the: Impreflions of Sound, and propagate them to the Brain. There give exiftence bo the Chanols of Musicy and the: fiill nobler Charms of Difcourfe.

- The Eye in ofclefe amidit the Gloom of Night. Butif the Ear bears thre' the darkeft Medinmel The Eye ia on Duty only in out walking Hours: But the Ear is alr: ways accefible.

As there are Concuflions of whe Air, which are difcernible only by the lnfruments of Hearing, fo thers
are odoriferous Particles wafted in the Air,' which are perceivable only by the Smell. The Nofrils are wide at the bottom, that more Effuve may enter; narrow at the top, that when entered they may act more Arongly: The Steams that exhale from fragrant Bodies, ane tine: beyond Imagination. Mictofcopes that fhew thoufands: of Animats in a drop of Water, cannot bring one of thefe. to our Sight. Yet fo judiciounly are the olfactory Nets fet, that they catch the vanifhing Fugitives. They imbibe all the Roaming Perfumes of Spring, and make us banquet even on the invifble Dainties of Nature.

Another Capacity for Pleafure our bountiful Crea-: tor has beftowed, by gransing us the Powers of Taffe. This is Circumftanced in a manner fo benign and wife, as to be a flanding Plea for Temperance, which fets thefineft Edge on the Tafte, and adds the moft poignant Rehinh to its Enjoyments.
And thefe Senfes are- mot.only fo many Sources of Delight, but a joint Securiny to our Health. They are the Infpeftors that examine wour Food, and' eeaquire intel the Properties of it. For the Difcharge of this Soffice they are excellently qualified, and moft commodiouly $\mathrm{fi}_{\mathrm{-}}$ tuate. So ther mothing tan gain Admifion, till it has paft their Serutiny.

To alt thefe, as a moft neceflary Suppliment, is added the Senfe of Feeling. And how happily is it tempered between the Two Extremes,' neither too acute, nor too obtuff! 'Indeeditll thre' Senfes are exacdy adapt-: ed' to the Exigencies of our prefent State.. Were sheyfirained muich higher, thoy would be Avenves of Aab: goifh : Were chey mack selaxt, they would be welf nigh ufelers.

The crowning Gify which augments the Denefits accruing from all the Senfes; is Speech. Speech makes me a Gaiuet by the Eyes and Ears of others, by their Ideas and Obfervatione. And what an admirabie Inftra + : ment for articulating the Vorice, znd modifying vit into Speech, is the Tongue ? This little Collection of mufcular Fibres, under the Direction of the Creator; is the Artificer of owr Words. By this we communicate the

Secrets of oor Breafts, and mate our pory Thoaghtsedot dible: Thit likewife is the effieient © infe of Mofic; tu is fofteas the Luate, or flirill:as the Trumpet. As the Tongue requires an eafy Play, it is lodged in an ample: Cavity. It moves under a concave Roofs which gives additional Vigour to the Voice; as the Steh of Vietini to the Sourd of the Strings. .

Wonder futict wife is the Regulation of volutizaryi and involuntary Motions. The Will in fome Cafes brass no Power: In others She is ant abfoldte Saverrign: Is fhe command, the Arra is freethets, the Hand is elofedid How eafily, how punctually are her Orders obeged: To turn the Screw, or work the Lever; is laborions and wearifome: Dat we work the Vertebree of the Neokss. with afl thitir appendent Chamberst, we advencer the Eug, with the whiole incombeirt Body: the nife, wo fpring from the Ground, and then fo givele od Wergherit raifed, we meet with no Difficulty or Fatigue.

That all this fhould be effected without any Toil, by
 hould be done, even while we are entirely ignorant of the Manner in which it is performed, is moft aftonifhing! Who can play a fingle Tunerapoat the Spinnet, without learning the Difference of the Keys? yet the Mind
 moft-mafterly Skill, tho' fhe knows nothing at all of the Nature of shen 'Inderementy or the Procefs of hep operations.

The Eye of a Roatic, who bas no Notion of Oprics or any of item Laws, frall lengthen and fhorten its Axis, didate ard comancti ins Pupil, without, the leaft ftrif tation, and with the urman lropriety: Exacly adapting itfelf to che parsiculan Diftarice of Objects, and the diffarent. Dagrees of Lighti By this means it performa fome of che mok curious Experiments in the Piemerarian Philofophy, without the leaft Knowledge of the Science,

Whrcin hallwe admire mof, theMultitude of Orgens? Thicis fivithed Form and fulldefors Orqer ? Or tha Bawes whichu che Souk vextresifes, onef then ?. Tea Thoufand

Reins are put into her Hands: And the manages all, conducts all, withous the leaft Perplexity or Irregularity. Rather with a Promptitude, a, Confiftency and a Speed, that nothing elfe can equal !

So foarfully and wounderfully are we made! Made of fuch complicated Parts, each fo nicely fahhioned, and all fo exactly arranged; Every one executing fuch curious Functions, and many of shem operating in fo mytterious a manner ! And fince Heath depends on fuch a numerous Affemblage of moving Organs; fince a fingle fecretion stopped may foil the Temperature of the Fluid, 1 fingle Wheel clogged may put an end to the Solids : With what holy fear, ghould we pafs the time of our fojowruing bere below! Trufting for continual Prefervation, not merely on our own Care, but on the Almighty Hand, which formed the admirable Machine, directs its Agency and fupporto its Being!

C. H A. P. II.

Of the Natural State of the Human Body.

1. What the Naturidl State of the Body means?
2. Of the Circulation of the Blood;
3. Of Refpiration;
4. Of Cbybfication;
5. Of Nutrition ;
6. Of the Senfes;

7-Of the Sight,
18. The Hearring,
9. The Smelling,

10: The Tafting,
11. The Fecling;
12. Of Hunger and Tbirff:
13. Of Slect ;
14. Of Liocal Mation;
15. Of the voluntary and invaluntrary Motions.

1. HAT is the Natural State of the Human Body, wherein all Parts of it duly perform thoir Na turai Operations. : The chief of thefe are, the Circulation of the Blood, Refpiration, Chylification, Nutrition and Mation.
2. That

(7)

the Thír' the Blood circulates thro' the whole Body 'appears hence. Any of the Atteries being tied with a Thread, will fwell and beat between the Bandage and the Heart, bat grow flaccid between the Bandage and the Extreminies of the Body: And if the Artery be cut Between the Bandage and the Heart; Blood ftreatms out, even to Death: But if it be cut between the Bandage and Extrendities, " vital Blood therefore flows from the Heart thro' the Arteries, toward the Extremes of the Body, and ftill out of a wider Part into a narrower, out of the Trunk into the Branches."
st Ant of the larger teins being tied with a thread, fivelis betwee tho-Extrentes and the Bandage; but grows ffaccid bettden the Baidage and the Heartr. Fropened
 fcarce at all. The Blood therefore flows from all the Extremes, 'thro' the Veins into the Heart, and fill from the narrowter Parts of the Vein to the larger, from the Branches to the Trunk,
2.UPon the whole it is evident, that all the Arterie's are continually bringing : the Blood from' the Left Ventriefe of the IHeart, thro the Trunks of the Arteries into their Branches; and from thenct tod all Parts of the Body: And on the contrary that all the Veins, (except she Vena Porta) are continually bringing it back from all Parts of the Body, thro' the fmall Branches into the larger, and thence thro' the Trunks and Vena Cava into the Right Ventricle of the Heart. :

Anatomists

Laty Writers have perfued the Globules of Blood to a great Length, and found feveral Orders of them. The large ories vifible to the naked Eye, are Globules of the firf Order. Each of thefe is compofed of fix fmaller, joined together in 2 very regular way. But fometimes a red Globule is feen loofening, and breaking into there compounding Spherukes. And fometimes one may perceive thefe running together, and beginning the Compoftion of a new red Globule. Thefe fmaller Spherules they call Globules of the Second Order. But we are not to fop here. There are in the Blood a great many Particles fix times tefs than thefe. Globules of the Second Order are compounded of thefe fmaller ones, which therefore are Globules of the Tbird Order.
cinnariom wh: and Phyficians have generallyr deteramined the Qugntity of Blood in the fuman Body, to She between iffiean and twenty-five Pounds. But Dr. inkeil: fhems froma many Loftances of profufe, Hemorrhages, :that a farjgreater Qumpity maffibe allowed. Otherwife ,thie Patient could never haye furnihed nor 3t leaft, not forvined fueht Evaguations $;$, the leaft of which exceeded othe whole Quaprity if: Blopod, Apppoled to be in the Body.

In reality : the Quantity of, Bloodin in Human Body, is difficult to the detcermimed. BPleading, to Death, the ufual Method, can never fhew what is its'true Qumntity:
 eweat:Artery is full; ; which will boiaslonger or a fhortar

Thes only certain way of calculating, ie, to, ind, what :Pruportion: the:Cavities of theVVeffeds of which the whole Body is compofed, bear to the Thickaefo of the Coats. This: in otheiNeins and, Anterias mayibe exactly foynd. -But is tho other Veffels wa only lepow' the Quypaty of Thied theyicontaio, by, carofully, pypprating, as much as spofitite. Thus the Dochor ,for ad, ithe Fluido to be in

Partale. There are innumarable Blood Veffels of fuoh Smainefs, that none af the above mentioned Globules can pafs them : So that we cannot but fatpofe tritl' fmatler Gobotes. Tife Diameter of fome Veffels, is lefs than the Eighth Part of the Diameter of a red Globule: So that the Particles paffing thro them, mưtr be above five hündred times lefs than thofe :Globwles, Nay, on 2 careful. Examipation, we porceive Veffels samower, tham the Tenth Pari of the Diameier of a red GJobula; which confequently can :tranimit $\$$ pharules no greater, than the thoulandth Past,of a red Globule.

On the whole then, each Globule of the Firft Order is made up of fix, of the Second: Thefe of Six of the Third, thofe of $\mathfrak{G x}$ of the Fourth ; thefe of Six of the Fifth, and fo on. And accordingly wa find, the Globules of the highea Orders, may be broken down iscot their compounding Partides.

The Diameter of a, common ReJ Glabule is about the One ie3sth Port of an Inch. The Diameter of a Clabule of the TTenth Order is lefs than the One 400000 thart of an inch.
 in the Bones as 1 to r . The leatt of thefe Propertions thews the Liqnors to be One half of the Weight of the Bedy. And if a Calculation be saade, on the Proporim of the Elood in the Arteries only to their Conts, in a Body weighing 160 Pounds; there will be found 100 Pounds of Bhood or circulating Fluid.

In a Fretus the Circulation is performed in' a peculifor manaer. The Septum which fepatates the two Ventriclas of the Heart is pieiced thro' with an Apertures callod the Fowamen Oruak, and the Pulmonary Anterys in lindie afte it has left the Heart, fends ourc a Twbe into the Deffending Aorta, called the Comminaticating Canal Wher the Foetus is bom, the Foramen ovale cofes, and that Cantal dries up into a fimple Ligament.

The Potas while in the Whomb recelves liede Airr Its Lungs therefore cannot fivell and fublide. They cquttinte almoft at reft: Nor can they allow the Bloyd to ctroutive, either in Abundance, or with Eafe. Nature therefore has excufed themi from- the Paftige of the greaett Part of the Blobd, and has contived the Forras men ovaley. by which Part of the Blood of the Vena Cave pafles tiro the Right'Ventielefito the Left: And by this meaws it is found as far on its journey, as if it hat paffed: the Lungs. Bnt this ig not all. For that Btoot: of tho-Caxa, which minfing sthe Foramen ovale, paffes from the Right Auriele itito the Right Ventricle, weing fin eboxatth to pafs by the Lungs, the Commumietirit Chalinevercepts Part of it, and pours it immediately inferthe Defoending Aortas

3 Ress mandivos is' perforased by raceiving the Air. intorthe Lumgo, and breidbing it oas alrernasely. In the fornict, the Cavisy of the Breat is inlareed; by the Finking of the Diaptiragurs, and the Erection of the Rithes thuo" wive fosect of the Mufcies placed between theim. In the latter, it is contracted, the Diaphragm rifing and she Ribs funing again. Whenever the Cavity of the Bieat is intergad, the Air by itsWeight namurafly preffes ino ixt, and mixing with the Blood in the Veficles of the Lungt, makes it meie fintid, globulat and fit for Motion.
VoL. I.

Air is likewife abfolutely neceffary in the Body, to coun-ter-act the Preffure of the Outward Air.

The Blood in the Luings of a Fcetus has not the Advantage of Refpiration. But it receives a Portion of Air, cranfmitted with its Mother's Blood by the Umbilical 'Veffels, to be diffufed thro' the Body. This is quite neceflary, as appears hence : Tie the Navel String very tight, and the Child dies, like a Man ftrangled.

The principle Ufe of Refpiration is, to pufh the Blood from the Right to the Left Ventricle of she, Heart. \checkmark Hence it is, that perfons frangled fo fuddenly die, becaufe with Refpiration, the Circulation of the Blood ceafes. And this is the true Caufe of the Diafole of the 'Heart:- The Weight of the incumbent Atmofphere, being the true Antagonift to all the Mufcles that ferve both for Infpiration and the Contraction of the Heart. As in the Elevation of the Ribs, a Paflage is opened for the-Blood into the Lungs, fo in the Depreflion thereof, by the fubfiding of the Lungs and the Comprefition of the Blood-veffels thereby, the Blood is driven thro' the Pulmonary Vein, into the Left Ventricle of the Heart. And this, together with the General Comprefion of the Body, by the Weight of the Atmofphere, is that Power which caufes the Blood to mount in the Veins, when tha Force impreft on it by the Heart is nearly fpent, and which forces the Heart itfelf from its natural State of Contraction, to that of Dilataticn.

When in an ordinary Expiration, the Preflare on the Larynx is two Ounces, the Preffure on the whole irkernal Subftance of the Lungs, is 14412 Pounds. So vaft is the Extent of the Surface of the Veficles, on which it was neceffary the Blocd fhould be fpread in the fineft capillary Veffels, that each Globule of. Blood might as it were immediately receive the whole Force of the Air, and thereby be broken into fmaller Parts, fit for Secres tion and Circulation.
And hence we fee the Reafon for the Structure of the Lungs. For fince all the Blood is to pars thro' them, in order to receive the Effell of the Air, and that this could not be done', unlefs it were diffufed in very fmall Veffels:

It was necefliary the Surface on which they were to be: fpread, Thould be proportioned to their Number. And this is admirably well provided for, by the Fabric of the : Lungs.

IF the Diameter of the Trachea at the Time of every, Expiration were the fame in all, and the Weight of the Air always equal, the Preffare on the Lungs would be: adways the fame. But as the Difference between its: leaft and greateft Gravity, is no lefs than a Tenth Part of the whole, that Preffure is likewife greater by a Tenth Part at fometimes than it is at others.

This is a Difference which the Afthmatic muft fenfi.: bly feel; efpecially as they breathe thicker, that is every Expiration is performed in lefs Time. In truth' thefe feela Difference in the Air, upon the greateft Rife and Fall of theBarometer, equal to above One third of its; Preffare in ordinary Breathing.

The alternate Dilatation and Contraction of the: Thorax are fo neceffary to Animal Life, that there is no Animal without this, or fomething analogous to it. Fithes and Infeets have no dilatable Thorax. But Fifhes have Gills, which receive and expel the Water alternately, whereby the Blood-veffels fuffer the fame Alterations of Dimenfion, as thofe in our Lungs do. And Infects have Air-veffels diftributed thro' the whole Trunk of their Bodies. By thefe they communicate with the external Air thro' feveral Vent-holes, to which are faftened fo many Windpipes, which fend Branches to all Parts, and feem to accompany the Blood-veffels all over the Body, as they do in our Lungs only. And hereby in every Infpiration the whole Body is dilated, and in every Expiration compreffed.
4. Chylification is preceded by Digefion; which is mach illaftrated by Mr. Papin's Digefer. This is a Veffel ${ }^{-}$ wherein Meat is put, with juft as much Water as will: fill it. Then the Lid is fcrewed on fo clofe, as to admit of no External Air. The Meat herein is by the Flame of a fmall Lamp, in Six or Eight Minutes brought to 2 perfect Pulp. In a few Minutes more the hardet Bones are reduced to a Jelly. No Air entering, the Succuffions cqued by the Air inclofed in the Flefh, refolve the whole
into One komegeneous Body. It is juff fo in Digetion. In Proportion to its Heat, the Stomach does the very fame thing as the Digefter.

Add to this, that the Mufcular Coat of the Stomach continualy contralting, and prefing its Contents by its Periflaltic Motion, occafions a more intimate Mixture, and works the mote fluid Parts, thoo' the Pylorus into the Duodenum. Along the fides of this and the other fmall Intefines the Latteats are planted : Irto the minute Orifices whereof, the Chyle, or finer Part of the Mafs is received. The Lacteal Veins of the firf kind, difcharge themfelves into the Glands of the Bafis of the Mefentery. The Chyle is afterward received by the Lateals of the Second lind, and conveyed into Glande betwesn the twe 'Tendons of the Diaphragm. And hemee it is cannied te the Heart, where it mixes with the Blood.
5. By the perpetual Mation of the Flnids, (efpecielly in the Minute Veffels) as well as the comfant Actian of the Mufcies, fmall Particles are continually wom off; from the 8olids of the Body. The Fluids likewife are continually diminifthing. And bence every Animal Body, by the yery Condtion of itr Frame, is liable to Defruction. To prevent this, a Reffitution muft be made to the Juices and Solids of the Boody, equal and fimilar to what is lof. And this we call Nutrition.

It feems to be porformed thus. The Blood forcibly throws by the Heart into the Arteries, endeavours to go oiut every way thro' the Pores. But thofe are ufually too fmall, to give its Particles a free Paffage. They cam only pafs wheie any of the Pores are open. Here one will naturally follow another in a Line, and contituo a Fibre or Part of a Fibre. When as moch is thus added to one End of the Fibre, at is wafted at the other, the Body is acurifoed: When more is added than is wated, we are faid to growe.

We fice then haw abfolutely necefliary Food is, to repair the conftant Docay of the Body: So than few men. or women can live without it, above five or fix Days. And yet the abftaining frome it for a Seafon has its. Ufe. Indeed great is the Efficacy of Abftinence, beth in prolonging
longing Life, beyond its ufual Period, and in the Cure of many ftubborn Diforders.
6. As without Refpiration and Nutrition we cannot live at all, fo without Senfe, Life would be like Death. In every Senfation there is 1. An Outward Object; 2. Its Action on the Organ of Senfe, 3 A Perception of it in the Mind. The Action of the Objeet on the Organ, is by means of the Nerves communicated to the Brain. And then, not otherwife, the Perception follows. But how. none but He that made Man can explain.
7. In Sigbt the Action on the Organ is performed: juft in the manner of that in a Camera Obfcura. The

$$
\mathrm{G}_{3} \quad \text { Rays }
$$

t Lervis Cornaro, a Nobleman of Fonice, after all other Means had failed, fo that his Life was defpaired of at Forty, recovered and lived to near an Hundred, by mere dint of Abfinence.
'Tis furprizing to obferve, to what an Age thofe antient Chrifians lived, who retired from the Fury of Perfecution, into the Defert of Arabia and Egypt. They drank only Water, and took no other Food than 12 ounces of Bread in 24 Hours. On this St. Antbory Ived 105 Years, Epipbanius 115 , Simeon Stylites $11 / 2$ and. Ranuald, an hundred and twenty.

Among Animals we fee furprizing Inftances of long Abftinence. Several Species pafs 4, 5. or- 6 Months every year without eating or drinking. So Tortoifes and Dormice regularly retire at the Seatoo to their refpętive Cells. Some Kinds get into Ruins, or the Hollows of Roeks; others, into Clefts of Trees. Some lleep in Holes under the Earth : ochers bury themfelves under Water.

The Serpent-kind bear Abftinence to armiracle. Rattle fnakes will fubfift many Monihs without Food. Dr. Skarw faw two Eryptian Serpents, which had oeen kept in a bottle sive Years, (on zfmall Quantity of Sand wherein they coiled themfelves up) without any Sort of Food. Yet when he Eaw them they had juft caft their Shins, and were as lively as if juft taken.

Thene have been Inftances even of Men paffing feveral Months, with fcarce any Suftenance. So Samul'Cbilton of Tinfoury, near Batb, in the year, 1693,1694 and 1695 , Nept fometimes four. Months, and fumetimes above fix together, with very little Foods And Six Weeks without any, but a litule Tent conveyed with a Quill thro' his Teeth.

IT is not improbable, that the Air itfelf furnifhes fome nutritice. Particles. It is certain, there are Subftances of all kinds, flaating in the Atmofphere. And that an Animal Body may be nourithed bercby, is evjdent in the Cafe of Vipers. Tbefe if taken when firft brought forth, and kept. from every thing but Air, will yet grow very gonfiderab'y in a few days.

(78)

Hays of Light, re ictring from the Surface of Bodied to the Eye, varioully penetrate the Coats and Humborrs of it , and paint on the Bottom of the Eye the Images of the things which we fee. This is coinmumicated by the Optic Nerve to the Bram, and then the Perceptlour, which is properly sight, follows. But the Eye has many Advantages above a Camera obfecria: Not ơthy as it can be inoved various ways; by the Help of its Mufcles ; but alfo as the Pupil; by the Fielp of the lris, is inftantly either dilated or conftringed, atcording to the Degree of Light. The Eye likewife accommodates itfelf. to the rarious Diffances of the Objeftis; the bottont of the Eye approaching to or receding from the Chryftalline Humours, as the Object is nearer or farther off.
8. Sound is a tremulous Motion of the Air, produced by the Stroke or Colifion of Bodies. Hearing is performed in the following Manner. The undulating Air enters the outward Cavity of the Ear, and then ftrikes tupon the Drum; from which the Motion is communicated to the little Bones within, and the Air contained in the inner Cavity. This by means of the Nerte conveys it to the Brain, and then follows the Perceptions which we term Hearing.
9. The fine Eftlavia which fpread every way from odorous Bodies, afcending winh the Air into the Nofrils, varioufly twitch the filaments of the olfactory Nerves, according to the Variety of their, Natares. When this Motion is by thofe Nerves communicated to the Brain, the Perception follows which is called Smelling.
10. Ir was obferved before, that the Surface of the Tongwe is Eilled with fmall Papilla, which are no othes than fine Ramifications of the Guftatory Nerve. Thefe are varioufly moved, by the Particles of Meat and Drink. And this Moxion being by that Nerve traufmitted to the Mraif, that Perception arifes which we Gile Tafing.
11. The Otgai of Fecting is the Skin in general, with which innumerable nervous Papillæ are interwoven, which being moved by the flighteft Touch of other Bodies, convey that Motion to the Brain. But thefe Papilla abound in all theExtremiries, paricularly thePalons of the Hand, and the Tips of the Fingers. And hence it is,
that the Sionte of Fucling is far hore exquifite in then thma in other Parts.
12. Nearly ullied to the Sehfer afe the Natural Appetros, particularly Hunger ande Thiyp. The ufatl way of accoonting for ther is this. When the Food now retatea to a Putps id exprete out of the Stomach, it is of ceurfe contrafted by its mufelalat Cota. This caufes the Inner Coat to lic in Folds 3 which means of thePeritatic Moden, rubbing lightiy or each other; occafion the uneafy semation whief we term Hunger. This. is fotr Arfe in the apper Orifice, which is Afft evatuated. But as by degrees the reft of the Contents are expellet, this rubbiitg of the Mertbranes oft eachit other frreats overthe whole Stomach, and renders our Heftiget niore wim gent

THis uheafy Senfation is mireafet Do the Atidatys. wifich the Blood in the Arteries of the Stomach contracts thro' long Abfinence, its foft, balfamic Parts havings been all drawn off. Likewife its Velocity is confidera. My augmented, when we have not eaten for fome time.
 cccafion a violent Fever: That youing Parfons, ant thofe: Who labour hard, or are of a bilipus Countitution, are foonef hingry: Whereas thore whofe Hutriours are thick and vifcid, are not fo foon inonmmoded therewith,

Hor Vapours afeending from the Stomachy and diying the Throat and Mouth, are fuppofed to be the octiafion of that uneafy Senfation, which we term TAirf:

I SAX, are $\int\langle p p e f e d$. For 1 apprehend nothing can be; known with zay Certainty upon the Head, In lika manner it is fuppofed, that we are then awake; when the Netves aro brated, and, flled with Abimial Spirths; and that when they are y yrbraced atid empry, we flety. But who can give any Gatisfaxtory account of pleep? Some arcribe it to the Stoppage of the Nerves: Some to the Quiefcency, and ochers to a Defficieney of the Animal Spiriss: The truth is, we are ignorant of the whote Af fair; and no more underfland Sleep than we do Death.

But this we know, that daring Sleep feveral Funcsions are furfended, the Organs of senfe we wref, the

Murfles are quiefent, fo that hardly any Spirts How thro' them. The Fibres of the Nerves are little changed, . and an Eqdilibrium obtains throughout. There is no Difference of Preffure on the Veffels, nor of Velocity in the Humours, which circulate equally thro' all the Canals. Meantime, all difturbing Caufes being at reft, the watted Humours are reflored, and the Particles fup:plied, which were worn off the Solids.

We may obferve farther, that when the Head is hot, and the feet cold, we cannot nleep; that Perfpiration is twice as great while we feep as while we are awake $;$: that too much Sleep makes the Senfes dull, the Memory weak and the whole Body liftlefs; that Sleep will for a: confiderable time fupply the place of Meat and Driak : That a Foetus fleeps always; Children much ; Youths.; more than Adults, and they than Old Men: ${ }^{4}$
u To fpeak a little more particularly. While we are awake ${ }_{\varepsilon}$ there is a continual Motion of the voluntary Mufcles, of the Parts fobfervient to Senfe, and to the: Affections, all which finidulate the Werves, Btood-veffels and Heart. Thus the finet Parts of the Blood; .are continually waftod, whence Wearinefs enfues; and if the Vigin fance be continued, a feveriih Heat and fenfible lofs of Strength,

As the Night advances, a weight falls on the large Mufctes and their Tendons, and the Mind becomes heavy: The Powers that hold the Body erect, begin to Itrink from their Office, the Eye-lids clofe, the lower Jaw falls down, the head nods, and we take lefe. notice of outward Objects, till at length all the Thoughts are in confufion, and a Sort of Delirium enfues, from whence there is a tranfition to Sleep, not known to us. This is kaftened by Darknefr,' Compofore of Mind and absence of 'Irritation from all Parts. of the Body. .
AGAin. Whatever weakens the natural Powens, inclines to and increafes Sleep: Such as Lofs of Blood, cooling Medicines, yea the Cold of the external Air. Add to thefe, whatever calls off the quantity of Blood flowing to the Heart, as warm Bathing of the feet, a plentiful ingeftion of food into the Stomach : Likewifo whatever leffens the Motions of. the Spirits, whether in the Brajn, or Stomach, Heart and Arteries. On the contrary, fome hot Medicines induce Sleep, by caufing a greater Affliux of Blood to the Brain. The frime effect have fome Fevers; as allo Fapneff; and whatever elfe tettards the venal Blood. In all thefe Cafes, the Blood collected in the Head comprefles the Brain, fe as toteffen. the Courfo fithe Spirits into the Nerves,

(81

Ler us comides in another yiew diefe remadtable In_{n} cidents of ous Frame, Slepp and Dreams: So remarkable, that they ane a kind of Expramented Miyfery, a flanding Miracle. Behold the mof vigowars Contiturion, whee sefigned to the flumbers of the Night. Its Attivity is opprefid with Indodence; its Strenght fofions a temtporary Annihilation. The Nerves are like a Bow unftruag, the shole Animal like a motionlef Loy. Behold a Perfon of the moot delicate Senfations and ammiable Difpofitions. His Eyes, if wide open, difcern 20 Light, diftinguin no Objeats. His Ears widh the Orgoess umint paired, perceive not the Sounds that are round aboat them. The exquiftecly fine Senfe of Feeling in overwheltned with an enter Srapofaction. Where are hin Social Affec-. tiems ! He knows not the Fatber that begat him, the Friend that is as his own Soul. Behold the mot ingenious Schoiar, whofe Judgment traces the moft intricate Sciences, whofe Tate retifhes all the Beauties of Com pefition. Thethimking Fsculties are unhinged, and inftead of clofe-conimetted Reafonings, there is nothing bot a disjointed Hirddle of abfard ldeas. Inftead of wehdigefed Principles; nothing but a diforderly Jumble of crade Conceptions.

Yer

Seserpiness is Ekewife produced by any Comprefion of the Brain, whether from Extravafated Blood, a deprefted Part of fome Bonee, or a Collection of ferous water within the Ventricles.

Slexp therefore fometimes rifes from a defed of the Spirits: But durays fromia collapfing of the nervois Pibres, thro' which the Spinits para from their founcain to all Parte of dhe Body.
IT is hiadered by intenfe thought, Pais of Bodys and froons E_{-} motions of Mind: all which urge the Spisits on, and grevens the nervous Fibres from collapfing.

Is Sleep the Heart is gradually refored from its quick and almoft feverife Pulfation, to its fow und calion Mntion: The Brérthing is nower and finaller, the Motion of the Stamach and Inteftiver, glime Digefion of the Aliments and the Progerfion of the Fuccuase dis, minithed. At the fame time, the thinner Jvices move more flowly, white the more grofs are colteCted together, the Fat is accumulated in its cells, and the nutritive Particles adhere more plencifalty to the inner Surfaces of the fmall Veffels, and the Sides of the Fibres. Tber whilethe Spirits are fecreted with a lefs Confumption, they are by degrees accumulated in the Brain, fo as to diftend and fill the collapfed Nerves. And then we awake out of Sleep.

(8i)

Yet' no fooner does he awiake; than he is poffeft of alt his former Endowments. His Sinews are braced and, fit for Action, his Senfes alert and keen. The frozen Affections melt with Tendernefs; the romantic Vifionary is again the Mafter. of Reafon. And (what is beyond meafure furprizing) the intoxicated Mind does not work itfelf fober by flow degrees, but in the twinkling of an.: eye; is poffert of all its Faculties! Why does not the Numbnefs, which feized the Animal Powers, chain the Limbs perpetually? Why does not the Stupor, that deadens all the Senfe, hold faft its poffeflion? When the Thoughts are once difadjufted, why are they not: always in confufion? How is it, that they are rallied in. a moment, and reduced from the wildef Irregularity to the moft orderly Array ? From an Inactivity refembling Death, and from Extravagancies little differing from Madnefs, how fuddenly is the Body reftored to Vigour and Agility ? How inftantaneouly is the Mind re-eftablifhed in Sedatenefs and Harmony! Surely this is-lbe Lord's Daing. And it is marcuellows in our ey'es!
14. Thaf all Motion is performed by Means of the Mufcles, all men are now agreed. And it is fuppofed that the Motions of the Mufcles proceed, from the in- , flux of the Animal Spirits; which, entring them by means of the Nerves, fwell and fhorten the Belly of the Mufcle, and thereby draw the Extremities together, and move the Parts conneeted therewith. But all this likewife is mere Conjecture. God only knowis his own Work.
15. That fome Motions are Voluntary, and fome are: not, is another amazing Proof of the Creator's Wifdom. Thofe which are abfolutely neceffary for the Confervation of the Machine, as the Beating of the Pulfe, and the Circulation of the Blood, goon by a kind of Mechanic Law, which no way depends upon our Will: While a, thoufand other Motions begin and end, by a fingle AEt of our Will, when we pleafe. But how this Bodily Motion is connected with that Act of our Mind, who is able - explain?

CHA P. III.

Of the preternatural State of the Human Body.
7. Wbat zbe preternatural
\therefore. State of the Body maxtus.
2. Tbe Variety of Difeafes,
3. Reduced to three Clafles, tbofe of the Solids: 4. Tboje of the Fhuids, particulany, the islood.3.
5. Thofe of the Animal Spi:
\therefore rits:
6. The remote Canfes of Dif eafes:
7. Of Fervers:
8.Tbe Way to preferve. Healrk:
9. Of Life and Death. :.;

1. WHEN the Structure or Difpofition of the Parts of the Body is fo difturbed and difordered, that the natural Operations are no longer performed, or not in the manner they ought : This is a pretermatural State of the Body, otherwife termed a Difeafe.
2. There cannot but be great Variety of Difeafes, whether we confider the Manner, wherein that Structure or Difpofition is difturbed, the Part wherein each Difeafe has its Seat, or the various Effects and Circumftances of them. Some Difeafes only burt the Ufe of the Parts ; fome wholly deftroy it. Some affect this or that Part; others the whole Body. Some difarder the Body, fome the Mind ; and others both Mind and Body.
3. But they are all reducible to three Claffes, thofe of the Solids, of the Fluidsand of Botb. The Solid Parts may be bruifed, wounded, fwelled, or removed out of their Natural Place. : w
4. The

[^6] whin it is eiffier too thick and fizy, wiereby ins litotion becomes too languid and flow, whence fpring the Difeafes owing to Obfruction: Or too thin. From the former Caufe anfe Leprofios, Sehirhty's Lethargies, Melancholy, Hyfteric Affections, And if at the fame time it abournd in wid Satas, the flary points of thefe tear the tender Fibres, and occafion the Scurvy, KingsExil, Coofumpion; with a whole taia of paioful Dif tempers. Fevers in general arife from the too great Thimefs of the Blood;
5. As to the Difeafes afcribed to themmal-Spirits, fome are thought to procoed from the Suppreffion or Dimisution of their Notion, as Apoplexios and Pathes: Some from their excefive or irrogular Maticm, as Madneef, Convalfiona, Epilepfies.

6. Such

This cones out from the fmall Asteries and bony. Fibres of the divided Parts, in form of a Jelly, and foon fills up the Cavities between them. It foon grows cartitaginous, afterwand bonty; amb
 fily broken in any other Part than in that.

A Cative-ofadfertent kind is forman on our Hands and Feet. This is compofed of feveral Layers of Particles loofely connected. Thefe if fteeped in fair Water eafly feparate; and then are found, if viewed thro" a Microfcope; to be atl of one Shape, refembling pho Aa a Being freeped ogeiny shey divide into a great number of fmaller Paxticles, all of the fame Figure with the firt.

Triz thicknefe of the Skin in the Hands of thofe who Tabout hard, is wholly 0 ing to vatt numbers of thife- Particles, whith combine together, but fo loofily, chat they ase eafity kepramed on moiftning. That thick Skin is compofed of feyeral Layers of diffeseat chinknefa, which have been added from time to time: Each of which Layers in only a Congeries of almot an infinity of thefe Particles.

But - People who labonr ever fo hard, will thie intelo Callew er their Hands if they walk than ofan The Wraingthe Hand deity fubs off a great Quantity of thefe Scales. Indeed is is furprizing to fee, how large a Quantity of them is daily thrown off from our-Hands and Feet; tho' from no other Pant of the Bedy. We mayy learn from this the groet Bounty of Nature, in fo carefully fupplying the Parts defigned for Walking or Labour, with an adifitional Matter for their defence, which is not in any other Pare of the boty

(83)

6. Suich are the Proxifmate Caufes of Difeares. As to the Remote, the chief are thefe, 1. Intemperance in Meat or Drink, either with regard to the Quantuty or Quality : 2. Want of!Exercife; or Exicefs therein s 3. Immoderate Sleep or:Watching: 4. Unwholefume Air: 5. The Diminution of fome Natural Evacastion : 6. Irregular Paffions. All or any of thefe affect the Temperature and Motion of the ${ }^{-}$Blood and Spirits,
7. But it can fcarce be' coniceived, after all that has been faid and wrote on atmoft every Subject, how very: little is known to this Day; concerning the Caufes of Difeafes. - It moft cafes the thoft Ikilful Phyficians acknow-ledge-they have nothing but Conjectures to offer. We may give a Specimen with regard to Fevers, the mot common of all Diftempers. Thefe are of various kinds: At prefent we will fpeak of intermitting' Fevers only. Moft of thefe agree in the following, Symptonis. During the Approach of the Fit, Cold and Shivering feize the Body, with a fmall land flow Pulfe: Heaífucceeds, with a quick, ftrong, hard Pulfe, followed by Sweat and a fofter Pulfe. Thefe Fits retufn'at fated Times.

Ir is fuppofed, that thefe Changos in the Blood arife, from fome foreign Matter mixt with it, which it cannot readily affimilate, and which therefore muft in fome meafare hinder its Motion: Perbaps becaule the Particle's. of it are too large, too long, or branching out: Whens the Circulation is hindered or retarded, Gbilnifs naturally follows.. And if thefe: Barticles ficking in the finet Paffages, are preft on by the affluent Blood, this will occafon both a': Shock and' Trembr of the Mufcles, and make the Pulfe more weak and /low. But when they . are at length broken and comminuted by the continued. Aflux of the Blood, it will flow more violensly, and of, courfe occafion' Heat, whith driving the Blood ta: the! Surface of the - Body, many of its thinner Partictes will ! burf thro' the Pores, in the form of S'weat. AAs to the : Fevers returning' at fated 'Times; it is' fuppofed the' peccant Matter, is generated from time to time, and mingled with the Blood afreh; whence the fame Symp - : toms? of courfe return, and that with more or lefs vioVol. I.

(86)

lence, as more or lefs of that Matter is generated.' And as this is done more fwifly or Nowly, the Fever returns in One, two or three Days. But all this is mere Conjecture. It may be 50 ; and it may not. So that tho' we may guefs much, we know nothing about it.
8. It is fufficient for us. to know, How we may asoid Difeafes, whether we can account for them, or sot. To this End we fhould avoid whatever in Meat, Drink, Motion or Reft, is likely to produce any confiderable Ohange in the Blood. The Body. likewife fhould be as far as poffible.accuitomed, so bear fome Change of Food, Air and other Externals, that if we fhould at any time be contruined to make fach a Change, no ill Confequence may infue. But no precife Ruie can be laid down, which will fuit all Confitutions. Every man muft confult his own Reafon and Experience, and carefully follow them.
9. As long as'the Soul and Body are united, 2 man is faid to be alive. But it is extremely difficult to determine, the precife time at which Life ceafes, or what that is, which is abfolutely peceeflary to the continuance of it. Is Refpiration ! But when this is entirely ceared, as is the Cafe in a perfon strangled, blow frongly into the Lungs, and they play again; which thews he was not dead before. It the Beating of the Heart ? But when this alfo is ceafed, in the fore-mentioned Cafe, sake the fame Method, and when the Lungs begin to play, the Heart-begins to beat anew. Is the Circulation of the Blood? But Perfons drowned, who have been fo long under Water, as to have no Pulfe remaining in any Artery, and confequently no Circulation, have'recover-ed-by the ufe of proper. Meane, and lived many Years afier. Is the Fluidity of the Blood? Nay, but it is a common thing in Srweden, to recover to Life one who has been twenty four Hours under Water; and who not only has no Pulfe, but is as fiff all over, as any dead Corpfe can be. What then is Death ? Undoubtedly it is the Separation of the Soul and Body. But there are many Cafes wherein none but God can tell the Moment wherein they §eparate.

(87)

Bur what is properly a Natural Deatb? From the very Birth every Veffel in the Human Body; grows Aiffer and ftiffer, by the Adhefion of more and more earthly Particles to its inner Surface: Nor only Solid Food fapplies it with thefe, but every Fluid that circulates thro' it. Hereby more and more of the fmall Veffels are fo filled up, as to be no longer pervious ' In proportion, the Coats of the larger Veffels grow harder, and their Cavities narrower. Hence the Drynefs and Stiffnefs of all the Partse which are obfervable in Old Age: By this means more and more of the Veffels are deftroyed, the finer Fluids fecerned in lefs Quantity, the Concoctions weakened, and the Reparation of the decayed and injured Parts prevented: So that only the coarfer Juices continue to run flowly 'thro' the larger Veffels, till thefe alfo not only become narrow, but fiff, bony and unelaftic; till even the Great Artery having loft its Spring, can propel the Blood no longer. And then follows Death by Old Age, which is a purely Natural Death. But this is a very rare Cafe: It is feldom Life is fo long protracted: The Lamp of Life being eafily blown out, when it burns with fo feeble a Flame. So that the Age of Man feidom exceeds tbreefcore Years and ten, before Duft returns to duft.

Indeed foon after the Creation, when the Earth was to be peopled by One Man and One Woman, the wife Providence of God prolonged the Life of Man 10^{\prime} above 900 Years. After the Flood, when there were three Men to people the Earth; their Age was cut Morter. And nope of thefe Padriarchs, except Shem, attained to five hundred Years. In the next Century none reached 240: In the third, none but Torab lived 200: Men betrig then fo increafed, that they built Cities, and divided into differeitt Nations. As-their number increafed, the Length of their Lives diminihed, 'till aboot the Time of Mofes, it was jeduced to 70 or 80 Years, where it flands at this Day. This is a good Medium, So that the Earth is neither over-flocked; nor kept too thin of Inhabitants. : If Men were now to live to Metbufelab's Age, of 969 'Years, or only' to Abrabam's H 2
of 175 , the Earth would be over-peopled. If on the contrary, the Age of Man was limited (like that of divers other Animals) to 10,20 or 30 years, it would not be peopled enough. But at the prefent rate, the Balance is pearly even, and Life and Death keep on an equal pace.

This is highly remarkable, that wherever any Account has been taken, there is a certain Rate and Proportion in the Propagation of Mankind. Such a number marry, and fo many are born, in proportion to the number of Perfons in every Town or Nation. - And as to Births, two things are very obfervable; Onie, the proportion of Males and Females, Fourteen Males, to thirteen Females, which is exactly agrefable. to:all the Bills of Mortality. And this Surplufage of Males allows One Man to one Woman, notwithpandiag the Cafualties to which Mien are exposed aboye Women. The ocher is', that a few more are born, than appear to die in any place. This is an admirable Provifion for extraordinary Emergences, to fupply unhealthful Places, to make up the Ravages of Epidemic Difempers, and she Depredations of War ; and to afford a fuficient number for Colonies, in the yet unpeppled Parts of the Earth. On she othes hand, thofe extraordinary Expences, are not only a juft Punifhment of Sin, but alfo a wife Means, to keep the Balance of Mankind even. So one would be ready to conclude, by confidering the Afatic, and other more fertile Countries, wheré prodigious Multisudes are fwept away Gy , Wars and Plagues; and fill they remain foll of People.

As to the Length, of Life, it has been an antient-Opinion, that Men tived longer in Cold Countries than in hot. But the reverfe is true. The Inbabitants of the Caribbee Illands, ufually live an hundred and fifty Years. In the Molucca Inands, the ordinary Life of the Natives is an hundred and thirty Years. In Sumatra, Iava, and the reighbouring İlands; the Life of the Inhabitants, commonily extends to ap hundred and forty Years; in the Realm of Cafuby, to 1 50. The Brafliams frequenty live 160 Years, and many in Florida and Iycatan fill longer.

Nor is this at all improbable. For there being no fuch Inequality of Weather in thofe Climates as in ours, the Body is not Chocked by fudden Changes, but kept in a more equal Temper. And fickly Perfons with us, when fixt to their Beds, and kept in an equal Degree of Heat, are often found to hold out many Years, who would otherwife fcarce have furvived One.
Before concluding this Head, we may obferve one more eminent- Inftance of the Divine Wifdom, in the great ${ }^{2}$ ariety throughout theWorld, of Men'sfaces, Voices and Hand-writing. Had Men's Faces been caft in the fame Mould, their Organs of Speech given the fame Sound; and had the fame Structure of Mufcles and Nerves given the Hand the fame Direction in Writing: What Confufion, what numberlefs Inconveniences muft we have been expofed to ? No Security could have been to our Perfons, no Certainty of our Poffefions. Our Courts of Juftice abandantly teftify the Effeets of miftaking Men's Faces, or Hand-writing. But this the wife Creator has taken care to prevent from being a General Cafe. A Man's Face diftinguifies him in the Light, as his Voicedoes in the dark: And his Hand-writing can fpeale. for him when abfents, and fecure his Contracts to future Generations.

Lastly, How admirably Has God fecured the Exeaution of his Original Sentence, upon every Child of Man, Duft bou art, and unto dxff foale thou return? From the moment we live, we prepare for Death, by the Adhefion of Duft, mixt with all our Aliments, to our native Duft ; fo that whatever we eat or drink, to prolong Life, muft fap the Foundation of it. Thus in Spite of all the Wifdom of Man, and all' the Precautions which can be ufed; every Morfel we take poifons while it feeds, and brings us nearer to the Dual from whence we came:

C H A P. IV.

Of the Soult and of the Origin of Man;

1. Tbere is fametbing in Man aubich perceives the valriousMotions of the Body:
2. This Perception is fometimes continued, and recalled:
3. We know fome things in a more fublime panner:
4. There is fomething in us which has an Appetite to fenfible T bings :
5. And another Appetite, which is ofien contrary to this:
6. How Pbilofophers account for the Direcition of our Bodily Motions:
7. For the External Senfes,
8. The Imaginqtion,and Mcmory,
9. The Underftanding, Will and Aficaions:
10. This may be fas or map not:
11. Of tbe Immateriality of the Soul:
12. Of the Union of the Soult and Body:
13. Repfon cannot difcover the Origin of Man :
14. The Scriptural Accoust of it :
15. Of the Praduction af the. Soul:
16. Of the Gaveration of tbe: Body.
17. TVERY one finds, there is fomething in himfelf, which perceives the Motions raifed in his, Body by outward Objects. For when we fee, hear, tafte, fmell or feel, while the Objects affect our bodily Organs, we find alfo various Perceptions in our Mind, according to the Variety of thofe Objects,
18. WE obferve likewife, that after the ebjects areremoved, thofe Yerceptions often continue, yea and are varioufly mixt and compounded together, which we: term Imagination. And a long time after, when thofe: Objects are not only removed, but even ceafe to exift, thofe Perceptions return into our mind. And this we call AKmary.
19. Anb as we fericiore thele outward ©bjects, to we know that we to perceipe them. The Mind cat look inward upon lutelf, difa réfecz upon its own Per. ceptions. 'Over and above this, we feem to find iq ourfeives, a Knowledge of thingss abfracted from Matter.' 'Bat the more we labour to penetrate inte the Nature of this Divine Principle, the more it feems to retire and withdraw itfelf from our moft ftudious Re-鱼解ches.
20. In tike manner we find. "in 'ourfetves" various Appetites fof Good things, and azerfons to eivil things: Yea, the very Involuncary Motions of the Body tend to avoid the Evil and attain the Good. And the things which are perceived by our Senfes, or repnefented by our Imagination, to neceflarily affect us, that we can by no theans hinder ourfelves from having. an Appetite for fome, and an Averfion to others.
21. Yet frequently a more hidden, and Jublime Appes. tite exerts iffelf in our minds 'One that checks, coogtrolls, and exercifes Authority over all the reft: Fosif we are convinced, that the things which are pleafant, are neverthelefs hurtful, the Appetite for them. is over-ruled, and we find a Deffire not to enjox byt: to avoid them.
-6. IN order to explatio there things phipotophic: men fuppofe, that all the Involunigry Mations of the: Body, ate performed in a mechanical Manner, hy: Matter fo and fo modified: And that fuch Effects: fpring of courfe from fuch Caufes, according to the: fated Laws of Motion.
22. As to the Senfes, they fuppofe, that phen whe Organs of Senfe are fruce By any of the Bodies that futround us, and the Motiph caufed, therehy fontinyfd thro'the Nerves to the Brain, the Soul refifing there is fuitably affected : God having to clofely connected the Soal and the Body, that on certain Motions, of the Body, (if conveyed to the Brain by means of the Nervop) certain Perceptions of the Mind always follow: As on the other hand, on certain Perceptions of the Mind; certain Bodily Motions follow.

8: They fuppofe, if thefe Motions, which are by the Nerves communicated to the Brain, continue there
ater the Objelts are removed, the Perception of thefe. is Imagination: Which, if it occurs after it has cealed, is then ftiled Memory. Others fuppofe, That Imagination refults from the Motion of the Animal Spirits, thro, thofe Traces which were made in the Brain, while the outward Objects were prefent: and Memory, from the Spirits moving thro' them afrefth, after fome Insermiffion.
9. Once more. They fuppofe there are two F2 culties in the Soul, One that is Paffive, the Underflanding, by which it perceives all the Motions of the Body. and knows and reflects on its own Operations: The other Axtive, the Will, by which we incline to Good, and ase awerfe to Evil. The Affecions are only, the Will exerting itfelf varioully on various Qbjects.
ro. To Speak freely upon the matter.. I know the Body of Man is contrived with fuch exquifite Wifdom, that he is able, By means of the Organs of Senfe, toperceive outward Objects, to contimue thofe Perceptions, to recall them after they are gone, and by a reffex AA to know what paffes in his Mind or Body. But I know not how to account for any of thefe things.
11. That the Soul is immaterial is clear from hence. that it is a tbinking Subftance. If it he faid "God can endue Matter with a Faculty of Thinking:" We anfwer, no ocherwife than He can endue a Spirit with Solidity and Extenfion; that is, He can change Spirit into Matter: And he can change Matter into Spirit. But ever the Almighty cannot make it tbink while it remains Matter ; becaufe this implies a Contradiction.
12. The Uniow of the Soul and Body is another of thofe things which human Underftanding cannot comprehend. That Body and Spirit can't be implicated ortwifted together like two Bodily Subftances, we.know. But how two Subffances of fo widely different Natures, can be joined at all, we know not. All we can tellis this; God has ordered that certain Perceptions in the Soul, fhould conftiantly follow certain Motions of the Body, and certain Motions of the Body, fuch Perceptions in the Soul.
13. How Mankind began is anothes points whick is too hard for our,Reafonto determine. That Men always exifted is no ,way probable, were it orly ons this Account, thelate Invention of Arts. a For fince it appears, at what times the mof neceflary Arts were ipyented, swe canpọt reafonably cuppofo! that? Mitan began to exift long before that:Period: Seeing if they had always exitted, noi Reafor can be given, why thefe and many more Arts, were not invented long befare. And yet the Accounts given of the Origin of Mankind,' hì the wifef of the Heathen Philofophers; are fo: above. meafure xidiculous, shat they forre as 's melagncholy :Proof of the Weaknefa of bapely Natural Repafon:
-14. Tur Scripmal. Account is: this. God ramdy the Body of Manyout of the Eapph, modubxeathed into him the Breath of lizes: Not only an Animal Life, bet 2. Spititual Principle, created ta dive for ever. Iven hic, Body was then penfect in its kind; neiomer liable toon Death por. Pain. But what the Difficenoe was between the Original and the prefent Body we cannotidetermine:'

But to formite even as it is now, no lefs man a Diwine power was requisite. wNo defs could mix 'Garth, Waser, Air and ;Fire, in to exact a proportion, and then frame fo many different Paxts, of fo varivusi Figyre; :Textuire and Magnitude. God alone was uble to form the Original: Fibues; to wioawe thofe Fibres into hollaw' Twbes ; to difpare. thefe Tubes filted'with their feveral Humours and variouly onterwowen 'wish' each stherinto different. Ongass ; and of thofe'Organs' capipected together in a continued Serise and due' Stutation, to finilh fo complicated mad wonderful as Ma-" chine as the Human Body.
15. Nothing ivas awading now, but'thal the intmortal Spirje fhonld be fent into ito. Habitation!' to Betare the Image of cits Creamp, andidinjof' his Otory: But" the Manter iwhemipichis was dode zwe. cabnot well: Thhis Knowledge is too wonderful for us. ${ }^{*}$ Ant itiof of no ufe to indulge mere Conjecture where Knows ledge is unattainable.
16. Even the prefent Production of the Body by Gentration is what no man can fully explain. But this wie know: The Femate Ovaries, which hang on each fide the Womb, contain abrundance of fmall Veficles: filled with a tranfparent Liqwor. It is fuppofed, thai: each of thefe contains in Miniature, all the Parts of an Human Body: That when one of them is penetrated by the Male Seed, it is rarified and expanded thereby 'till it breaks the membranous Shell, and by the Fallopian Tube, falls down into the Womb. Here being fightly faftened to the Sides of the Womb, it receives Nourifhment from the Mother, 'till the Heart is formed, and begins to propel the Blood to the Extremitios of the fill increafing Body. When it is cometo its full Size, by rolling to and fro, it tears afunder the inclofing Membranes, and having burft as it were the Prifon-bars, emerges into light.

The firft thing that appears of a Fcetos is the Plarcenta, like a little Cloud on one fide of the outer Coas of the Egg. About the fame time the Spine becomesvifible; and a little after, the Brain and Cerebellamrappear like two fmall Bladders. Next the Eyes fland prominent in the Head: then the Pancfum Saliens, the Heart beating is plainly feen, and laft of all, the Extremitios. When formed, the Footus lying in the Womb, is almoft of an oval Figure. For the ${ }^{7}$ Hend hangs down with the Chin upon the Breaft. Its back is round. With its Arms it embraces the Knees, which are drawn op to the Belly, and its Heels are clofe to the Buttocks. Its Head is upward, and its Face toward the Mother's Belly. About the Ninth Month, the Head, which 'till then was lighter, becomes heavier than any other Part. In confequence of this, the Head falls down in the Liquor that contains it; the feet get loofe, and the face turns toward the Mother's Back. But being now in an uneafy Pofture, it ftruggles and brings on the Mother's Throes. *

X Ma . Dodart, nicely obferving an Embryo, one and twenty Drys olt, found the Placenta more than half of the whole a_{2} att

Some fuppofe, that Millions of Animalcula fwim in the Seed of Male Animals, which are fo many Embryos, for which a Receptacle only is provided in the Eggs of the Female. But all agree, that either the Male Seed or the Female Egg, contains all the Parts of the Body, fo that Generation is no more than the Growth or unfolding of the Parts there delineated. But how thofe Seeds, whether male or fernale, are elaborated and prepared, abundantly tranfceads the highet reach of Human Undertanding. I
thence concludes, the younger the Embryo is, the larger is the Placenta in preportion to it: A plain Realon, why Mifcarriages, tho the Fatus is lefs, are more dangesous than regular Deliveries. Fot tho' the Embryo in a Mifcarriage makes a way fufficient for itfelf, it does not make a way for fo large a Phacenta as is to follow it.

Tuy Embryo itfelf was only feven lines long, from the top of the Head to the bottom of the Spinc where it terminated. The Thighs were not anfolded: they only appeared like two little Warts at the toctom of the Trunk. The Arme made the fame Appearance on the Shoulders. The Head was one Third of the whole Length. On this weretwo fmall black Points, which would have been Eyes. The Mouth was very big, a plain Indication that it fed thereby. There was no Eminence for the Nofe: but two little, almoft imperceptible Pits for the Noftrils. Always the younger the Embeyo, the bigger the Head is, in proportion to the Body. The Parte zearer the Head are likewife bigger in proportion to the reft.

It weighed lefs than Seven Grains, which is an extraordinary Lightnefs, for a Body feven lines long. It was fo foft, that no Part of it could be touched, without making a Change in its Figure. Upon opening it, Mr. Dodart difcovered the Heart and the Right Auricle. All the other Parts in the Thorax and lower Belly, were fimple Outlines, (all Veficular) Except a Part on the Left Side, probably the Spleen.
y If the Animalcula of which all Animals are formed are origimally in the Male, yet they never can be formed into Animals; with:' out the Eig of the Fermate.

Tant, all Apima'e fpring from Animalcula feems probable, from the following Coafideration:

1. Twa'r ratacthing máj be obferved in the Tread of an Egg evem. before Incubation, like the rudimeatr of an Animal, in form of a Tadpole :
2. Tnat after Incubation, all the Parts of the Animal fuddenly zppear, the Sumann, which exitted before beiag then expanded. After three Days lacubation, the Pundum Saliens of a Chick is fifcovered by the maked Eyė. On the fifth Day, the Rudiments: of the Head and Body appear, which were before difersible by

(96)

Glaffes. After thirty, Hours, we. fee the Head, the Eyes, the Feattl and the Cariha whit the Vertebra difinct. And by Gaffes werfee alt thole Patth after Tofty. Houth 'whean'the ina ed-Eye:canhot difeers 'till the fifth Days Whrence it is !proterbles that even the firft Difcovery of them by the Miferqicope, is not the Difcovery of parts newly'formd, but of thofe that exifted before Indecibation; tho' not then dilatédeñough to be vifible.
3. That there is a near Analogy between Animals and Plants: Now we know the Seede of thefe are onhy little Plats, 'forided up inf Membranes. Herice we may eafly infer, that Animals: proceed from Animalcula folded up, 'till they are gradually inlarged: and und folded.

AND that there eqmantela are origitially in the Seed of the Male is probable. For 1. Numberlefs. Animalcula are obferyed in thè Seed of Animals: 2. We obferve the Rudiments of a Fotus in Egge fecundated by the Male; but not in others. 3. The Rudi-ments in the Egg, both before and after Incubation, exactly refemble the Animalcula in the Seed. 4. This gives a rational account of many Foetus's at one Birth, efpecially that of the Countefs of Holland. It accounts alfo for a whole Clufter of Eggs in an Heh, being fecundated at once: 5. This beft fuits the Analogy between. Animals and Plants. Every Herb, and Tree beats its own Seed, a little Plant of the fame kind, which being thrown into the Wombof the Earth, fpreads forth its Root and receives . its Noutikment; from the Earth, but has its Form within itfelf

Yet that no Animal can be forma without the Egg of the Fe -, male, is evinced by the following Confiderations.

1. No Animalcule can come forward, if it do not fall into a proper Nidus. Se tho' a thouland fhould fall into one Egg, none of them would come forward, but that which was in the very Center ${ }^{\text {P }}$ of the Cicatricula, or Tread. And perhaps the Nidus neceffary for ${ }^{-1}$ their Formation is fo proportioned to their Bulk, that it can hardly contain more than One Animalcule. This is certainly the cafe in ${ }^{\text {I }}$ Oivarous Kinds. And all the difference between the Viviparouss and , the Oviparous is, that in the former, the Egg is nothing: but the ${ }^{\prime}$ Cicatricula with. ifs Yolk. So that the Foetus muft draw its Nourifhment from the Womb. Whereas in the Oviparous; the Egg itfelf is a kind of Womb, containing all that is needful for'. the Animal, 'till it is hatched.
2. It is acknowledged, that the Fcetus in the Womb, is not ' connected with it for a confiderable Time after Conception : That " it is wholly loofe from it, and is only a little round Egg, with the Embryo in the midf, which fends forth its umbilical Veffels by : degrees, and at laft lays hold on the Womb. Hence it is' plain's, that the Cicatricula which nourithes the A trimakeule, does not fpring from the Womb, but only falls into it as a fit Soil, whence it may : draw Nourihment for the Fatu's.

Yet there is a Difficulty which preffes equally on thofe, who fuppofe the Animal to fpring either from the Male or Female Pa rent. It is the Cafe of Monfters. In a Mule, for inftande. The Body is of the Form of the Mare; whereas the Feet ; che.ffir and is
the Ears, refemble thofe of its Sire. If the Male fupplied the Animalcula, one would imagine the Fatus fhould always be of the fame Species with the Male. If the Female, it Ihould be of her Kind : Whereas Monfters are of both : As if the main Part of the Animal lay in the Egg, and the Impregnation only coaveyed or changed the Extremities.

Part the Second.

Of Brutes.

CHAP. I.

 Of Beafts.1. The General Difforence of Men and Beafts, as to the Struclure and Pofture of the Body :
2. Tbeir Agreement:
3. Their Agreement and Difagreement, as to the Head and Brais;
4. The Heart and Lungs;
5. The Eyw,
6. Tbe Ears, Nofe; Teetb3 7. Tbe Windpipe:
7. Of the Vegetative and Senfitive Mations in Brutes:
8. Of the Soul of Brutes :
9. Of fome particular Sorts of Beafts:
10. Some General Refletzions.
11. EXT to Man in the vifible Creation are Beafts. And certainly, with regard to the Structure of the Body, the Difference is not extremely great, between Man and other Animals. Only in this, that the Stature of Man is erect, and his Form more elegant; that
that no Beaft has the Feet of a Man, mueh lefs a Hand fo admirably fitted for every purpofe : And laflly, that no other Animal has a Brain, fo large in proportion to its Bulk as Mab. Concerning the prone Poffure of their B Bdy we may obferve two things; the Parts miniftering thereto, and the Ufe thereff.
I. As to the Parts, it-is obfervable, That in all thefe Creatures, the Legs are made exaetly conformable to their Pofture, as thofe of Man are to his Pofture: and farther, That the Legs and Feet are always admirably fuited to the Motion and Exercife of each Animal. In fome they are made for Strength to fupport a valt unwieldy Budy: As in the Elephant, which be-ing a Creature of fuch prodigious Weight, has its Legs accordingly made like Pillars. In Others they are made for Agility and Swiftnefs. So Deers, Hares and feveral other Creatures, have their Legs very llender, but frong withal, and every way adapted for quick Motion. In fome they are formed only for Walking and Running; In others for Swimming too. Thus in the Feet of the Otter; the Toes are all conjoined with Membranes, as they are in Geefe and: Ducks. And in Swimming it is obfervable, that when the Foot goes forward in the Water, the Toes are clofe; but when backward, they are fpread out : Whereby they more forcibly ftrike the Water, and drive themfelves forward. ${ }^{2}$ In others, as Moles, they are made for Walking and Digging: and in others, for Walking and Flying. ${ }^{b}$ In fome they are made more weak, for the plainer Lands; in others;

[^7]ftiff and lefs flexible, ${ }^{c}$ for traverifing fice and dangerous Precipices. d In fome they are fhod with rough. and hard Hoofs, in others with only a callous Skin. In the latter, the Feet are compofed of Toes; fome fhort, barely for going; fome long, to fupply the phace of an Hand; fome armed with long and ftrong Talons, to catch, hold and tear the Prey: and fome fenced only with fhort Nails, to confirm the fteps in running and walking.
II. As the Pofture of Man's Body is the fitteft for a rational Animal, fo is the prone Pofture of Beafts, the moft ufeful to themfelves, and the mof fit for the fervice they perform to Man.
2. But there is a wonderful Agreement between the Bodies of Men and Beafts, not only with regard to the Structure, but alfo the Ufe of the feveral Parts. How'they differ, will be mentioned hereafter.

3 The Brain in Them is of nearly the fame Stucture and Confiftence as in Man, and undoubtedly performs the fame Office, fecreting the Animal Spirits (if fuch there be) in order to Senfation and mufcular Motion in every Part of the Body. The Cerebellum is of near the fame Shape in all. But the Shape of the Brain necefarily varies, according to that of the Head. e
4. The

[^8]4. The Heart and Lungs in Beafts are of the fame Structure, wich the fame Apparatus of Veins and Arteries as in Men. We cannot therefore doubt but the Bhood circulates in Theow, and Nutrition is performed as in Us. Their Eood alfo being diffolved in the Stomagh, ${ }^{\text {f }}$ is conveyed by the-Lactaals to the Receptacle ef Abe Cbyle Ta the Fore-part of this (in Men, the $U_{\text {pler Pain) joins the } T \text { berracis Duty, which extending }}$ I^{\prime} tbro'
heavenly thinss, fo as his Face is erect, his Brain is fet in an higher Place, above the Cerehellum and all the Senfories. But in Bruter, whofe Face is prone to the Barth, and who are not capable of Speculation, the Cerebellum, which miniftert merely tq animal Life, is placed above the Brain. Aufo fame of the Organs of lenfe are placed, if not aboup the Brain, at leaft on a level therewith.

Anorfer very great Convenience ip this Pofition of the Brain and Cerebellum is; In the Head of Man the Bafe of the Brain and Cerebell, yea, of the whole \$kull is fet parallel to the Horizon; Hy which means thare is the lefs danger of the two Brains, jozgling or Alipping out of their place. But in Reafte, whofe Heads hang down, the Bafe of the Skull makes a right Angle with the Hori20n. By which meaks the Brain is beneath, and the Cerebell. above. And left the Cerebellum thould hereby be liable to frequent Concufions, an admairable Provifion is made, by that ftrorg MemGrane, whe Dura Matur clofely incompafing it. Befide this, it is guarded in fome Spacies with a furong, bany Fence. In the Hare, the Cones, and feveral others, a Part of the Cerebell is on each Side wishin the Os Petrofum. So that its whole Mafs is, by this double Stay, firmly contained within the Skull.
f But fome Beafts have more Stomachs than One. And fome have the peculiar Property of cbewing tbe cud. The Food after it has been fwallowed, is returned to the Mouth, where is is chewed: over again at leifure.

Not that this is alrogether peculiar to Beafts. There have been Iaftances of Men who had this Property. Dr. Slare gives us a particular account of One whom he knew at Brifol. "He beging, Gays he, :o chew his Meat over again, within a quarter of an hour after Meals. This Chewing, after a full Meal, lafts an Hour and an balf. If he goes to bed foon after a Meal, he cannot neep, 'till the ufoal Time of chewing be over. The Vietuals returned tafte more pleafantly than they did at firf. • Bread, Flefh, Cheefo and Drink are of much luch a Colour, as they would be, if rixt. together in a Mortar. His'Vietuals lie heavy on his Stomach, 'till they have paffed this fecond Chewing. He was thus ever fisce he can remember. His Father does the fame, tut in fmall Quanrities. What a mercy is it, that we have not more fuch Inftaras? For how much of our precious time would it confume?
thro' the Length of the Thorax, ends in the Vein called in Beafts Cruralis Anterior. The remaining Part of the Circulation, is performed in Them as in Men.
5. The Situation, Number and Conformation of the Eyes in various Animals, is wonderfully adapted to their various Circumftances. In feveral the Eye looks chiefly forward, but fo as to take in nearly the Hemifphere before it. In others, the Eyes are fo placed, as to take in nearly a whole Sphese. In fome they are fo fixt as to look chiefly behind, fo that they fee their Enemy following them. So in Rabbits and Hares: Whereas in Dogs they are more forward, to look after their Prey.

Generaliy the Head is moveable for the fake of the Eyes, and the Eyes themfelves moveable every way. Where it is not fo, other Expedients are found, to aniwer the fame End. Thus in fome Creatures the Eyes are fet at a diftance from the Head, to be moved this way or that: As in Snails, whofe Eyes are fitted to the End of their Horns, or rather of the Optic Nerves which are theathed therein. In other Creatures whofe Head and Eyes are immoveable, this is made up by the number of Eyes. So Spiders, whichcannot move their Head, have four, fix or eight Eyes, all placed in the Front of the Head, (which is round). like a Locket of Diamonds.

Many Animals have Mufcles to move the Eye and -bvert it to the Object. Fifhes have none; but for amends they have many little Protuberances finely: ranged on their large, bulging Eyes, by which numberlefs Rays of Light are deflected from Objects above, beneath and on cither.Side. Yea, fome hundreds of thefe Protuberances are curioully ranged on the convex Eye of a Flefh-fy.

Scorpions have above an hundred Eyes; an Ephe-meron-ly, full two Thoufand.

In other Creatures, which have only two Eyes, the Want of Motion therein is fupplied, by their Eyes protuberating into Hemifpheres, each being a vaft number of Segments of a Sphere.

The Eyes of a Cameleon refemble a Convex GIafs: Set in a round Socket, which he turns backward and forward without firring the Head, and commonly One a contrary way to the other.

Lastiy, Moles, living under ground, have nat fo. much need of Eyes as other Creatures. Yet they haveEyes, but exceeding fmall, far in the Head, and covered with Hrong Hair. When they are above ground: they can put them forth beyond the SKin, and draw them back at pleafure.

Another Circumftance, relative to the Eye is. highly remarkable. As we ufe various Apertures to our Optic Glaffes, fo Nature has made a far more compleat Provifion, to admit enough, and not toomuch Light, into the Eyes of Animals, by the Dilation and Contraction of the Pupil. And shis in divers. Animals is of divers Eorms, according to their peculiar Occafions. In fome it is round, particularly in Man, that being the moft proper Figure, for the Pofition of our Eyes, and the Ufe we make of them, both by day and night. In fome Animals it is of a longift Form, in fome tranfverfe, with its Aperture large, an admirable Provifion for their feeing fide ways, and: thereby avoiding many Inconveniences, as well as an heip for gathering their Food on the Ground, whether by day or night. In others, that Aperture is erect, and alfo capable of opening wide and thutting clofé. The latter ferves to exclude the bright light of the Day, the former to take in the faint Rays of the Night: Thereby enabling them to fee and catch their Prey, when there is no Light difcernible to Us.

Thus Cats can fo clofe their Pupil, as to admit but a fingle Ray of Light. And again, by throwing all open, they can take in all the faintef Rays: Which is an incomparable Provifion for Creatures that have occafion to watch their Prey both by day and night.

Bur befide'this; in Cats and other nocturnal Animals, there is a fort of Carpet at the bottom of theEye, which gives a kind of Radiation on the Pupil, thereby enabling them to foe in the Dark.

To preferve this tender Organ, many Creatures have a Membrane, which is not commonly perceived, wherewith they can at pleafure cover the Eye, without too much hindering the Sight, being both tranfparent and frong, fo that it is a kind of moveableCornea.

Providence is confpicuous in furnifhing Frogs with this. For as they live in watry Places, which generally abound in Plants that have gharp. Edges or Points, and as the Frog goes on, not by Walking bat by Leaping: If he were not fo furnifhed, he mufteither fhut his Eyes, and foleap blindfold, or run many rifques by leaving them open. But this Membrane guards the Eyes, without blinding him. And as foan. as the occafion for it is over, he draws it back into a little Cell. Many Birds alfo, as they muft fly between trees and Bufhes, are provided with the fame Membrane.
6. The Comparative Anatomy of the Ear, yieldsabundant Inflances of the Creator's. Wifdom. In Birds the Outward Ear is clofe and covered, not protuberant, as that would obffruct their Flight. In Beafts, its Form is agreeable to the Pofture and Motion of the Body, but admirably varied in the feveral Species, according to their various Occafions. In fome, as the Hare, it is large, open and ereet, by which means that timprous, helplefs Creature, is warned of the leaft Approach of Danger : In others it is cevered, to keep out noxious Bodies. In thofe which are forced to mine and dig for their Habitation, it is fhort and lodged deep and backward in the Head. Thus Moles have no Auricle at all. but only a round Hole, between the Neck and Shoulder And this is clofed with a little Skin, which opens and thuts like an Eyelid. The Sea-calf alfo, as well as Lizards, and Serpents, have no Outward Ear. And the Tortoife, with moft kind of Fifhes, have the Paffage quite covered over.

But among all the Varieties in the Structure of this Organ, none are more remarkable than thofe of the Paflage into the Os Petrofun. In an Owl, which perches upon a Tree or Beam, and hearkens after
the Prey beneath her, it comes farther out above than below, for the better reception of Sounds from beneath. In a Fox, which foouts under the Prey at rooft, it comes farther out below than above. In a Pole-cat, which hearkens ftrait forward, it is produced behind, for the taking a forward Sound: Whereas a Hare, whofe Enemy comes behind, is fupplied with a bony Circle, directed backward: By means of which the receives difinctly the fmalleft Sound which comes that way.

The more accurate the Senfe of Smelling is in any Creature, the longer are the Laminx in the Noftrils, and the more in number, folded up, and crouded together, to contain more nervous Filaments, and to detain the odoriferous Particles, in their Windings and Turnings. An admirable Provifion this, for the Good of many Creatures, the chief Acts of whofe Lives are performed by the Miniffry of this Senfe. In Infects and many other Creatures, it is of great Ufe, in helping them to proper Places for hatching their Eggs, and breeding up their Young. And moft irrational Animals, Beafts, Birds and Reptiles, do by their Smell find out their Food. With what Sagacity do fome of them difcover it, in the midft of Mud and Dirt? How cuilioully do others pick and chufe fuch Plants as afford them wholefome Food, (perhaps Medicine too) avoiding fuch as tend to hurt or deftroya them ? And all this principally by the Smell 2 together, with its near Ally, the Tafte.

The various Form of the Teetb in various Creatures is another Infance of the Divine Wifdom. How curioully are they adapted to the peculiar Food and Occafion of each Species? Thus in the Rapacious they are fitted to catch and hold their Prey; in the Herbaceous, to gather and chew Vegetables. In thofe which have no Teeth, as Rirds, the Bill fupp'ies that Defect; togecher with their additional Stomach. And it is a remark which hardly fails, All fuch Animals as have Four Stomachs, have no Teeth at all.

There are great Varieties in the Teeth of other Antmals. Trout have Teeth apon their Tongues;

Cod-fifh at the bottom of their Gullet. Crocodiles have three Rows of Teeth on the fame Jaw, Sharks, four or five; Sea-devils, fo called, have feveral Rows of moveable Teeth.
7. The Variation of the Wind-pipe in various Creatures is likewife obfervable, as it is neceflary for that of the Voice. In an Hedge-hog, which has a very fmall Voice, it is hardly more than membranous. In a Pidgeon, which has a low, foft Note, it is partly membranous, partly carilaginous. In an Owl, which has a good, audible Note, it is more cartilaginolas. But that of a Jay (as of a Linnet) has Bones inftead of Cartilages.

The Rings of the Windpipe likewife are fitted for the Modulation of the Voice. For in Dogs and Cats, Which ufe a great many Notes, they are (as in Man) open and flexible; whereby all or any of them is more or lefs dilated or contracted, in order to a deeper of flriller Note. But they are One entire Ring in the Fapan Peacock, which ufes one fingle Note.
8. As to the Motions of Brutes, it is not eafy to conceive, that even thofe of the Vegetative kind, can be the mere mechanical Effects of Matter, however modifed. Much lefs can we conceive this of their Senfutive Motion: For we have not the leaft Reafon to doubt, but the fame Impreffions of External Objects, raife the fame Perceptions in them, as in Us. No quefion they fee, and hear, and fmell, and tafte, and feel in the fame manner as Men.
9. We cannot therefore deny, that there is fomething in Brutes, which perceives the Impreffions made by outward Objects; And that they perform a thoufand Actions, which can never be explained by mere Mechanifm : Thofe in particular which fpring from what we call Infinct, as the feeding and tending their Young, the building their Nefts and preparing their Habitation, upon or in the Earth.

It is true, fome things in Brutes, as well as in Men, may be mechanically accounted for. But others camnot: So that we are conftrained to own, there is in them
them alfo fome fuperior Principle, of what ever kind it be, which is endued with Senfe, Perception and various Appetites. For from their Outward Actions we may as eafily learn, as we could from thofe of a Man born deaf and dumb, that there are in this Principle or Soul two different Faculties: That of perceiving or knowing, anfwerable to our Underfanding, and that of defiring and founning, anfwerable to our Will. That this Principle is immaterial appears; from this fingle Confideration, It has a Power of Self: motion; which no Matter can have, being wholly and effentially paffive.
10. Ir is not my defign, to enumerate the feveral Species of Beafts. But it may illuftrate the Wirdom of the Great Creator, to give fome account of a Few, feveral of which are not fo commonly known.

- The largeft Land-Animal in the world is an Elephant. They are found only in the South of Afric, and in the Eaf. Indies, and are geaerally of a dark colour. Thair Eyes are like thofe of a Hog. They bend their Fore-legs when they fleep; but cannot bend their Necks or turn their Heads. Their Trunk reaches to the ground, which they can open and lhut, and take up any thing, even a Pin or a grain of Muf-tard-Seed. With this they feed themfelves, and in their Trunk their chief Force lies. At the Corners of their Mouth grow two large Teeth, fix or feven foat long in the Male, but not above one in the Female. They feed on Grafs, Nuts and other Vegetables.

Some of them are twenty feet in compafs, and near fourteen high. They feem to have more Senfe than any other Brute, and are capable of Fidelity and ftrong Affection : Particularly to their Companion : So that neither the Male nor Female is ever known to make a Second Choice.

The Female goes SeventeenMonths with her Young: They are fifty or fixty Years before they have their full Strength, are in full vigour at much about an Hundred, and live two or three Hundred Years.

A Rbinoceros, next to the Elephant, is the moft extraordinary Animal in the Indies. He is equal in height

Keight to 2 middling. Horfe, but is chaped like a Wild boar: Only he is much larger, and has fhorter Legs. His Skin is without Hair, but fo thick and hard, as to be almoft impenetrable. It is fo full of Scratches and Scabs, that at a diftance, they may well be taken for Scales. . On his Nofe he has a Horn of a dark, brown Colour, which , bends backward, and is often two foot long. He has another Horn a little above this, which never exceeds fix inches. His Fyes are exceeding fmall, and he only fees ftrait forward: Therefore he always runs in a ftrait Line; tearing up whatever ftands in his way. With his Horn he throws Stones over his head to a great diftance, and even tears ap trees by the roots. He grunts like an Hog; but when he purfues his Prey, he makes a terrible Noife. He feeds much on the Boughs of fuch trees as are thick fet with tough and ftrong thorns. But he prefers the Flefh of Animals, when they come in his way. He has a natural Antipathy to the Elephant, which places all his Safety in Flight. He feldom attacks a Man, unlefs he is dreft in Red, a Colour to which he has a mortal Averfion. When he overtakes him, he lifts him by the twitt on bisHorn, and throws him over his Head with fuch voilence, as breaks all his bones, fo that he never fails to find him dead when he comes to devour him. This he does by licking all the Flefh from his Bones, with his Tongue (for he has no Teeth) which is like a File.

Anothrr Native of the Eaft-Indies is the Camel, one of the mof ferviceable Animals in the World. He kneels down to receive his Burden, and rifes when. he hath his accuftomed Load. If he feels himfelf over burdened, he will not rife, but cry till part of it is taken off. One of them will carry a thoufand or twelve hundred weight, forty miles a day, for thirty or forty Days together. They have ne Teeth in the upper Jaw. They will travel forty Hours, without either Meat or Drink : And nine Days without Drink : They have Two Stomachs admirably contrived for this Purpofe. The Gentleman who diffeted One at Paris, found in his Second Stomach Several Square Holes

Holes, which were the Orifices of aboat Tweaty Cavities, made like Sacks, placed betweon the two Meimbranes which compore the Subitance of the Stomach. And in thefe Refervoirs he conzains Water enough, to ferve him for fo manty Days.

The Bunch on his back is not Flef, much lefs Bene, but mere Hair. And when this it preft clufe down, he is no more hunctr-backed than a Swine. They fubfift on very little, which emables them to travel thro' thofe vaft and barren Deferts. How wite is He who caufed thefe to be Natives of thofe Countries, where fuch Creatufes are abfolutely mecorGary ? A farther Inftance of this is, that the African Camel, which has fill greater and more uncouth Journeys to take, is larger and fronger, and capable of carrying heavier burdens than thofe of Afit.

Another wonderful Property of Camels is, that of forefecing the poifonous Wiads, which kill in a moment. A , little before thofe come, they run together and cry, and hide their Nofes in the Earth. And as foon as they are paf, they tift up their heads, and continue their Journey.

The Dromedary in mont refpetes refembles the Ca mel : Only it is of a tlighter make, and inftead of one Bunch on its Back, has two, atout fix Iaches in height. It goes frequently forty Leagues a day : So that altho' it cinnot carry above Bix Hundred weight, yet its Swiftnés atones for its Weakneff. . Its Feet are Coft as a Spurnge, and are not hurt, either by Stones or Saind. And (what is an excellent Providence) they travel beft, atid have the groatelt Spirits in the hotteft Weather.

A creature no lefs remarkable, but in a quite different way, is the Caffor or Beaver. This Creathre is about 4 foot loing, and 15 inches broad. He is covered with two Sorts of Hair, one long, the other a foft Down. The Down, an inch long, is properly his Cloathing, being extramely fiaxe, and clofe laid upon the Skin. The long Hair is fpread over all to preferve it from Dirt and Wet.

Vol. I.
\therefore Whrthrr Male or Female, it has two Bags under its Belly, which contain a liquid Subftance, that congeals in Air, and affords an excellent Medicine, i which, we call Caforeum.
H_{s} has frong Teeth riveted faft in his Jaws, to cut wood, as ,well as chew his Food. His Fore-feet are Jike thofe of an Ape or Squirrel, to hold what he eats in his paws. And with thefe he digs, foftens and - works the Clay or Loam for his Habitation. His hinder Feet are remarkably formed, more proper to fwim than to walk with, the five Toes being joined together like thofe of a Goose, by a frong Membrane. His Tail is long, flattioh, and covered with Scales, and conftantly lubricated with Oil: becaufe being an Architect from his Birth, he ufes his Tail as a Hod, to carry his Clay or Mortar, and as a Trowel, to fpread it into an Incruftation. Meantime the Scales preferve it from being hurt by the Burden; and the Oil which he fqueezes from his Bags, and rubs on .with his Snout, from the noxious Air and Water.

As they like to live together, they chufe a Situation near fome Rivulet. They firft tuild a Caufeway, in which the Water may rife level with the firft Story of their Habitation. This is built of wood and clay, 12 feet thick at the bottom, defcending in a Hope on the fide next the water. The other fide -is perpendicular: the top of this is about two foot broad: They cut their wood, tho' as thick as one's thigh, into pieces, from z to 6 foot long, drive them into the eath with their teeth, and lace them together with Boughs, clofing all the Openings within and without with a frong Plaifter made of Clay. If the Water increaife upon them, chey saife their Wall higher. Knowing their Meterials are more eafily brought by Water than by Land, they watch its Increafe, to fwim'with Mortar-on their Tails, and Stakes between their teeth to the place where they build. When the Cableway is finifhed, they begin their Apartments, which are oval, and divided into three Partitions, one abope another. But the Walls of thefe are perpendi-
colar, and only two foot thick. sill the Wood that ${ }^{\text {r }}$ projects, they cut off with their teeth : and rough-caft both the out and infide of the. Work, with a mixture of Clay and dry Grafs. The firt Partition, being bew, low the level of the Dyke, is full of Water : for they ? love to have their hinder Part hanging in the Water. The other two are above it; fo that is the Water afcend, they may afcend proportionably.

Ar the bottom of their Building they frike out two Openings to the Stream ; One leads to the place where : they bathe : the other to that where they eafe nature.

They affociate, ten or twelve together; and proportion their houfe to their number. When all is, finifhed below, they vault the Top or Roof in an oval, Form.

In Summer they feed on Fruits and Plants: In Winter, on Willow, Ahh or other Wood. This they collect and ftore up in time. They :cut Boughs from 3 to 6 foot long; the large pieces are brought to the : Magazine by feveralBeavers, the fmaller, by one alone; but they take different Ways, each having his Path affigned, to prevent the labour being interrupted. They build up their Pile with much Art, which is proportioned to their number. A Square Pite of thirty feet, about ten foot deep, ferves for Ten Beavers. But the Wood is not piled up in one continued Heap: but the Pieces are laid acrofs one another, with Cavities between, for the Conveniency of drawing out what they want. They always ufe firft the Parcel at bottom, which lies in the water. And when it is taken up for ufe, they cut this wood into fmall pieces, and convey it to their Apartment, where the whole Family come and receive their fhares.

Another Animal of a very peculiar kind is an Icbneumon. It is of the Weefel kind, with a longer : and narrower Body than a Cat, fomeching approaching to the Shape and Colour of a Badger. Its Nofe is black and fharp, like that of a Ferret. Its Coloar is a yellowifl Grey. Its Legs are fhort and each of its K 2

Feet has five Toes. Its Tail is very long ; its Teeth and Tongue much like thofe of a Cat. It is a very cleanly Animal, very briks and nimble, arid of great. Courage. It will engage a Dog, and will deffroy a Cat, by three Bites on the Throat. But it is quite inoffenfive to Mankind, and is kept tame in Egypt, sunning about ti.e Houre, deftroying all Vermin, and playing tricks, like Spaniels.

When wild, he cannot overtake any nimble Aaimal. But he makes this up by Afliduity. His Legs being fhort, he is not much feen : but he has a way of concealing himfelf yet more, by crawling witt his Belly clofe to the Ground, which he does anl day long. But on the leaft Noife (for his Hearing is canceeding quick) he ftatts up erect óm his hisder Lage. If the noife is made by any Reptile, Bird or fmall Beaß he obferves where abouts it is, phees bis Nofe direaty. in a lise with it, and begins to move towand it. He is filent and How, but conflaat in his Approach; often Aopping, to hear, or look forward, and know exectly where the Creature is: When he is got within about five feet, he fops. Nature, which has denied him Speed, has given him freength to leap. beyoud moat other Creatures. Having taken good Aim, he foringe from the Place and falls direaly on his, Prey. Thus he deals with Beafts and Birds. But to Serpents be gives chafe, and to avoid their Risa, abways feizes them by the Neck.
Gejener tells, that the Ichnenmon is not only an Enemy to Serpents themfelves, but to their Eggs alfor which he hunts after continually and deftroys, tho' be does not feed upon them. How mercifuHy has God given this Animal in the Countries where thofe terrible Reptiles moft abourd ! And which, without this Provifion, would be fo over-ran with them, as to bo usinhabitable.

The Chimpanaze is an Animal found in Angoln, nearly approaching to the Homan Figure ; but of a fierce difpofition, and remarkably mifchieyous. In the Year, 173^{8} one of, thefe Creatures wife broughe
over to England. It was about twenty Months old. (The Parent had it in her Arms when the was killed !: She was five foot high.) It was of the Female Sex, naturally walked erect, was hairy on fome Part of tho Body and Limbs, and of a Atrong, mufcular Make; It would eat any coarfe Food, but was very fond of. 'Tea, which it drank out of a Cup, with Milk and Sugar, as we do.. It lept in the manner of the Human Species, and its Voice refembled the Human; when People 「peak very haftily; but without any articulate Sounds. The Males of this Species are very bold, and will fight a Man, tho' he is armed.. It is faid, they often affault and ravih the Negro Women; when they meet them in the Woods.

There is another flange Species of Monkey found in the $W_{e f} A$-Indic;, of the Size of a Fox. Its Face is raifed high, its Eyes black and fhining, and its Ears fmall and round. His Hairs are fo nicely dift pofed all over the Body, that he appears perfecty fmooth: And they are mach longer under the Chiin, fo that they form a kind of Beard there.

These are found in great Numbers in the W.oods, and make a loud and frightful Noife. But it is very common fur One only to make a Noife, and the reft to form a mutc. Affembly round him.

Margrave fays, "I have frequently feen greał Numbers of them, meeting about Noon: At whic time they formed 2 large. Circle, and One placing himfelf above the reft, began to make a loud Noifo When he had fung thus by himfelf for fome tinte, the reft all remaining filent, he lifted up his Hand, and. they all inftantly joined in a fort of Chorus. This intolerable Yeil continued, till the fame Monkey who gave the Signal for their beginning, lifted up his Hand a fecond time. On this they were all filens again, and fo finithed the Bufinefs of the Affembly.".

The Opofum is about the Size of a Cat, only move corpulent, and its Legs more robuft. It is of a kind of Chefnat Colour, very bright and glofly. Its Head is long, and terminates in a Snout, fomewhat like a. K 3 Hog's

(. 114)

Hog's. The Tail is long, and much refembles that of a Rat, which it twifts about with a furprizing Facility. The Legs being fhort, the Body is carried at no great Difance from the Ground. On the Belly of the Fer, male, a Bag is formed by the Skin being doubjed. It is not very deep, the clofed Part being toward the Upper Part of the Body, and the open Part toward the lower. This is covered with Fur, like the ret of the Body, fo that it is not very obvioss to the fight.

Ir is an harmlefs, but likewife a defencelefs Animal: And the Young of no Creature, are produced fo fmall and tender, in refpect of the Parent Animal. Therefore that Bag is extremely ufefial to them. They are cherithed there by the Wwrmith of the Pa rent's Body, 'till toward Noon : Then they go abroad, till at the firf Warning by the Evening-Cold, ther retire into their Lodging again. Nor is this all the Help which it affords them. For as the tende: young: of the Opoffum are delicate Morfels, they would be expofed to the Rage of many Animals both by Day and Night. But the Body of the Parent is a fafe arid ready Receptable for them. By day the is as watchfut' ${ }^{\prime}$ ver her 'Brood, as an Hen over her Cbickens. She is alarmed at the lightef Appearance of Danger, and by a Noife, which they welloundertand, inftantly calle them into her Bag. At Night the cooftantly takes them in, and consulas for berfelf and them in:z very tucomanon manner.", There are thofe among the Devoumers of her young, who avill climb a Tree after ther. Therefore whee the has climbed, to fecuse berfelf ant her"young find Earther, the wifts ther Tail twice round fotme 'fall Bough', amd then drops from it. There me hangswith her ifaad downarard: And whenever fle ploufes Chevsecovers the Brauch with hes Feet by a Swisig; and loofening her Tail, walks about as ufial.

To' enable her thas 'to hang, there are, Spikes or Hooks in the apder fide of whe Vertebre of the Tail. Indeed in the firlt insoe Vertebre there are nope; for
there
there they arould be of no ufe: But chey are'found in all the ref: :.They are placed joft at the Arriculation of each Joiat, and in the middle from the Sides. No. thing sould be more advastageowny comtrived. For' when the Tail is twinted round a Bourgh, thefe Hooks cafily futtain the Weight. Alod thene is no mo:e labour of the Marcles requised, then juft to bow or anoole the Tail. 8

I would nention orly two Crexwres' more; wery extraordinary, and yet but litule known. The Gluttoes is frequent in she Forefts of Cerstany. It-is carely foem ewice of the fame Figure. Io is of the Weefel-kind, and is, in its middle State, about the Sive of aturn-fpit Dog. Its Dody is lowgy its Legs fhort. Ite Cobour is Brown, with a tinge cof reddilh; but its Break and Belly are white. The Tail is song and bulhy; the Head fmall and Tharp:at the Nofe.. The Teeth are exceeding tharp, and the Claws sharper than alreoft in any Creames.

[^9]This is the mof hungry Animal in the world, but is ill provided for catching its Prey. Mof Creatures, can outrun it, and iffelf can fcarce run away from any, thing. But what he wants in Swiftnefs, he has in: Climbing, which he performs to Admiration: Its fharp Claws enabling it to run up a tree, as faft as. on the Ground. Its ufual Place is forme large and. fpreading Oak, chofe both for Safety and for catching its Prey. He fquats all day on fome large Branch; and if nothing offers below, he preys in the Night on whatever Creatures he can find on the Tree above. Many Birds roof on fuch Trees, which he climbs foftly bazmbraic and devours. But his favourite Food is larger Animals.: He wilt lie many Days on a Slanting Boogh; and when any which he likes comes undorneath, he drops down upon them. Hares and Rabbits feldona efcape him ; but he, chufes rather a Goat, or any Creature of that Size. When one of thefe comes under the tree, he creeps from bough to bough, till he comes juk over it, and then drops down. He always contrives to faften on the Neck. In an inftant, he fixes both his Teeth and Claws, lies acrofs the Neck, near the Shoulders. Here he is fecure; and while the poor Creature runs with atl its .fpeed, he is feeding on its ffefh. At length it drops, and he continues eating in the fame ravenous manner, till from a mere Skeleton, his Back becomes round, and his Sides fwelled out like a tun. Still he continues to eat, till he can eat no longer. He too drops down, and lies panting for Breath. He refembles a dead Carcafe, fwelled and ready to burft with lying in the Sun : and being unable to move for a long time, is frequently deftroyed; and fometimes perifhes without an Enemy.

The Gad of Nature feems to have formed the Sloth, to reprefent to us in a fropg Light, that odious and def. picable Vice, from which it alkes its Name. . Its Body is hort, its Head fmall, and it has fcarce any Tail. Its Fur is long, thick, and of a greyih Green, fo that when feen on the Bough of a tree, it appears only lije an Excrefence, or a Clutter of Mofs. It is about the Size
of a Cat，but the Legs are fhopt，as is the Nack：and its lopg and thick Covering，renders it 50 Shapelefg，thaf it feems only an irregular Lamp of living Matter．It liukle and remarkably ugly Head flands clofe between the Shoulders．The Face has mpeh of the Montey－ Afpect．Its fmall and heavy Eyes，are always half Thus， and it has no Appearance at all of any Ears．Its Feas are flat，apd very narrow，but armed with garp Claws， for laying hold py the Bark of a Tree；by friking dee⿻日土 into it．

Ha rapely changes his place；and neuer，but when compelled by abfolute Neceffity．As upap the Ground it would be a Prey to every other Animpal，fa its confant Refidence is em a Tree．Here it is $\{560$ from all Ante mais but thofe who clicap thefe Treet，for the Birds that roof on thepp．The Leaves and tender fart of the bere are ise Food，and ferve it for Drink as well as Meat，Le neves moves to appther Branch，fild it haz dovonsed all the Nuurifument upon that where it if fationed：Aher from one Tree to another，till the firtt is wholly withered and wafted．

IT is obfervable，the SJotb abways afcands．te the tmp af a Tree，only baiting as he goes，before he beging his De vafitionst find this is doubtlefe from the Jofinoime Guidanes of Nature．For was it 89 begip exing ppon ward，when it had devoured all，is wauld hawe to divit down from the top of a dead mee，and would be balf ftarved in the Jouroey．Ript this is mpt all．The He－ vack which one \＄toth makes on the largu Tree is se： fily feer．For be oass not only the Leawns，bat all the Bude and Bark，teaving oply a dead Brapch：So that unlefs the faose thing mighe happan by socident，this 9 woold beleay the Creature．It does fo happen；and Trees then put on the fame Form，as when they are left by the Sloth．But they always die at the Tep firf， and fo gradually downward．This Asimad therefore， wpaderfully tayght，begies iss havoedr git the mop．As it feeds，bee tree decay 5 ；but iss．Daciay is in the Courfe of Nature．The Decay fpreads downivord；－and when be has easem the laft of his Provifion，He is near the Ground

Ground; and has only to walk away to another Tree: But if it is at any diftance, his Motion is fo llow, that he grows quite lean in the Expedition.

As the Sloth brings forth her Young in the hollow of a tree, fo is the led by the fame wonderfal Infinct, to conduct them to the topmoft Branches, as foon as they crawl out. When the is big with young, the climbs fome old, hollow tree; and having fixt on a convenient Spot for her young, the climbs to the very higheft Bough, and there feeds fatter than ufual. When the is full, the defcends with unaccuftiomed hafte, and brings forth One, two, or three young ones. It is well the is full fed; for fhe is to fupport thefe with her Milk, till. they can crawl out, without having any Supply herfelf. She is round and flefhy when fhe retires for this purpofe, but a mere Skeleton when the comes out. She crawls as well as fhe can, to the Part where the left off feeding, and her young follow her. Nor will the tonch any in the way; however both her Hunger and Lazinefs prompt her to it.

Ir is the moft timerous of all Creatures. And with Realon; for it can neither fight nor fly. While it is journeying on the ground, the tread of ap human Foot, Thakes the Earth enough to pat it into terrors. It trembles: The Head is turned about every way, and the Mouth is opened, to cry like a young kitten.

Insignipicantas the Creature is, there is a fpecial Providence in the Formation and Care of it. Not defigned for Walking, its Claws enable it to climb, and then to hold faft in its Station. Helplefs as it is, the univerfal Provider has affigned it a Place of Safety, where it finds Plenty of Food; and as it cannot enfily feek for Drink, it has no need of any. To render it the lefs obnoxious to Purfuit, its Colour fecures it even from View : And its amazing Inftinct of feeding from the top to the bottom, proves a defigning and directing Hand.

Beforz I proceed to fome General Reflections upon Beafts, I beg leave to take notice of one Circumftance, relating to feveral Species of them, which is very ftrange, tho' very common. The Horns of many Animals fall
off every Year, and new ones come in their place. Our Deer drop them in March, and the new Horns are full grown by the July following. We may very juftly rank this, among the moft wonderful Phanomena of Nature, which yields nothing analogous to the Growth of fuch hard; folid, Bodies, of fo great a bulk, in fo thort a time. Many idle Opinions have been maintained, concerning the Caufe of their falling off. The truth feems to be this: They are a fort of Vegetables, growing on Animals, as the Nails and Hair on Man. And there is fome Analogy between the Growth of them, and that of Branchea and Leaves in Trees. Trees commonly drop their Leaves in Autumn, becaure the nourifhing Juice flows into them no longer. And at certain Periods, thefe Parts of the Animal drop off, becaufe the Blood and Juices ceafe to flow into them. At this time the hollow Part` at the Root of the Horns grows hard, and the Pores, thro' which the Juices paffed, grow up. And as no more Nourihment can then be carried to the Horn(, it decays and falls off. 'Tis probable this Stoppage of the Pores happens, as foon as the Horns are at their full Growth. But they are fo fixt to the Head that it takes a long time for them to looien and fall. Whereas in Leaves, their Stalks are fo tender, that when the Juice ceales to flow, they prefently wither and fall:

The Analegy between the falling off of Deer's Horn, and the falling of Leaves and ripe Fruit, from the Tree, will receive Light from obferving the Proceff: of Nature; in the latter Cafe. If the Stalk from which a ripe Orange has fallen, be compared with that part of a Deer's Forehead, from which a Horn is juif fallen, will plainly appear, That Nature has operated by the fame Laws in both. The young Horns while yet foft, are full of Blood Veffels; ar.? if cut off, erpecially near the Head, bleed violently. By thefe Veffels they are fupplied with Noarifhment foi their Growth. But thefe dry up, when there is no farther occafion for them. And hence it is s_{2} that no ill Symptoms attend the falling off of thefe Parts, when full grown.

So far we may give a probable Account. But who can account for this, That if a Stag be caftrated while he is fo young as not to have Horm, he will never have any : And if caftrated afterward, while his Horris are on, he will never caft them ?

1f. It remains only, to add a few Refections. And firtt, What admirable Wifdom is difplayed, in the Morion of various Animals fuited to their various Occafions? In fome their Motion is fwift, in others, flow, and both diverffied a thoufand Ways.

Ano firt, for fwift or flow Motion. This is exaetly proportioned to the Octafions of each Animal. Reptizs whofe Food, Habitation and Nefts lie in the next Clod, Plant, Trte or Hole, or which can bear long Fiunger, need neither Legs, nor Wings, but their Wetmicular Motion anfwers all their Purpofes.

Beafts, whofe Occafions require a larger Room have acterdiagly a fwifter Motion : And this in various Degrees, anfiverable to their Range for Food; and the Enemies they are to efcape from.

But as for Birds, who are to traverfe valt Tratts of Land and Water, for their Food, Habitation, breeding their Young, and for Places of Retreat and Secutity, from various Inconveniences : they are endued with the Facalty of Flying; and that fwiftly or nowly, long or hott time, according to their Occafions. In all this the Wifdom of God appears, ordering ad things well.

Again. How admirable in the Motion of all Creatures, is the neat, geometrical Performance of it! The moft accurate Mathematician cannot prefribe a nicer Motion than that they perform, to the Legs and Wings of thofe that fly or walk, or to the Bodies of thofe that creep. Neither can the Body be more compleatly poifed, for the Motion it is to have in every Creature. From the largeft Elephant to the fmalleft Mite, the Body is exactly ballanced. The Head is hot too heavy, nor too light for the reft of the Body, nor the reft of the Body for It. The Bowels are not loofe, of fo placed as to fwag, over-bafance, or overfet
the , Body : hut well-bzaced, and accurately difribuged, to maintain the Equipoife of it. The Motive Part's alfo are admizabiy well fixt, in refpect to the Center of Gravity, placed in the very Point which beft ferves to fupport and convey the Body. Every Leg bears its true fhate of the Weight. And the Wings are fo exactly placed, that even in the fluid Medium, the Air, the Body is as truly balanced, as we could have balanced it with the niceft Scales.

Yet aggin. What;ap admirable Provifion is made for the Mption of feme Creatuses, by Texpeorary Parts! Frags, for inftance, have Tails in their Tadpole State, whiç fall off when their Legs ane grown out. The Water-Neut allo when young, has four Fins, two on a fide, to paife and keap the Bady upright. But as foon as the Legs are fully grown, chefe prefently drop off.
Seconply, The Bore of the Geltet in all Creatures, is anfwerable to their Ocafions. In a Fox, which feeds on Bones, (as in all ofivoraus Beafs) it is very large. But in a Squirrel it is exceeding fmall, left he Mould difgorge his Meat in his defcending Leaps: , And fo in Rats and Mice, which often ran along a Wall with their Heads downward.

Thirply, In all Agimals the. Strength and Size of their Stomach are proportioned to their Food. Thofe whofe Fgod is more tender and nutritive, have it fmaller, thinner and weaker. Whereas it is large and ftrong, in thofe, whofe Fqod is: lefs Nutritive, and whole Bodies require large Supplies:

All cagnivarous Beafts have the fmalleft Stomachs, as Flefh gqes the farthef. Thofe that feed on Fruirs and Roots have them of a middle size. Sheep and Oxen which feed on Grafs, have the greatef. Yet the Horfe, Hare and Rabbet, tho graminivorous, have compatatively fmall ones. For a Horfe is made for Laboutrs and bots this and the Hare for quick and continued Motion; for which the moft eafy Respiration, and forthe freef Motion of the Diaphragm is requifre. . But this could not be, did the Stomach lie big and cumberfome uponit, as it does in Sheep and Oxen.

Vox. I.

Another very remarkable Circumftance is, thate. thofe Animals which have Teeth on botb Jaws, have but one Stomach; whereas moft of thofe, which have no Upper-Teeth, or no Teeth at all; have three Stomachs. For the Meat which is firft chewed, is eafily digefted ; but that which is fwallowed whole, requires 2 fronger concoctive Power.

Fourthly, All the Parts of the fame Animal are adapted one to the other. So, for inftance, the Length of the Neck is always proportioned to that of the, Legs: Only the Elepbont has a fhort Neck : For the Weight of his Head and-Teeth, would to a long Neck have been unfupportable: But then he is provided with a Trunk, which abundantly fupplies the Defect. In other Beafts and Birds, the Neck is always commenfurate to the Legs: So that they which have long Legs have long Necks, and they that have fhort Legs fhort ones: As may be obferved in Lizards of all kinds, and the King of them, the Crocodile. And Creatures that have no Legs, as they want no Necks, fo they have none, arFifhes. This Equality between the Length of the Neck and Legs, is pecuhiarly feen in Beafts that feed on Grafs. TheirLegs and Necks are very near equal. Very near, 1 fay, becaufe the Neck muft neceffarily have fome Advantage ; for it can't hang perpendicular; but muf incline a little.

Moregver, as thefe Creatures muft hold-their heads down, for a confiderable time together, which would be very laborious and painful for the Mufcles, therefore on each frde of the Neck, Nature has placed a thick and frong Ligament, capable of fretching and Ohrinking again as need requires: This, which is vulgarly called Whit-Leatber, extends from the Head (to which, and the next Vertebra of the Neck it is faftened at that End) to the middle Vertebra of the Back, to which it is knit at the other. And by the Affifance of this, they are able to hold the Head in that pofure all day long.

Fifthly, The Parts of all Animals are exactly fitted to their manner of living. A notable Inflance of this is in the Swine; His natural Food beirg chiefly
dhiefly the Roots of Plants, he is provided with a long and frong Snout ; long, that he may thruft it to a convenient Depth in the Ground, without offence to his Eyes ; Atrong, and conveniently formed, for rooting and turning up the Ground. And befides, he has an extremely quick Scent, for finding out fuch Roots as are fit for him. Hence in lialo, the ufual way of finding Truffles, or Subterraneous Muhrooms, is by tying a cord to the hind-leg of a Pig, and driving him before them into their Paftures. They then abferve, where he ftops and begins to root: and digging there, they are fure to fiod a Trufle. So in Paftures where there are Earth-nuts, tho' the Roots are deep in the Ground, and the Leaves are quite gone, the Swine will find them by their Scent, and root only in the places where they grow.

Another Infance of like Nature we have in the Porpes, (antiently wrote Porc-pefe, that is, Swine-fi,b). which refembles the Hog, both in the Strength of his Snout, and in the manner of getting his Food. For the Stomach of one of thefe when diffected, was found full of Sand-Eels, which lie deep in the Sand, and cannot be gotten but by rooting or digging there.

That very Action, for which we look upon Swine as unclean Creatures, namely, wallowing in the Mire, is defigned by Nature for a good End; Not only to conl their Bodies, (which fair Water would do as well) but alfo to fuffocate and deftroy Fleas, Lice, and other Infects, which are troublefome and hurtful to them. For the fame reafon, Poultry and divers other Birds bakk themfelves in the Duft, in hot Summer Weather.

A farther. Inflance of the Fitnefs of Animals for their'manner of Living, we fee in the Aitt-Bear: which has not only a fharp Head and Snout, but alfo a narrow, and toothlefs Mouth. Their Tongue is as big as a Goofequill, round, and in fome, above two foot long. Therefore it lies doubled in a Channel, between the lower Parts of the Cheeks. This when hungry they thruft out, being well moiftened, and lay upon the Trunks of Trees: And when it is covered with

Ants, fuddently draw it back into their Mouths. If the Ants lie deep, they dig up the Earth with theirlong and ftrong Claws, wieh which their Fore-feet; are armed. So are they fikted for this Diet and no ${ }^{\circ}$ other!

C H A P. II.

Of Birds.

1. Of their Motion:
2. Brain :
3. Organs of Sarle :
4. Lungs:
5. Stomach and Bladder:
6. $T^{-1} \mathrm{HE}$ Species of Birds are exceeding numerous. Thefe have Feathers, which they expand in order to fly; the fine Branches of which lie fo clofe together, that little Air can infinuate itfelf between them. Now when the Column of Air on whicha Body refts is fpecifically heavier than the Body, it remair.s fufpended in the Air; if it be lighter, the Body finks. Hence the larger Space a Body circumfcribes, the more eaflly does the Air fuftain it. Confequently the fame Bird which finks when the Wings are clofed, is futtained when they are expanded. To this alfo the Motion of the Wings contributes: (As a Body while moving fiwiftly, will fwim in Water, which immediately finks, if that Motion ceafes.). And fo do the Feathefs, with which their Bodies are clothed, which incteafe their Bulk, bit not their Weight in the fame proportion.

The Parts of Birds chielly concerned in Flying, are the Wings and the Tail. By the firt, the Bird fuftains and wafts himfelf along. By the fecond be is enabled, to keep his Body fleady and upright, particularly

(125)

cularly in afcending and defcending. It is by the Largenefs and Strength of the Pectoral Mufcles, that they are qualified for Flying. In Men thefe are fcarce a Seventeenth Part of the Mufcles of the Body. In Birds they confiderably outweigh all the other Mufcles together. And this Circumftance alone, the Want of fuitable Mufcles, makes all Human Attempts to ty, void and vain.

In Flying, the Bird firft bends his Legs and leaps from the Ground ; then opens the Joints of his Wings, fo as to make a right Line, perpendicular to the Sides of his Body. Being now raifed and ftrongly vibrating his Wings, the Air re-acts, as much as it is acted upon, and fo protrudes his whole Body. But in recovering his Wing for frefh Strokes, it has a great Refiftence to overcome. To elude this, the bony Part of the Wing, into which the Feathers are inferted, moves fideways with its fharp End foremoft, and the Feathers follow it like a Flag.

All Birds have near their Tail a little Bag, which contains Oil, to moiften their Feathers. Geefe have two Glands for the Secretion of this: Other Birds only One. In this are divers little Cells, ending in two or three large ones, lying under the nipple of the Oil-bag. This Nipple is perforated, and being preft by the Bird's Bill, emits its Oil.

In all Birds that fly much, the Wings are placed in the very beft manner, to balance their Bodies in the Air, and to give as fwift a Progreffion, as they are feverally capable of. Otherwife they would reel and fly unfteadily; as we fee they do, if we deftroy the Equipoife, by cutting one of their Wings.

And what Nicety may we obferve, in a Part no more confidenble, than the Vanes of the Flag-feathers of the Wing! 1. The Edges of the exterior or narrow Vanes bend downward, but the interior, wider Vanes upward. By this Means they catch hold and lie clofe to each other, when the Wing is Spread; that not one Feather may mifs its full Force and Impulfe upon the Air. 2: Equal Nicety is obferved in the very Aloping the Tips of the Flag-feathers: The interior

(\$26)

Vanes ate neatly Hoped away to a Point, roward the outward Part of the Wing. The Exteriot (at leat in many Birds) are foped toward the Body. And in the middle of the Wing, the Vanes being equal are but little floped, So that theWing, whether open or fhut is as neatly floped, as if confantly trimtied with a pair of Sciffars.

The Vane confifts not of one continued Mestibrane, becaufe if once broke, it would not eafily be repaireta: Bat of manyLamines, which are thin, fiff, and fomething refembling a thinQuill. Toward the Shaft of the Feather (efpecially in the Flag-feathers of the Wing) thefe Latminx are broad and of a femicircular Form, whith ferves for Strength, and for Shutting them clofe togethet, when Impulfes are made on the Air. Toward the Outward Patt of the Vane, they grow fender and taper. On their under-fide they are thin and (fmooth;') but their upper-oater Edge is parted into thiry; Edges.

As coriouff made are the Feathers in the Wirg, and no lefs curioufly placed, exactly aceording to theirfeveral Lengths and Strength; And thele again are lined, faced and guarded with Covers and Secomatery Featbers, to keep the Air from paffing thro' and for cluding the Impalfe.

Lastly, How admirably wrougfit are the Bone of the Wing, very frong, but light withah : The foints, which open, fhut, and move every way, as oceafion is; and the various Mufctes, all fuited to the Motions which they minifter to.

Next to the Parts Por Flight, let us view the' Legt and Fett, which minifter to their other'Motions; both made light, for their eafifer Paffage thro' the Aft, and the latter, forme with Membraties for Swimming, fome without, for feady Going, for perching; for catching and holding their Prey; br for hanging by the Heels, to gather their Food: The Legs, all carved, for their eafy Perching or Roofting, as ahb to help them upon theit Wings, in taking their Flight. In fome they are long, for wading and fearching the Waters; in
othere, if need be, remaikably fhort. And hotw wiffely are they placed! In all fomewhat out of the Center of the Body's Gravity. But in furch as fwim, miore that in odhers, for the better rowing their Bodies, as atfe to help them in Diving.
Geife and Ducts, their Bodies being made for Swimmings, have theif Wings too placed out of the Center of Gravity, neater the Head: Bure the extending the Neck and Head in Flight, ballainces the Body upon the Wings: Which is another excellent Ufe (befidefearching for Food) of the long Necks of there Birds.

But in the Haron, whofe Head and long Neck (altho' tucked up in Flight) overbałances the hinder Part of the Body; the long Legs are extended, both to counterpoife the Body, and to fupply what is wantiatg in the Tail.

Ir has beten fappored, that the Flying of Birch in atralogous to the Rewritg of Veflis. Bat it is a Mor tion of quife athother Kind: Oars are ftrack soward thie Stern : Whereas Birds do not vibeate their Wingas tow ard the Tail, but waft them downwwd. Nor does tire Tail cat the Air (as the Rudder does the Water) aiRight Angles; but herizontally. It. likewife keept the fame Situation, which way foever the Bird turng:

It is not therefore' by the Tail, that mof Birds totis to the right hand artite teft;' buc hy the Wingest They turn to the right, by beating the Air with the Left Wing alone towatd the Tail: To the teft, by beating it with the Right Wing. Thus Pigeons thanging their courfe toward the left, labour with the Right Wing, fearce fifring the other. a

Birds:

[^10]Birds with long Necks have another way of altering their Courfe, by only inclining their Head and Neck this or that way.

Birds rarely fly up or down perpendicularly, but rather in a crooked Line. In afcending directly, the Natural and Artificial Tendency would counter-ąt each other. In defcending directly both would con-: cur, and endanger too precipitate a Motion.

Oniy the Hawk foops directly to feize its Prey : Whereas other Birds in defcending, retard the Motion by keeping their Wings expanded, and at the fape time ftretching out their Feet and Legs.

There is no flying Animal, but has Feet as well as Wings; becaufe there is not Food, or at leaft not Food fufficient for them, to be had always in the Air. But if there were, yet fuch Birds could take no reft; for having no Feet, they could not perch upon Trees. And if they alighted on the Ground, they could not: raife themfelves again, which Birds that have fhort Feet can hardly do. Befide, they would want Means: of Breeding, having no way to lay their Eggs, to fit, hatch or brood their Young. As for the Story of the Manucodiata or Bird of Paradife, faid to have no Legs. it is now difcovered to be a Fable.

This Bird is a native of Arabia, It is one of the lighteft Birds that is known; and its feathers are fo difpofed, that with a fmall Motion of its Wings, it can float upon the Air. And indeed it lives moftly there, feldom flanding on its feet, except to leep. Hence many have fuppoled, that it lives wholly in the Air, and was fuftained without Food. Thofe who brought them into Europe, finding this increafed their price, tore their Legs off, and pretended they never had any.

It is indeed much on the wing, like the fwallow, and like this, feeds on flying Infects as it flies. And theArabian Infects being Iarger and fronger than ours,
safer, than any other. For one of thefe Birde will carry a Lettes from Babylon to Alppo, which is thirty Daja Jeorney, in forty cight Hours.
ift Beak is proportionably ftronger, than that of the Swallow.

- Ir is not ftrange, that a Bird folight, and having very long Heathers, fhould lie upon the Air, almof withotut moving. But the frength of its Legs, and the Sharpnefs of its Claws, fhews it is defigned both for ftanding and tearing its Prey.

Before we conclude this Head, it may be obferved, that all the Parts of Birds are fitted for their ufe of Flying. Firft, As the Mufcles of the Wings are pecaliarly frong; fo the under Side of them is made con: cave, and the upper convex, that they may be the more eafily lifted up, and the more ftrongly ftrike the Air. Then the Truak of their Body fomewhat refembles the Hull of a Ship, the Head, the Prow; which is generally fmall, that it may the more readily cift the Air, and make way for the Body. Add to this, that the Bodies of Birds are fmall in comparifon of Beafts, that they may be more eafily fupported by; the Air. And they are not only fmall, but of a broad Figure, that they may be buoyed up the hetter. They are alfo hollow and light: Yea, their very Bones are: light. For even thofe of the Legs and Wings have ample Cavities : By this means alfo they become rigid and ftiff: It being demonftrable, that a hollow Body is more ftiffandindfexible, than a Solid one of equal Subftance. The fhaftusalifo of their Feathers are either empty, òr filled withat light and fpungyMatrer. And theirWebs coiffif oftwd Rows of contiguous Filaments furnifhed all along with Hooks on each fide, whereby catching hold of one another, they ftick faft eogether. As to their Tails, altho' it is true, as was obferved, that all Birds whofe Tails are pointed and end in a right line, turn themfelves by their Wings and not their Tails, yet in thofe that have forked Tails it is otherwife. Thus it is manifeft to fight, that the fork-ed-Taild Kite, by turning her Train fideways, raifing one horn, and depreffing the other, turns her whole Body. And doubtlefs the Tail has the fame Ufe in Swallows, who have all forked Tails, and make more fadden turns in the Air than any other Bird.

(130)

But Feathers muft in time wear out. Therefore Nature has provided for the renewing them yearly. To lighten Birds fill farther, they have large Mems branes extending to the bottom of their. Bellies, into which the Air is received, where, by the Heat of the Body it is expanded into twice or thrice theDimenfions of the External Air. And this they can either comprefs by the Mufcles of the Abdomen, or expire, more. or lefs, in order to their defceading fwifter or flower, in what degree they pleafe.
2. As to the Brain of Birds, whereas in Men,the Cortical Part of the Brain is outermoft, in Birds it is innermoft, and the Membrane that covers the Upper Ventricle is Medullary. The Ventricles likewiie are fituated above, near the apper Part of the Skull.

Perhaps before we proceed, it may be well to premife one General Obfervation, That the Structure of Bids is in many refpects differcnt from thofe both of Man and Beafts; having feveral Parts which thefe want, and wanting others which they have. Befides, there are great Variations in the Contrivance of Parts which are common to both : All wifely adapted to their different Conditions and manner of Life.

Parts peculiar to Birds are 1. The Bill; 2. The Membrane to draw over the Eyes, $-3:$ Feathers and Wings. The Parts wanting in Birds, are 1. Teeth and Lips, 2. Kidneys and Bladuter, which they do not need, as they drink no more than juit to moilten their Food. Variations in theParts of Birds from thofe of Men and Beafts are 1. In the Ear, which is of a very peculiar Make. 2. In the Divifion of the Aorta, 3. In the Spinal-Marrow, which is divided into two in the middie of the Back, 4. In the Bones, which are all hol-; low, 5. In the Heart, which has a flefhy Valve at the Mouth of the Vena:Cava, 6. In the Lungs which are Arongly joined to the Back, for the greater conveniency of Flight, 7. In the Stomach. Birds have two or more, to fupply the Want of Chewing, 8. In the Legs and Feet, 9. In their Tails, 10. In their Pezioral Mufiles; which are the ftrongeft of all, whereas in Man the Craral Mufcles are the frongeft, 11. In the Braino
is was before obferved, 12. In the Bronchia, whictl extend to the very bottom of the Abdomen, fo as to contain a large Quantity of Air, 13. In the Orvaries, which in Birds are fingle, and faftened to their Back.

The Ears of Birds differ much from thofe both of Men and Beafts. There is almoft a direft paffage from Ear to Ear: So that if the Drum be pricked in either Ear, Water poured in at one Ear, will run out at the other. And what ds fill more remarkable is, they have a fmall winding Paflage, that opens into a large Cavity, running betwixt Two Skulls, and paffes all round the Head. The Upper of thefe Skulls is fupported, by many Hundre'ds of fmall, thread-like Pillars : Which have another Ufe alf, to break their Sound, and hinder its making a confufed Echo:

This Paffage between the two Skulls is much larger in Singing-Birds than in others. So that a perfon who has been fhewn this, may hereby know them from all others.

The other Organs of Senfe are nearly the fame in Birds as in other Animals. Only there is a difference in the Organ of Smell. The Noftrils lie on each Side of the Beak in the inner Part whereof, befide the Tube which reaches to the Lungs, there are little Tubes, continued from the Membranes and Subftance of the Brain. And thefe feem to be the Organ of Smell. Only two Nerves pafs thro' the Os Cribrofum to the Beak: Left if there were more Perforations, as in other Animals, too much Air might flow into the Brain.
3. The Bill of Birds is peculiarly remarkable. In the firt place, it is neatly fhaped for piercing the Air, In thenext, it is hard and horny, to fupply the Want of Teeth, and alfo in fome meafure, of an Hand. Its hooked Form is of great ufe to Rapacious Birds; in catching and holding their Prey ; and to Others, in Climbing, and in taking and comminuting theirFood.b

[^11]
$\left(\begin{array}{lll}132\end{array}\right)$

Its extraordinary Length and Slendernefsing of efe to fome, to fearch for their Food in Moorih ilaces: : ${ }^{c}$ As its Lepgth and Breadth is to othens, to hupt and fearch in muddy Pleges. ${ }^{\mathrm{d}}$ The spntary Form, a thick, Thort and fharp-edged Bill is as ufeful to all other Birds, who mult hulk the Graips they fwallow. But it would be endlefs to reckon up all the Shapes, and commodious Mechanifm. of all: The Sbarpnefs and Strength of thofe that have occation tea pexforste Wood and Shells; et the Slendernefs and Natingfi of fuch,' as pick up fmall Infeets: The Crods Form of fuch as break up Fruits; ${ }^{f}$ the comprefied s Form of others, with many other curious Forms, all fuited to the:Occafions of the feveral Species.

Jaw fo exactly fitted to the Hook of the Upper, that it will break the Food, as other Creatures do with their Teeth.
c As to Woodcocks and Snipes, who hunt for Worms in Moorith Ground, and likewife fack the unctuous Humour out of the Earth. So alfo the Bills of Curlews, and other Sea-fowi are very long, to enable them to hunt for Worms, \&cc. in the Sands.
d Ducks, Geeff, and divers other Species of Birds, have Bills both long and broad, whereby they are enabled to quaffier in the Water or Mud, 'till they find their Food.
e The Green Wocdfpite, and all Woodpeckers have frong and fharp Bills, curiounly made for digging Wood. An even. Ridge runs along the top of the Green Woodpecker's Bill; as if an Antift had defigned it at once for Strength and Neatnefs.

Woodpeckers have alfo a Tongue, ending in a charp, bony (Rib, dented on each fide, which they can at Pleafure fhoot out to a great length, and thruft into the Holes, Clefts and Crannies of Trees. They frike them likewife into Ant-hills, and fetch out the Ants and their Eggs. Moreover they have fhort, but ftrong Legs, and their Toes ftand two forward, two backward: a Difpofition which is particularly convenient, for the climbing of Trees. In this they are likewife affirted by the uncommon Stiffinefs of the Feathers of their Tails, and by their, bending downward, whereby they ate fitted to ferve :hem as Props to lean on.
${ }^{f}$ The Crofs-Bill, whofe Bill is thick and Atrong, with the Tips "croffing each other, readily breaks"open Fi , cones and other Fruits, to come at and feed on the Kernels. And undoubtedly the crofing of the Bill was defigned for this very Service.
g The Sea-fye häs a long, harp, narrow Bill, comprefled fides ways, and every way adapted, to the raifing Limpets from the Rocks, which are its chief, if not only, Food.

Is the flat-billed Birds, as Ducks, there are three pair of Nerves, which come down between the Eyes into the Upper Bill, whereby they are enabled to fmell and find out their Food, in the Mire or Water. The like have been obferved in feveral round-billed Birds, but fo fmall as to be fcarce difcernible. Only in the Rook they are difcernible enough : And it is remarkable that thefe, more than any other round-billedBirds, grope for their Moat in Cow-dung and the like.

Concerning Birds of Prgy, it is obferved, 1. They commonly fy fingle, but not always; Vultures fly in Troops, after an Army, fifty or fixty together. 2. That the Females are both larger, ftrong/ r, and of more Courage than the-Males: Nature fe ordering, becawfe they muft procure Food, not only for themselves, but alfo for their Young.
4. Op their Lungs it is obfervable, that they are not only larger in proportion than thofe of Beafts, but that they admit the Air, both above and beneath, by which means they become far lighter.

Vol. I.
M.

It
${ }^{1}$ A Duck is furnifhed with a peculiar Struoture of Veffels, which enables it to live fome time under Water. Yet the cannot live with out Air. One that was put into the Air-pumpp, and the Air exhrufted, feemed to bear it better for a few Momente, than any other Fowl. But in lefs than two Mlinutes her Hoad fell down, and fie appeared dying, 'till revived by letting in the Air.

A Younc, callow Duck being tried in the fame manner, wo near Death in lefs than two Minutes. It is.obfervable both of them fwelled extremely, on pumping out the Air. It not being intended, that Water-fowl fhould live in an exceeding, rarefied Air, but only continne under water, they are qualified for this, but not at all for the other.

Yer that Ducks can live almoft any where, we may. learn from the blind Ducks of the Zercbintzer Lake in Carniolas This communicates with another Lake under ground in the Mountain Savornick, and fills or empties itfelf according to the fulnefs or emptinefs of That. The Waters of the Upper Lake, when it empties, ron off by large Holes in the bottom. The Ducks which are very plentiful in the Water, are often carried down with it into the fubterraneous Lake. In this many of them undoubtedly perih; yot fome remain alive. But they loffe their Sight and their Feathers : And at thef next filling of the Lake, buth they and vaft Numbers of Fiß are thrown up with the Water. They make a ftrange Appearanee

(134)

Ir is likewife remarkable, that whereas in other Animals the Lungs are loofe and have much Play; in all Birds they adhere to the Thorax, and have little Play. This is a good Provifion for their fteady Flight. Alfo they want the Diaphragm, and inftead thereof have divers large Bladders; made of thin, tranfpatent Membranes, with pretty large Holes, out of one into the other. Thefe Membranes ferve for Braces to the \therefore Vifcera, as well as to contain Air. Toward the upper Part, each Lobe of the Lungs is perforated in two 'places with large Perforations: whereof one is toward the Outer, the other toward the Inner Part of the Lobe.
in their naked State; and for want of Sight are eafily caught. In about a Fortnight they recover their Sight and their Feathers, and are then as big as common Wild-ducks. At their firft coming up, their Stomachs are full of fmall Fifhes, and fomething refembling Weeds. It feems therefore, they were not quite blind, when in their dark Habitation, but could fee by that fmall Quantity of Light; to fearch for and find their Food.

Nor is it in this Lake only, that thefe Ducks are fqund. They are frequently thrown up, after great Rains, at a Hole in a Mountain, near the Town of Laos. The Water then gufhing out with great violence, brings thefe blind and bald Creatures with it. And their Frequency and Cheapnefs, from the vaft Quantities which are thrown out, makes them efteemed no Variety.

The Bodies of Duckers or Loons are admirably fitted for Diving: Being covered with a thick Plumage, and the Surface of it fo fmooth, that the Water cannot penetrate it. Hereby their Bodies are defended from the Cold, the Water being kept at a Diftance; and are ifo poifed, that by a light lmpulfe, they eafily afcend in it. Again, their Feet are fituate in the hindmof Part of their Body, fo that fhooting them backward and flriking the Water upwards, they plunge themfelves down with great Eafe, and move forward therein. Their Legs alfo are made flat and broad, and their Feet cloven into Toes, with appendent Membranes on each fide. By this Configuration they eafily cut the Water, and are drawn forward, to take their Stroke backward: And by this, their Feet being moved to the Right or Left, Serve them as a Rudder to turn under Water. How they rife above Water is not determined: Whether by their natural Lightnefs, or by ftrikdng againft the bottom, in the manner of a Leap, or by fome peculiar Motion of their Legs. That they dive to the bottom is undeniable. For in the Stomachs beth of the Greater and Leffer kind, we find much Grafs and other Weeds; And in the leffer kind, kittle elfe. Yet both prey upon Fifh; and their Bills are ftreight and fharp, for the eafier friking their prey.

Lobe. Thro' thefe Perforations the Air has a Paflage into the fore-mentioned Bladders; fo that by blowing into the Windpipe, the Lungs are raifed, and the whole Belly blown up. This doubtlefs is a means to make them more or lefs buoyant, as they take in more orlefs Air: And fo anfwers the Defign of theAirs bladder in Fifhes.

- In general we may obferve, whatever is peculiar in the Wings, Bills, and every other Part of Birds, on a clofe Infpection will be found exactly fuited to their Wants. They are fet of Implements nicely proportioned to theirManner of Life. To inflance in a fow. Sparrows and moft fmall Birds are fupported by the littie Grains 'they find up and down. They have no effort to make, to obtain their Food, or break it in pieces, and thereforic have a fmall Bill, as well as fhort Necks and Legs, which are fufficient for their purpofes. But the Woodcock, Snipe, Curlew, and many other Birds, feek their Food deep in the Earth or Slime. Therefore they are provided with a long Neck and Bill, and with thefe they dig and fearch and want for nothing. The Woodpecker, who lives in a quite different manner, is as differently formed. His BiN is very long, folid and frong: his tongue is (hatrp, and extremely long; befide which, it is armed with little points, and covered with Glue toward the Extremity. He has fhort Legs, two Talons before, two behind, and all very crooked. All this Equipage fuits his manner of Living. His Food is Worms or Infects, that live in the Heart of Branches of Trees, or under thie Bark of old Wood, Frequently they are funk very deep, under the Bark of large Billets. The Woodpecker wants hooked Claws, to grafp thefe Branches; and a frong, and pointed Bill, to find out by darting it upani down, what Parts of them are rotten. When he has found out thefe, he with his'Bill, fhatters the Bark and Wood. He then fends forth a loud, whiflling Cry, into the Cavity, to alarm the Infects and put them in motion. Next he darts in his Tongue, and by the fmall points which rife out of it, and the Glue that covers it, draws out whatever lodged there.

Thi Heron, on the contrary, mounts alof. His Lege and Thighs are very long, and bare of Feathers. He has a great Length of Neck, and an enormous Bill, very Tharp and jagged at the End. What reafon can be afligno ed for a Figure, which at firf fight feems fo extravagant? He feeds on Frogs and fmall Shell-6ifh, as well as other fifh which he finds in fens, or bogs, or near the Shores of Rivers. He wants no Feathers on his thighs, to walk thro' Water and Slime; but he needs very long Legs, to run in the-Water, along the Shores, whither the Fifhes refort for their Food. A long Neck and Bill qualify him for purfuing and feizing his Prey at fome diftance: And the jaggs of his Bill enable him to hold the Fifh, which would otherwife gide away. In fine, his large Wings, which seem incommodious to a Bird of fo fmall a Body, are abfolutely needful for his making fo great Movements in the Air, and conveying fuch Burdens to his Neft, which is frequently two or three Leagues diftant from the place where he fiftes.

The Imperfections therefore which we imagine we difcover, in this, (as in many other Animals,) in reality belong anly to our own Underfanding : And all our Cenfures of the Works of Nature, are in truth, only fo many Indications of our own Igmorance.
5. Tha Stomach (efpecially of granivorous) Birds, is of a peculiar Structure. Firt, there is a glandulous Receptacle, wherein the Grains are kept for fome cime. They are then received into another Stomach, confifing of Two Mufces, and a callous Membrane. One .of thefe moves obliguely downward, and the other npward. Hereby the Shell of the Graia is broke, and the Meal exprefled and mixt with proper Joices. The Aliments thus prepared fall jinto the bottom of the Stomach, where they are purged again from the Refufe: to which end that Part is a litele raifed, that the Com may not pafs out too foon. There is alfo a Partition, which divides what is already digefted from the reft.

As Birds have no Bladder, in the room of Urine, a whitih Excrement is difcharged from the Kidneys jinto the Rectum.

(137)

6.- The Generation of Birds is now well known. In the Ovary, placed between the Liver and the Backbone, a great Number of Yolks are contained ; one of which when impregnated, paffes thro' theO-vidug into theWomt, where it receives the White and the Sbell, and remairs 'till it comes to, its full Size. The Parent then broods over it, 'till thè Young being gradually formed, perfected and quickened, burfts the Shell.

Under the Shell of an Egg lies the Common-Membrane, adhering clofely to it, except at the bigger End, where a little Space is left between them. This Membrane contains two Whites, each inclofed in its own Membrane. In the middie of the Inner White is the Yo!k, inclofed likewife in a feparate Cover. The Outer White is Oval, the Inner Round, (as is the Yolk) and of a more vifcid Subftance.

At each End is a Chalaza, a white, denfe Body, confifting of three litile Globules, like Grains of Hail, (fó the Word gignifies) all joined together. Thefe ferve both to knit the feveral Membranes together, and to keep the Liquors in their proper Places and Pofi ion.

Aboot the middle of the fmall End of the Yolk, is a little yellowifh Bladder, like a Vetch, called the Cicatricula or Eye of the Egg. This contains an Humour, in and out of which the young Bird is generated. The White ferves it for food, 'till it becomes big; then the Yolk, and likewife after it is hatched. For even then a good Part of the Yolk is lodged in its Belly, as in a florehoufe, and being conveyed thence by the In:effinal Duct into the Bowels, ferves it inftead of Milk.

An Egg, improperly fo called, is that, of the whole whereof the Animal is formed. Such are the Eggs of Flies. Proper Eggs, when excludec, need no external Nutriment. Of proper Eggs, fome are perfeff, that is, have all the Parts above defcribed, while in the Ovary or Womb: Some imperfect; which have then not, 'tull after they are excluded : As thofe of Fines, which af fume a Whit in the'Water.

An Egg not impregnated by the Male, will never breed Young, but aiways putify. One impregnated con:ains the Ruciments of the Bird, even before Incuba-

(xy8)

tion. By the Mifcroforpe we fee the plain Cariná or Spineof it fwimming in the middle of the Cicatricula, confinting of fine, white THreads, which Itcubation gratually perfects.

The Air-Bag is very fmall in a new-laid Egg, but becomes larger, when the Ety is kept. The Yolk is Epecifically heavier than the White. Hence its fmaller End is always uppermof, in all Poftions of the 'Egg.

Apter Incubation the Air-bag gradually extends, till near the Hatching, it takes up a Third of the Egg: By Incubation the White becomes thinner and mote turbid, efpecially near the Air-bag, where it is firft confumed. Then it leffens towards the fharp Eind of the Egg, till nothing is left but a white, chalky Subftance. The White of an Impregrated ${ }^{\mathrm{Egg}}$ is as fweet all the time of Incubation as that of a new-laid Egg. They are only unimpregnated Eggs, vulgarly called Wird-EEger, which putrify and fink.

The Yolk alfo remains frefh and uncorfupted, all. the Time of the Incubation. It is depreft in the middle, as the Chick grows, and is foon brought into a Form, not much unlike that:ofa Horre-fhoe, in the middle of which the Chick lies.

Not long before the Chick is hatched, "the whole Yolk is taken into the Abdomen.

The Eye or Tread, in which the Chick lies, is foon inlarged by Incubation; and rifes to the upper Patt of the Egg. The Heart and Umbilical Veffels, are Kome of the firft Parts, which we are able to diltinguifh.

The Embryo is feen at firf tike a fmall Worm. Then its Carina or Spine appears, with the large Prominences that afterward fhew themfelves, to to the Brain and Eyes. The other Bowels ferm hanging from the Spine. Then the Chafm of the Mouth is difcovered. The Extremities fprout out. The Bowels are gradually coverd with the Teguments. Ac laft the Beak, Naits. and Feathers are feen. When all its Parts are formed, the Chick is always found lying on its Side, with its Neck bent forward, the Heäd coverred with the Upper Wing, and the Beak placed between the Thighs.

The Birds which nourih their Young, have commonly very few. On the contrary, thofe whofe Young feed themfelves when they firll fee the. day, have fometimes eighteen or twenty at a Brood. This Prudeace could only fpring from Hie, who regulates all Things to the beft advantage: Were thofe who provide for their Young to have 50 numerous a Brood, both the Parents would be Slaves, and yet the Young but ill accommodated. Whereas the Mother; who only marches at their head, without nourihing them, can condict I'wenty as well as Four.

But when they firf make their Appearance, what Care do the Parents take, till their young can fubfift without them ? Of thofe that feed their Young, the Linset and the Nightiagale then labour like the reft. Sometimes one Parent goes in queft of Provifions, fometimes. the other, and fometimes both. They are up before the Sun. And the Food they thave procured, they diftribute with great equality, giving each a portion in its turn, before ever they feed one bird twice.

And this Tendernefs for their Offspring is fo. firong. sas even to change their Natural Difpofition. Follow. the Hen when the is the Parent of a Family, and the is no longer the fame Creature. She is no longer ravenous and infatiable. If fhe finds but a grain of Corn or cromb of Bread, fhe never touches it herfelf, but calls her troop, by a note they well underftand, and divides it among them. She is no-longer timorous, but at the head: of her Young, will fpring even at the ftoutef $\mathrm{D}_{\mathrm{g}} \mathrm{g}$.

When the Turkey-hen appears at the head of ther Young, The fometimes utters a mournful Cry, and they immediately run under bufhes, furz or whatever prefeits itfelf. She looks upward, and repeats, her Cry : which is occafioned by her feeing a Bird of Prey, tho fo diftant, that he appears to Us, only as a dark point under the Clouds.- But he no fooner difappears, than he utters another Cry, which revives all her Brood. They run to her, fluter their wings, and thew all the Tokens, of Joy. Now who apprizes her of an Enemy, that never yet committed any Act of Hoftility in the Conntry ? And how is the able to difcover him, when at fo
great a diftance? How are her Family inftructed, to underfand her different Cies, and regulate their Behaviour accordingly? What Wonders are thefe which are daily obvious to our view, tho' we treat them with inattc: ;ion?
:When almoft all Birds produce their Young by Incubation; yet the Scripture gives us one Exception: The Ofrich leavieth ber eggs in the earth, and forgetteth that the foot may crufh them-becaufe GOD bath deprived ber of wifdom, neither bath be imparted to ber underfanding. Fob. xxxix. $14 \& \mathrm{cc}$. In which words we may obe firve, 1. This anomalous Way of Incubation, by the Heat of the Sun, 2. The fingular Care of the Creator, fupplying the Parent's Want of Care, fo that the young are fed and bred up notwithftanding, even in thofe large and barrenDeferts: 3.The Inftinct of Irrational Animals, is exprefly afcribed to God. Sbe forgettelh, becaufe GOD bath deprived ber of wifdom, and not imparted unto ber underfanding: That underitanding, that natural Inftinct, which mott other Creatures are endued with.
7. An amazing degree of natural Initinct or Underftanding, GOD has imparted to Birds of Paffage. They fly in Troops, often in the form of a Wedge, with the Point foremoft. They fteer their courfe thro' unknown Regions, without either Guide or Compals. And they are peculiarly accommodated for their Flight, by the Struiture of their Parts.

In the Act of Migration, it is highly remarkable, 1. That they knowu (as the Scripture fpeaks) their appointed Times, when to come, when to go. Appointea By whom ? Surely by the Great Creator, who has impripted on their Nature an Inclination, at fuch a Time to fly from a Place that would obftruct their Generation, or not afford Food for then and their Young, and betake themfelves to another Place, which will afford all that is wanting.

It is highly remarkable, 2. That they know whither to go, and wuich way to fteer their Courfe! That they fhould be directed yearly to the fame Place, perhaps to a lit:le Inland, as the Baffe in Edinburgh-Fritb. How come Land-birds to venture over a vaft Ocean,
of which they can fee no End? And how dothey fteep their Caunfe aright to their feveral Quarters; which before the Compals was invented, Man himfelf was not able to do : They could not poffibly fee them at that diftance. Or if they could, what frouhd teach or porfuade them, That that Lind is more proper for their purpofe than this? That Bnitain, for inftanoe, Ghould afford them better Accommodations, than Egkets than the Camaries, than Spain, or any other of the intermediate Places?

But it has been commonly fuppofed, that feveral Binds are of this Number, becaufe they difappear in Winter, which really are not: Cuckoos, for inflance, and Swallows: For neither of there ever crofs the Seas. Guckoos lodge all the Winter in hollow Trees, or other warm and convenient Cavities. And Swal, lows have been found in vaft Quantities, clung together in a Lump, like Swarms of Beos, bat utterly diold and fenfelefs, even in Ponds that have been cleaned out, hanging under the Water.

1. The largeft of Birds is the Caztur of Peru. The Bodyis as big as that of a Sheep. Its Wings extended axe fifteen or 16 Feet from point to point. It is mever feen in FForefts, becaufe it would not have Room © fly, but frequerts the Sea-fhore and the banks of Rivers. Nature to alliay their Fiercenefs has denied them the Talons given to Eagles, tho they are of the Eagle-kind. However their beak is Atrong enough to: tear off the Hide, and tip up the Bowels of an Ox.

What a blefing is it to Mankind, that thore are but few (juft enough to keep up the Species) of this Monfter in the feathered Creation ! And into what can we nefolve this, but the wife and over-ruling Care of an adorable Providence ?

The imallef of all bisds is the Fumming-bird, but of the moft beautiful, lively Colouss of any. It flied very fwiftly, and in flying makes.aNoife.ike the Humming Bee. It can fuftain itrelf a long time on the Wing, and in that pofture, thruift its jittle Beak into she Flowers, the fuices of which it fucks and feeds on. As it has no Food but this, there is no keeping it alive, but all die that are taken.

Thax

- They are naturally very gencle; but when they' nefle they are very fierce, and will chafe the largeft Birds that come near their Nefts. This they can eafily do as their fwift Flight enables them, to attack their Adverfary in any Part, and yet fly on, but they generally attack the Eyes, and other tender Parts. They fly to and fro, backward and forward, in an inflant, often with their Bodies perpendicular. And frequently fo. fwift that you cannot obferve them, nor know what Courfe they take, but by the noife they make in cutting the Air,

Their Egg is of the fize of a Pea. They make their Neft chiefly of Cotton, or the Down of Plants intermixt with a few hairs, and a little fine Mofs. And thefe they commonly faften to the branch of an Orange or Lemon-tree, where they are well covered by the foliage, and the larger Branches.
.. The Indians make Pictures with the Feathers of thefe Birds, which are fo brightly coloured, as to vie with the fineft Paint, and fo thin, that they look like Colours on Canvas.

The Stork is a Bird of Paffage, and goes away toward Winter to the Southern Countries. It has t very long Beak, and long red Legs. It feeds on Serpents, Frogs and Infects. As it feeks for thefe in watry Places Nature has provided it with long Legs. And as it flies to the Neft with its -Prey, its Bill is ftrong and jagged, to hold faft what it has taken. She likewife digs with her Bill into the Earth for Snakes ar Adders, which fhe carries to her Young. Mot of her Feathers are white. She lays but four Eggs, and fits for thirty Days.

But what renders this Bird moft remarkable is, its fteady Love to its Parents. It never forfakes them whien they are old, but tenderly feeds and defends them, as long as theylive.

The following Adventure of a tame Stork fome Years ago in the Univerfity of $\mathcal{T} u b i n g e n$, feems to Thew a degree of undertanding, which one would fcarce expeet in the Brute-Creation. This Bird lived quietly in the Court Yard, till Count Vizor Gravenitz, then a

Student there, thot at a Stork's Nef, adjacent to the College, and probably wounded the Stork then in it. This happened in Autumn, when foreign Storks ufually leave Germany. The next Spring a Stôrk was obferved on the Roof of the College, which after a time came down to the upper Gallery, the next day, fomething lower, and at laft, by degrees, quite into the Court. The tame Stork went to meet him with a foft chearful Note, when the other fell upon him with the utmof Fury. The Spectators drove him away; but he came again the next day, and during the whole Summer, there were continually Skirminhes between them. . The Spring following, Inftead of one Stork, came four, and attacked him all at once. A furprizing Event followed. All the Turkies, Ducks and Geefe, that were brought up in the Court, ran together, and formed a kird of -Rampart round him, againft fo unequal a Combat. This fecured him for the prefent. But in the beginning of the third Spring, above twenty Storks foddenly alighted in the Court and before the poor Storks Life-guards could form themfelves, or the People come to his Affiftance, they left him dead on the Spot: Which none could impute to any thing but the Shot fired by Count ViEsor at the ftrange Stork's Neft.

The Pelican fomewhat refembles a Swan. The Body is as large, the Neck nearly as long, the Legs are fhort, and the feet are black, broad and webbed in the fame manner. It is allo of a whitifh Colour, only the tips of fome of its Feathers are black It is much in the Waters. It has a moft horrid Voice, like that of a man grievoully lamenting.

Irs Beak is above a foot in length, and the point is very fharp. The upper Part is formed as in other Birds; but the Lower is unlike every thing in Nature. It is made of two long, flat Ribs, with a tough Membrane connected to One and the other. This reaches alf to the Throat, and is very broad and loofe, fo that it can contain a vaft Quantity ot Provifion.

It frequents both frefh and falt Waters, and feeds on Fif. Yet its favourite Refidence is in wild, remote Fo-; refts, where it may remain undifturbed; and it eafily flies, having
having drong Wings, backward and forwaed. Herèlt builds and breeds it. Young: And hence.it.is filed "The Pelican of the Wildernefs." Hither fite: is to bring food for a numerous Brood; and for this End the Bag at her Throat is provided. In this the fores what the has caught and flying away to her Nell, feeds her Young out of her Storehoufe. And hence arofe the Tale, fo cembmonly believed; of her feeding them with her own Blood.

Int the Year 1745 a Pelican brought from the Capp of Good Hope, was Jhewn in Londan. The Pouch at its throat was fo large, that the Koeper put his Head ino it.

That which in Ioeland they call the Down-bird, is very remarkable. It is a Species of Duck, but covered with fine, foft, downy Feathers. The Drake is fyll as lavge as a Goofe, but the Duck confiderably franllen They abound all over Iceland, but particularly the Weftemn Part, on account of the Illands off the coaft, where chiefly they build their Nefts. They build them with the Down they pull from their breaft: They lay four green Eggs, as large as a Goofe. The. Inhabitants then take away both the Eggs and the NeA. The Ducks go to work again, pull more Down from their Breafts, and lay four Eggs more, which are again taken away by the Iahabitants. This does not however difcourage the Duck. She builds a thind Nefth and lays four more Eggs: But the Drake is now ofjliged to Supply the Down, the Duck having nome left. They now let her hatch her Young: for if they difturb her the third time, fhe builds no more that Year, nor ever returns to the fame place. When the Young have left the Neft, they take it a third time, and fo have two fets of Eggs, and three Parcels of Down from the fame Neft.

The But feems a Medium between Bird and Bealt But it comes nearer to the Latter. They lay themfelves up and fleep for the Winter.-Months, in the dryeft Parts of Caves. There fixing their 1 alobs in the Roof, they cover their Bodies with their Wings, and hang perpendicularly in great Numbers, but fo as not to touch each ether.
8. I have now only to add a fey Reflections,

And, 1. That Birds fhould all lay Eggs, and not bring forth live Young, is a clear Argument of Divine Arovidence, defigning their Prefervation thereby. For if they had been Viviparous, had they brought any number at a time, the Burden of their Womb muft have been fo great.and heavy, that their Wings would have failed, and they become an eafy Prey to their Enemies. And had they borne but one at a time, they would have been bearing all the year.
2. Sunce it would have been many ways ineonvenient to Birds,to give fuck, and yet inconvenient, if not deftructive to the new-born Chick, to pals fuddenly from liquid to hard Food, before the Stomach was ftrengthened and able to digeft it, and before the Bird was accuftomed to we its: Bill and gather it up, which it does at firf very flowly and imperfectly: Therefore Nature has provided in every-Egg a.large Yolk, which ferves the Chicken a confiderable time inftead of Milk. Meantime it feeds by the Mourh a ditte at a time, and that more and more, till the Stomach is ftreng thened to digeft it.
3. Birds that feed their Young in the Neft, tho' they bring but one Morfel at a time, and have perhaps Seven or Eight, which all at once, with equal Greedinefs, hold up their Heads;andgape; yet never miftake, never omit One, but foed them all by turns.
4. Tho' Birds cannot. number, yet are they able to diftinguif many from faw. And when they bave laid as many Eggs as they can cover, they give over, and begin to fit. Yet they are not determined to fuch a number: they can go on and lay more at their pleafure. Hens, for inftance, if you let their Eggs alone, lay fourteen or 15 , and give over. But if you withdraw their Eggs daily, they will go on, to lay five times that number. This holds not only in Domeftic Birds, but alfo in the Wild. A Swallow, when her Eggs were withdrawn daily, proceeded to lay Nineteen.
5. It is remarkable, that Birds, and fuch other oviparous Creatures as are long-lived, have Eggs enough conceived in them at firft, to ferve laying for many Years, allowing fuch a proportion for every Year, as will fuffice for one or two Insubations. Whereas Infects, Vol. I.
which are to breed but once, lay all their Eggs at once, be they ever fo many.
6. How exceeding fpeedy is the Growth of Birds that are fed by the Old ones in the Neft! Moft of them come to near their full Bignefs, within the fhort term of a Fortnight: An admirable Provifion, that they may not lie long, in that helplefs Condition, expofed to theRavine of any Vermin, and utterly unable to fhift for themfelves.
7. What amazing Care do the Parents take, for the hatching and rearing of their Young? Firft they feek out a fecret and quiet place, where they may be undifturbed in their Incubation. Then they make their Nefts, every one after his kind, that their Eggs and Young may be foft and warm: And thofe fo elegant and artificial, as no Art of Man can imitate.
"I have feen, fays Mr. Ray, the Nefts of an Indian Bird, compofed of the Fibres of fome Roots curioully platted together, which they hang on the End of the Twigs of Trees over the Water, to fecure their Eggs from Apes, Monkeys and other Beafts." After they have laid their Eggs, how diligently do they fit upon them, fcarce giving themfelves time to go off, to get them Meat? When the Young are hatched, how diligently do they brood over them, left the Cold fhould hurt them? All the while labouring hard to get them Food, and almoft farving themfelves, left they fhould want. Moreover, with what Courage are they infpired, fo as to venture their own Lives in defence of them? The moft timorous, as Hens and Geefe, daring then even to fly in the face of a Man. And all there pains are beftowed upon thofe that will render them no thanks for it! And they are beftowed juft fo long as is neceffary. For when the Young is able to thift for itfelf, the Oid retains no fuch Affection for $i t$, but will beat it indifferently with others.
8. It is another Proof of a fuperintending Providence, that all Animals are produced, at the moft convenient time of the Year, juft when there is Food and Entertainment ready for them. So Lambs, Kids and many other living Creatures, are brought into the World in the Spring, when tender Grafs and nutritive Plants are provided for their Food. The like may be obferved concerning Silk-
worms, whofe Eggs are hatched juft when the Leaves of the Mulberry-tree appear: The Aliment being foft and tender, while the Worms themfelves are fo, and growing more ftrong and fubftantial, as the Infects increafe in Bulk and Vigour.
9. A still farther Proof hereof we have in the various Infinets of Animals, directed to Ends which they khow not, As 1. All Creatures know how to defend themfelves, and offend their Enemies. All know what their natural Weapons are, and how to make ufe of them. A' Boar knows the Ufe of his Tufhes, a Horfe of his Hoofs, a Cock of his Spurs, a Bee of her Sting. Yea a Calf will make a Pufh with his Head, even before any Horns appear. 2. Thofe Creatures which have not Atrength to fight, are ufually fwift of foot or wing, and are naturally inclined to make ufe of that Swiftnefs, and fave themfelves by Flight. 3. Every Creature knows and Chuns its iatural Enemy, as a Lamb does the Wolf, and Partridge or Poultry, Birds of Prey. And they make ufe of a peculiar Note, to warn their Young of their Approach, who thereupon immediately run to Thelter. 4. As foon as ever it is brought forth, every Animal knows its Food. Such as are nourifhed with Milk immediately find their way to the Paps and fuck Whereas thofe which are defigned for other Nourifhment* never make any fuch Attempt. 5 . Birds that are fin-toed, or whole-footed are naturally directed to go into the Water. So Ducklings, tho' hatched and led by a Hen if the brings them to the brink of a River or Pond, prefently leave ber and go in, tho' they never faw any fuch thing before; and tho' the Hen clucks and calls, and does all fie can to keep them out. 6. Birds of the fame kinds make their Nefts of the fame Materials, laid in the fame Order, and exactly of the fame Figure, fo that by the Sight of the Neft one may certainly know what Bird it belongs to. And this, tho' living in diftant Countries, and tho' they never faw any Neft made; that is, altho ${ }^{\circ}$ they were taken out of the Neft and brought up by hand. Nor were any of the fame kind ever known to make a different Neft, either for Matter or Fahion.

(148)

I would add a little farther Improvement of fome Particùars mentioned before.

What Mafter has taught Birde, that they have any need of Nefts? Who has warned them, to prepare them in time, and not to fuffer themfelves, to be prevented by Neceffity? Who hath fhewn them how to build? What Mathematician has given the Figure of them ?' What Architect has taught them to chure a firm Place, and to build on a folid Foundation? What tender'Mother has advifed them to cover the bottom with a foft and delicate Subftance, fuch as Cotion or Down, and when thefe fail, who has fuggeited to them that ingenious Charity, to pluck off as many Feathers from their own Breall, as will prepare a foft Cradle for their young.

Again. What Wifdom has pointed out to each Kind a peculiar Maniuer of buiIding? Who has commanded the Swallow, to inftance in One, to draw near to Man, and make choice of this Houfe for the Building her Neft, within his view, without Fear of his knowing it, but feeming rather to invite him, to a ConAderation of her Labour? Nor does fhe build like other Birds, with bits of Sticks and Stubble, but employs Cement and Mortar: And that in fo firm a manner, that it requires fome Pains to domolifh her Work. And yet in all this, it has no other Inftrument to make ufe of but a litele Beak!

Yet again. Who has made the Birds comprehend that they muft hatch their Eggs by fiting upon them? That this Neceffity is indifpeniable: that the Fathe- and Mother could not leave them at the fame time; and that if Ore went abroad to feek for Food, the Other muft wiait till it returns? Who has told them the precife nusaber of Days, this painful Diligence is to Coff? Who has taught them, to affift the Young in coming dutof the Egg, by breaking the Shell for them? Yea, and advertied. them of the very Moment, before which they never come?
\mathbf{W}_{HO} has taught feveral of the Birds that marvellous Induftry, of retaining Food or Water in their Gullet, without fwallowing either, and preferving them for their Young, to whom this Preparation ferves inftead of Milk ${ }^{\text {i }}$

Is it for the Birds, O Lord, who have no Knowledge thereof, that thou haft joined together in many Miracles? Is it for the Men who give no Attention to them ? Is it for thofe who admire them, without thinking of Thee? Rather is it not thy Defign, by all thefe Wonders, to call us to Thy felf? To make us fenfible of thy Wifdom, and fill us with Confidence in thy Bounty, who watcheft fo. carefully over thofe iaconfiderable Creatures, two of which are Jold for a fartbing?

But pafs wefrom theInfuftry of Birds, to harken for a moment to their Mufick: the firf Song of thankfgiving which was offered on Earth; beforeMan was formed. All their Sounds are different, but all harmonious, and all together compofe a Choir which we cannot imitate. One Voice however more frong and melodious I diftinguif above the reff. On inquiry I find it comes from a very fmall Bird. This leads me to confider the reft of the Singing Birds. They likewife are all fmall: The great ones having an harf and difagreeable Voice. Such an amends is made to thefe weak, little Creatures, for their Defect of Strength !

Some of thefe little Birds are extremely beautiful, nor can any thing be more rich or variegated than their Feathers. But it muft be owned, that all Ornament muft give place to the Finery of the Peacock; upon which God has plentifully beftowed all the Riches which fet off the reft, and lavihed upon it with Gold and Azure, all the Shades of every other Colour. This Bird feems fenfible of its Advantage, and looks as if it defigned to difplay all its Bequties to our eyes, when it Stalks along, and expands that fplendid Circumference, which fete them all in open view.

But this pompous Bird has of all others that are kept tame, the mof difagreeable Cry, and is a Proof, that there may be a fhining Outfide, when there if litule SubRance within.

In examining the Feathers of the reft, I find one more Circumflance very oblervabie. The.Eearhers of Swans. and other Water fowl, are proof againit the Water. And accordingly they continue dry, tho' the Creature fivim or dive ever fo long. And yet neithen qur Eyes
mot all our Aat can difeover, wherein they diffler from ochers.

I know not how to conclude this Chapter, without adding a few more Refections.

Ali the Univerfe is replenifhed with Life: and every Part of it, with its proper Animals. But would one exppect to fee them in the Air? Nothing feetns-more Natawal to our Eyes : but nothing is more ationifhing to our Reafon. The Fact is ceitain, and yet might foem to the altogether impolifile. A Bind in flight, is a Mafs raifed aloft, in fite of the Gravity of the 3ir, and the Tendency of all Bodies to the Earth. This Mafs is rail. ed, not by any forcign Force, but by a movement fuited to the purpofe of the Creature; and which fultains it in the Air, for a confiderable tivae, wish a peacefal Vigoar.

Again. In the whole Kingdotn of Birds, mone have more than Two Wings, and yet they all fly in a dififerent manner. Some launch away by repeated Sprimgs; others glide thro' the Air with an even Morion. Thefe always Ikim over the Earth ; thofe:for up to the Clouts. Sbme know to diverfify their Flight, :by a flreight, oblique or circular motion: To forpipend their'Bodies, and cobtume motionlefs in an Element-lighter than xheanrelves: After this, woifart into an horizomal Motion, and then dart either to the right or left, wheel into a contrary tract, remorant, land then precipitate thethffelves like a defcending Srone: In a word, they trahisport themfelves, without oppotition, or hazard, whertvetr their Neceffitios or Pleafores call:them.

THE Stutictare of their Nefts, the Carewhew whith they attend their Eggs, the Mechanifm of the Egg 'itcelf, and the Birth and Education of their young, are equally aftonifhing. See the perfect Similitude that wppears in conflant Difference between the Nefts of one Species Widd'another!! Together with the Neatnefs and Precautiyons which all of them obferve: One Species builds its 'Neft on the rop' of 'Trees; ; mother on the Ground, unHer a Canopy of Grafs: But always with a Sheker, virther of : Earths, or a Brapch, or a doutle Reof of

Leaver, down which the Rain :fidek, without entering the Opening, which lies concealed beiow. The onsymard Parn of the Nett is made of.folid Matedials, Therns, Reeds, Ciay, or compact Mass: The inner sof foffer -Mererials, clofety interwoven, fo as to lseep' out both -Winds and hafeets. But each Species bare ia a pleculiar Tafte. When the Buribding is compleated, fame hang sthe Infide wich i Tlapeftry of Feathers, or nguitt it with Wool or Silk.

How amiably whoes this difplay the Widdon of Him : tho furnifhed Man with Reafon, whichextentisito every ohing aroand him, and infpired Ariasalswith an.imitatiton of it, limited indeed to a few prombs, tax sumpirable in that limitation ? For who informed the Bird, that fhe frould hay Eggs, and wiant a Neft to: jodge: akid notarifh shem with genial Heat i That this fleat would raptre concentered round the Kggs , if the Neft weretoo latge ? And that were it fmaller, it would not be capableiof containing all the Young ? Who has taught her motito smificalculate the Time, or layi her Eggs, befone She ibas compleaxed' ber Nelt ?

The fame Wifdom will atore folly appear, if we ab1 ferve what:che Egg contaims, with che manner bow the young is there formed, and how itimfues from itsConfonesthent.

The Yodk lies in the Efeartef she Egg, inclofed insC.the Firft Membrane, which is furfounded by the Second. Nexr the Certer of the' Egg ate the Ligaments shat faftain the Yolk, which is contained ' in a peotiar Membrane. A fecond Membrane inclofes the firt White; a third and foarth encompaffes the whole. The Shell is formed lalt of :all, out of the Salts evacuated from all: 'the Humours of the Body; which the Heat gradually faxes and confolidates, to ferve a double purpofe, firft that it may be excloded without crufhing the Contents a Gecondly, to defend the tender Yoang,' 'ill it is throughly formed, and ready to forfake the Egg.

Unise a ithe Membrane which furrounds the Yolk, is a white Speck, which is the feed of the Chick, in Miniature. If the fmalleft portion of the vital Spirit be infu--fed into it from the Male, by a procefs of which we have:
no idea, in the inftant the Chick receives Life, and the whole Subftance is in motion. If it is not infured, the Egg may indeed be laid, but it never comes to a living Creature.

The Pulfation of the Heart bears fome analogy to the Pendulum of a Clock, fromwhofe Vibrations the whole Machine derives all its Motions. The moment the Heart begins to beat, the Animal is alive, and receives by the umbilic Duct, the nourifhment which it tranfmits to the other Veffels, whofe Branches difribute it to the whole Body. All thofe little Canals, which were flat betore, are now fwelled and inlarged. The whole Subfance imbibes a proper Aliment, and the Chick begins

to grow.

In this Situation of the Speck out of which it is form-
-ed, one Circumflance is highly remarkable. This minute Particle which is lodged on the Film that includes the Yolk, is always near the Center of the Egg, and toward the Body of the Dam, in order to be impregnated with a neceffary Warmth. But in how admirable a manner is this effected ? The Yolk is fuftained by two Lignments, which falten it on each fide to the common Membrane, that is glued on the Shell. A Line drawn from: one Ligament to the other, would not pafs thro' the middle of the Yolk, but above the Center, and cut the Yolk into two unequal Parts, fo that the fmaller Part, which eontains the Seed, is of neceffity raifed toward theBelly of Birds that fit: The other Part as neceffarily fubfides, fo that tet the Egg turn as it will, the Young receives no Hurt, but fill enjoys a Warmth, that puts all about it in motion. So it feeds at eafe, firt on the White, which is more thin and delicate, and afierwands on the Yolk, which affords a more fubflantial Nourifhment. When his Bill is hardened, a and he grows uneary at his Confinement, he pecks and breaks the Shell and ifues out, fully replenifhed with the Yolk, which nourihes him a little longer, till he is ftrong enough.to raife himfelf upon his feet, and can march about to look for Provifions.

CHAP.

CHAP, III.

Of Fines.

 matron:
2. Theirs rain:
3. Organs of $\operatorname{Sin} f \mathrm{f}:$ 7. Of the Generation of riff:
8. :Of Some particular Sorts. of Figs:
4. Gills or Emos :

50 Howe:
19. Some General Reffuitions,

:THE Variety of Pities is abundantly greater than even that of Birds. A world of Wisdom appears in the Structure of them, and their conformation to the Element they are' to refine in. Their Bodies.are etcher thin, or long and lender, for their more early fwimming and dividing the Water. They are cloathed fultable to their repetitive. Circumftances, the Dangers they are expofed to, and the Motions they are to perform. The Center of Gravity is placed, in the fitter Fat of tho Body, which is froth, harper before and tapered off, in order to make its Way the more commadourly. They have Fins made of grifly Spokes, firmly connected by Membranes, which they are able to contract or dilate, like a Woman's Fan. Theft are furnish. ot with Muffles for Motion; but their cine use, is to balance and keep the Body upright; as appears, in that when they are cut off it wavers to and fro. Their Air bladder, which they can either'dilate and fill with Air, or contract and empty at 'their will, enables them to rife or fink, or fuftain themfelves at any Height in the Water af their pleafore. The great Strength by which they tart thempelres forward, like an Arrow out of a bow, lies in their 'Tails; their Fins meantime, fen they fhould retard their Motion, being held clone to their Bodies. And therefore atmoft all the Muscular. Fief they have, is beftowed upon the Tail and Back. 'Their Eyes are peculiarly formed to correspond with all the Convergencies and Divergencies of Rays, which the Variations of the wary. Medium, and the Reflections thereof may occasion.

(154)

2. It is obfervable in aht That tho their Heads are much larger in proportion to their Bodies, yet their Brain, is confiderably lefs, than that of other Animals. It confifts of only two fmall Ventricles, placed in the Forepart of the Head.
3. Their Organs of Senfe do not much differ. from thofe of other Animals. But in their Eyes this is peculiar, That they are quite Spherical, and that the Optic Nerves in coming from the Brain, crofe each other: Whereas in other Animals, they incline a little to each other, but do not meet. ${ }^{\text {i }}$ It was formerly believed, they did not bear at all. But from later Experiments, there is reaton to believe, that feveral Species of them do hear, tho' but in a low Degree. Over the two Holes in their Head which ferve for Smelling, a fine Membrane is fpread, by which means they can open and fiut them at pleafure; a Contrivance highly neceflary for Creatures that live in the Water.
4. Some Fifhes have Lurgs. But in the greater Part the place of them is fupplied by Gills. As we take in and throw out the Air by our Lungs, fo they take in the Air, mixt with the Water by their Mouth, and throw it out by their Gills.

There is always much Air inclofed in Water. This the Gills feparate from it, and prefent to the Blood, as it is prefented in the Lungs of other Animals. Each Gill contains a great number of bony Lamina, confifting of. an infinity of bony Fibres, that fuftain the innumerable Ramifications of the Veins and Arteries, which prefent the Blood extremely fubdivided, and as it were, each Globule by itfelf to theWater : Between thefe Laminx, thro' the whole Contexture of the Gills, are an infinity of very narrow Paffages, which receive and divide the Water taken in by the Mouth, into minute Partieles. Then the Air, its Prifon-doors being in fome meafure
i A protuberant Eye would have been inconvenient for Fifhes, by hindering their Motion in fo denfe a Medium. And their cuntinually brufhing thro' the Water, would have been apt to wear their Eyes. Therefore their Cornea is flat. But To make amends for Whis, and for the Refraction of Water, different from that of Air, the wife Creator has made their Chryftalline Spherical, which in of her Animals is more flat.
meafure opened, efcapes and joins the Blood of all the little Arteries.

The Gills have an alternate Motion of Dilatation and Comprefion. When they dilate, the Water is taken in ; when they contract, it is driven out. It feems, that in the Inflant of Contraetion, the Air exprell from the Water is forced into the Blood-veffels. It is the fame, as to our Lungs. The Air enters them at the Time of Infpiration, but is received into the Blood at the time of Ex. piration only. So that the Water which is taken in by the Mouth of Fifhes, when flript of its Air, is carried off by the Gills. Meantime the Air which thus gained, is diftributed firt to thofe fine Ramifications' of the Arteries, which are expanded upon the Gill throughout, and then to the Veins inofculated therewith.. And Fihes can no more live without a conftant Supply of this, than LandAnimals can.

The Gills in all Fifhes are Eight, Four on each fide. The lower Gill is always fmaller than the reft. The other three on each fide are gradually larger to the topone, which is always the largett. Each of thefe is formed of a bony Subftance, bent into the. Shape either of a Semicircle, or a Baw. On the convex Side of this, there is a fort of Plumes or Leaves, each of which confifts of a double Row of bony Lamella, formed like fo many Sickles, and fixt to the convex Side of the Bow by means of the Membrane wherewith it is covered.

These Lamella have one Part convex, the other concave. The convex fide is covered with numerous Hairs. The Concave Part of each Lamella is applied to the convex Part of the next oppofite Lamella. Every Lamella is invefted with a fine Membrane, which receives the Ramifications of the Blood veffels. Every Gill has an Artery, a Vein and a Nerve. The Gills receive the Blood which is thrown from the Heart into the Aorta, and derive it to the utmolt Parts of the Lamellæ, from , whence it returns byVeins which diftribute it throughout the Body.
5. In moffihes theHeart is like that in otherAnimals. But in fome it has only one Ventricie; which neceffarily occafions a Difference in tie manner, wherein the Blood circulates. In fome alfo the Blood is not red but
clear and cranfparent. in others, efpecially Stielhsfin, befides the Arteries and Veins, there are-open Tubes, awhich eonvey the Water to the fartheft Part of them : Probatily that: 'they may find no Want of 'Water, when theay contirue fome time on fhore.
'6. Ir kas tong been'fuppofed that all SHells, as well castha Animale in them, arofe-wholly from the Egg. Bat -it is now found by various Experiments, That the Shells - Spaith (and probably of fall other Animats) are formed of a Matier which perfoires from their Bodies, and then comdenfes round them.
*Tistertain, all Animals perfpire and are encompatt .wishras Atmorphiere which exhales from them. Snails Thave nothing preculiar in this refpect; untefs that their (Atmofphere condenfes and hardens about them, and -fornis a vifible Coven forthe Body, while that of other Animals evaporates. This Difference may arife from the different Subftance perfpired, that from Snails being viftous and ftony. This is no Suppofition, but a Matzer of Fat, proved by namerous Experiments.
'Tно': theiefore the Stiell ferves for an univerfat Bone, yyet it does not grow like other Bontes, by a Juice circulating within itfelf, but by an external Addition of Parts, laid over one amother.

But the Re-production of the Shells of fome.Fif, yea, znd of the Parts contained therein, is far more frange and unaccountrable, than their Firf Production. This is particulatly obferved in Crabs and Lobfters. Lobfters caft their Sthell yeadly, fometime after Midfummer. In 'the room of the old, a new, thin Shell is immediately prepared by Nature, which in lefs than Eight Days, acquires almoft the fame Degree of Hardnefs as the other.

The Legs of a Lobfter confift of five Articulations. When any of thefe Legs break, which frequently happens, the Fracture is always near the Fourth Joint, and what they lofe is precifely re-produced in fome time Gfter: Four Joints fhooting oat, the firf whereof has two Claws, as before.

If a Leg be broken off purpofely at the fourth or fifth Joint, it is confantly re-produced : But very rarely, if at the firf, fecond or third Joint. What is ftill more futprizing is, That upon vifiting the Lobfter, which was maimed
matimea in theft barren Articallations, at the end of tiwo or three dayts afl the ather Joints ate found broken off' at the Fourth, which he has undoubtedly done himfalf.

The Part re-produced is perfectly like that broke off, and in a' certain time grows equal to it. Hence it is, that Lobfters have often their two big Legs unequal. This fhews the fmahler Leg to be a New one. If a Paitt thus re-produced is broken off, there is a fecond Reeproduefion.' The 'Summer; which is the only Time when Lobfters eat, is the moft favourable Time for this. It is then performed in foar or five days; Otherwife it takes eightit or mine Months.

The common Crab-ifin has its abode from twenty to forty Fathom Water. They herd together in diftinet Tribes, and have their feparate Haunts for feeding and breeding, and will not affociate with their Neighbours. This has been tried, by marking a Crab, carrying it two or three Miles, and leaving it among other Crabs. This Crab has afterward found its way home, and been caughtit in its old Abode:
'Thrs Creature too can break off its own Limbs. If when it is laid on if back, one of the outer Joints of a fmall Leg be bruifed, he fhew's oneafinefs, by moving it about. Afterward he holds it quite fill, in a direet and natural Pofition, without toaching any Part of the Bod or'of the other Leg's with it. Then on a fudden with a gentle Crack, the wounded Part of the Leg drops off. If an Fiote be pierced in the Grear Leg, the Effect will be thie fame; ant the largeLimb is thrown off in the fame mamner, only with greater Violence. A Mucus then overfpreads the Waund, which prefently ftops the Bleed:ing; and a fmall Leg is 'by degrees produted, which gradually attrains the fize of the former. Nature has glven this fingular Power to thefe Creatures, for the Pre: fervation of their Lives in their frequent Quarrels. In' thefe, one Crab lays hold of the Claw of another, and crufhes it in fuch a manner, that it would bleed to Death, had it not thie Power, of giving up the Limb and healing the Wound.

One of the moft extraotdinaty kinds of Shell: fif is the Animal-Flower in Barbados.: In the Pariff of St. VoE: 1.

0
Lucy,
$L_{\mu}(y$, on the North Side of the INand; there is a high rocky Cliff fronting the Sea, near the bottom of whioh is a large Cave. This opens into another Cave, the bottom of which is a bafon of Water. In the midft of this Bafon is a rock, always covered with water: On the fides of which, a few inches below the Water, are feen at all times of the Year, iffuing out of little holes, what l:ave the appearance of finely-radiated Flowers, in fize, colour and fhape greatly refembling a, common Mary= gold.

If you atempt to pluck one of thefe, as foon as your fingers come within two or three inches of it, it contracts, clofes up its Border, and hrinks back into the hole of the Rock. But if left undifturbed for a few Minutes, it iffues again, and foon appears in full bloom. This might induce one to belieye, that it was noother than an aquatic Senfitive Plant.

But on a nearer Infpection we may difeern four dark, coloured Filaments, rifing from the Center, moving with a quick and fpontaneous Motion, and frequently clofing, to feize its Prey, much like the Claws of a Lobfter. So that the feeming Flower is really an Animal; And its Body, which appeared to be the Stalk of the Flower, is black, about as big as 2Rayen'sQuill.

It feems the vivid, yellow colour of its Feelers, is abfolutely neceffary to procure its Food. The Water in the Cave having no Motion, cannot bring any food to them. Therefore the Creator has endued this Creature with a Qúality which may allure its Prey. For bright Colours invite many aquatic Animals, as the Flame of a Candie does Flies.
7. As to the Generation of Fifhes, fome of them are Viviparous, others Oviparous. The Womb and Ovaries of mott Fifhes, are not unlike thofe of Birds. The Female caft out innumerable Eggs, in the Sea, in Lakes, in Rivers. Great Part of thefe are devoured by the Males. The reft are hatched by the Warmth of the Sun, and the young ones immediately Swim away, without any help from the Parent.

Sea-tortoifes lay their Eggs on the Sea -fiore, and cover them with the Sand. It is not uncommon to fee a great pumber

(159)

number of young Tortoifes rife out of the Sand, and without any Guide or Inftructions, march with a gentle pace toward the water. But the Waves ufually throw them back upon the Shore, and then the Birds deftroy the moft of them. So that out of two or three hundred of them it is feldom that Ten efcape.

It feems at frif view, that Nature, in this inflance, charges herfélf with unneffary Expence. But a little roflectiony thews the contrary. We do not complain of the fertlity of an Hen, which frequently lays above Two Hundred Eggs in one Year: Altho' it may be, that not one Chick is hatched out of all thefe. The Defign of the Author of Natare is plain; not barely to preferve the Species, but at the fame time, to provide Man and other Animals with an excellent Food. So his Intontion In the Fertility of a Tortoifo, is, not barely to continue that Species, but to accommodate a number of other Anituals with Food convenient for them.

But whence could arife the common Opiniona concerning the Generation of Soles? Namely, that they art prodnced from a kind of Sbrimps or Prawns? A Erencb Gentleman being determined to try; put a 1arge Quantity of Prawns, into a tub about three feet wide, filted with Sea-water. A the ead of twelve or thirteen days, he faw there eight or ten little Soles, which grew by degrees, He repeated the Experiment feveral times, and always found little Soles. Afterwards he put fome Soles and Prawns together in one Tub, and in another Soles alone. In both the Soles fpawned; but there were no little Soles, only in the tub where the Prawns were.

But how can Prawns be of ufe toward producing Soles ? Farther Obfervation cleared up this. When Shrimps or Prawns are juft taken out of the Sea, you, may difcern between their feet many little Bladders, which are ftrongly faftened to their Stomach, by a kind of Glue. If you open thefe bladders gently, you fee a fort of Embryo's, which viewed with a Mifcrofcope, have atl the Appearance of Soles:

Now here lies the Myftery. Thefe are the Eggs or Spawn of Soles, which in order to hatch, are fattened
to the Shrimps or Prawns: Like many Plants and Animals, which do not grow or receive Nourịhment, but upon other Plants and Animals. The Prawns therefore are the Fofter-mothers of Soles, during their Firft Infancy. And this has occafioned many to ima--gine, they were their real Mothers.

The coming of certain kinds of Fifh in Shozes to Dostain Coafts, at a certain time of the Year, is of gront Advantage to NAppkind. But the Reafon of it thas been Fittle underfood. Yet Obfervation may dearit up. There is a mall Infect cammonin many Soas, particularly on the coaft of Normandy, in June, Jutre and Auguft. They then cover the whole Surface of the Water as a Scum.. And this is the Sealgn torlsen the Ferring s come alfo in fuch prodigious QyanTiifes. The Fifhermen deftroy much of there Verain; Fet to thefe atone their Fifheries are oping. For if $1 \$$ ovident the Herrings feed on thefe, by the Quantities found in all their Stomachs. And doubtlefs, the wery Reafon of their Coming is to feed upon them. Pro= bably the cafe is the rape in all other Places, where the Fierings come in the fame Plenty.

The numberlefs'Swarms of Herrings, Cod and or thei Poin, that come forth yearly from their Shelter, under' the Ice adjoining to the north Pole, divide themfelves into three Bodies. One Part direct their Courfe Southward, toward the Britifh flands: Anor ther Part We?ward, toward Nepufound-land, and other places in Nerth=Americe: And the third Part alons the Coatt of Korway, and then thro' the Souzd iopto the Balkic.

The Water, the quite ftill before, curls up in Waves wherever they come. They croud together in fuch numbers, that they may be taken wp by Paing folls.

A liarge Shoal of Herrings, reaches (ascordingita the Fifiermens Account) an thundred, or two hynered fathom deep. They extend alfo to a conqderable Cir? cumference. Were they all to be caught the greateft Part would be loft. For it wayla be inpopiblerto get hands, tubs, falt ${ }^{\text {t }}$ and other Necelaries to ghep thems
them. Several Hundred Ship-loads are fent every year fromBergen alone to foreign Parts : Befide the Quantities that the Peafants at home confume, who make them their daily Provifion.
Mackrels come in the fame Numbers at certain times of the Year; and for the fame Reafon. They are particularly fond of a Sea-plant, the narrow-leaved, purple Sea-wick, which abounds on the Coafts of Eng:land; and is in its greateft perfection, in the beginning of Summer: Tho' at fometimes later than other, according to the Severity or Mildsefs of the Winter.

The chief Occafion of their coming is to feed or this, Platit. And thofe who attend to its growing up, whil know when to expect the Mackrel, better than thofe who liften for Thunder.

I But this is not the fole occation of their coming. The real truth is this. The Sea near the Pole is the native Country of all Fifb of Paflage. The Ice which continually covers that Sea, affordothem a fafe retreat. Large, voracious Fifh, want a free Air for Perfpiration, and cannot purfue the fmaller fort into their Sanctuaxries, where they multiply fo prodigioully, that at length for want of fubfiftence, thoy are forced to quit their Retreat. The large Fish wait for them at the Extremity of the Ice. They devour all they can catch, drive them clofe into the Coafts, while the Birds of Prey pour down upon them from all quarters. In confequence of this Perfecution their March is alwaya in Columns, which' are conimonly as thick as they are broad. With regard to the Herrinos, they quit the Ice in the beginning of the. Year. But the prodigious Column which they form, foon divides into twoWings. The Right moves weft ward, fo as to be near Iceland, in the Month of March. The Left bends its courfe eafterly, and comes down the North Sea: to a certain Latitude, where it divides into two other Wings, the Eafternmoft of which coafte along Nortuay. Hence it fends off one Divifion, by the Strait of the Sound, into the Baltic, another toward the Country of Holfein, Bremen, \&sc. and thence into the Zx_{x} derzec. The Weftern Wing, which isthe largeft, falle directly upoan. the Ines of Sbetland and the Orkneys. And thither the Dutch go, $t 0$ wait their coming. All that efcape thefe dextrous Pifters, go on toward Scotland, and dividing again into two Columns, one paffes to the Eaft of that Kingdom, and goes round England, detaching numerous Divifions to the Coafts of Friefland, Holland, Zeedand, Flainders and France, while the other moves to the weffward of. Scotlamd and lreland. The remains of the whole Wettern Wing, which have: ofcaped the nets of the Fifhers, and the voracity of other Fifh and: Eowl, having at lengit rallied in the Channel, the Column is

The $\tilde{T}_{\text {unimies }}$ come in equal Stioals at certain Sea'Sons, to the Coafts of Provence and Languedoci. But it is on another occafion. The Fifh called by the Frencb the Emperor, is the great. Enemy of thefe Fifil. He is in fummer fo plentiful in thofe Seas, that they cannot efcape him but by fying to the fhallow Waters.

The Pilchards catched 'on the Coaft of Brelany, are dill a ftronger Proof, of the Natural Means that bringt fifh in Shoals to certain Places. The People of Bettany purchare from Norway, the Offals and Entrills of all the large Fifh caught there. Thefe' they cut in pieces, and fraw in valt Quantities on the Sea along their Coafts. This always brings thither Shoals of Pitch--ards, enough to fupply all the maritime Places in the Neighbourhood.

Twe Salmon (bred both in the Sea, and in Rivers) is another Fifh, which comes in Shoals at cettain timei, But this is on another occafion. The Female Salmon chiefly ejects her Roe at the Mouth of Rivers, in Shallow Water. The Male comes prefently aftet, keeps other Fifh from devouring it, and cafts his Sperm upon the Roe. They are in great Plenty from the middle of April till the middle of July; at which time wlo they come in Shoals in to the Rivers, partly to refrefh themfelves in frefh Water, and partly to rubor wafh off in the ftrong Currents, a gréenifh Vermin , called Salmon-lice; Infects wifely defigned by the Creator, to drive this rich and valuabte Fifh, into the Hands of Men.

The Salmon when they are gbing up the Rivers out of the Sea, always fwim/ as near the Jottom as they can. And on the contrary, when they are going down

Sormed mive ; and then iflues into the Ocean: From which (with--ust Mowing itfelf again on the Coafts) it regains, like the Remains of the firf Weftern Wing, which had not travelled fo far, the Poler Ice, at the Approach of Winter, And under the protection of this, the lofs is repaired, which the Species had fuffered fince they left it.

Thus does the Divine Wifdom fupply mapy, thoufands of men with food, as well at numberlefs other Animals: And jet prevent any Decay of that neceffiry Provifion, which is continually confumed and as conftantly recruited!
them into the Sea, they always fwim near the Surface. The Reafon is, in going up, they fiwim againt theCurrent,' which always runs fwiftelt at the Surface. When they are going down on the Surface, the Current alone is fufficient to carry them.
8. One particular Infance of the Divint Care, is obfervable in the Turbot. Having no Air-bladder, heis not well able to fwim, efpecial! lin ftormy Weather. He murt then keep at the bottom, and luck in theSand. And fopt that reafon, he is provided, with a Skin or Membrape which draws over his Eyes, to. keap the Sand out of them.

IN Fifhes of the W bale-kind, the Trail has a diffetent Poficion from wher it has in all other Fithés: Por whereas in thefe it is erected perpendicular to the hysizon, in Them it lies paraldel thereto; Partly to fupply the Ufe of the Hinder Pair of Eins, which thereCreatures have nots, and partly thay they may be abte to raife or deprefs their Body at pleafuiré. Forr it boing necefflary they fhould frequently cone to the Top. of the Water, to take in, or let out the Air, they are provided with an Organ to facilitate their Afcerit and Defeent as they have occafion. And as for turning their Bodies in the Water, they perform that: as Birds do ; by frongly moving one of their Fint, :while the othes is quiefcept.
8. 8. The Norway Whale is frequently Sixty or Seventy foot long. His Shape pretty much refembles that: of a Cod: He has a large Head, and fmall Eyes in proportion. On the top of the Head are two Opehings, thro' which he fpouts out the Water (which hetakes in, as he breathes) like a large Fountain, which makes a violent Noife.

His Skin is fmooth and not very thicks. The CoJour of his Back is dark and marbled. His Belly is white. His Throat is very narrow, in proportion to his size. Under his Backbone dies a lang Bladđèr, which he ditates or codrracts, as he pleales. He rows himfelf with his Tail. They copulate after the mannot of Land-Animals.

The Female brings forth but one or two at a Birth, at which time they are nine or ten foot long. They fuck for fome time : When they are tired with Swimming, fhe carries them between her great Fins. Under the Skin lies the Blubber or Fat. Its ufual Thicknefs is about fix Inches: But about the under Lip it is found two or three feet thick. Out of this the Oit is extracted. One Whale ordinarily yields 40 or 50 , fometimes 80 or 90 hundred weight.
The Ule of Blubber feems to be, partly to poife the Body and make it equiponderant to the Water; partly to keep the Water at a diftance from the Blood; left it fhould be chilled by its immediate Contact; and partly to keep the Fifh warm, by refecting the hot Steams of the Body, and fo redoubling the HeaE.

Under the Fat is the Flefh; of a reddifh Colour. Their general Food; is certain fmall Infeeks, which float upon the Water in great Heaps, and are no larger than Flies. But they likewife eat various Sorts. of fmall Fifh, particularly Herrings, which they drive. together in large Shoals, and then fwallow valt Quantities at a time. The Whale commonly goes under the: Shoal; thes opens his Mouth and fucks in all he can. Sometime he fwallows fo many, that he is ready to, burf, and fets up an hideous Roar:
But he is far more: troubled by a flender Fin about four feet long, which tears great Pieces of fleth out of him: The Whale then not only makes a frightful Noift; bat often leaps. a conifiderable ${ }^{H}$ Height. In thefe Leaps he fometimes raifes himfelf perpendicular, above the Surface of the Water, and then plunges himfelf down with fuch violence, that if his Head 'trikes againft: any of the hidden Rocks that are in the Shallows, he fractures his Skull, and comes inftantly floating up dead. So there is no Creature in the World fo great or ftrong as to te exempt from Calamities!

Is may not be unacceptable or unprofitable to thofe who fée God even in his loweft Works, to add a fhort Account of a few more Inhabitants of the Waters.

Flying-Fifs are very rarely a foot long. They have apretty large, the' thin and light Head: The Mouth.
is generally open; the Body Small, roundifh aid ta pering toward the Tail: Befide the ufual Fins, they have eunder their. Nocks, three, broad and pretty long spes, of a more Subtle StruCure, nearly as :thin. as a Fly's Wing, but fuengthened with Rows of: Bones. Omghe bask Part. of their Neck they have alfo a fying Fias, qpart fiux inches long, quite esect. And lower down the Back, thexe is another horter, hut broader Thene 'Wings they ufe to efcape the Purfuit, of Cuso tares roo powergul for them: They aife feveral foot aboue the Water, and ty the length of two or three Munket hot. Then then drop, becawe their Wings gre deyo which farue thern no longer than they are moift.

 lately," fays. the Auther iof the Bhaseral Hiffory yof
 hong. The Body is almon nound, sefembling a fmath lage and is blunt, at boch Enda. But she Head is the enof memarkable Past. It has two large Eyescand a Mouth Hise ainds Reak. Above this ftand rigbt Horys, like, Stant Fich: Hosn, is oftanguher,; iemd covered with many fmall, round Bells, fomierbing layger that of pin's thead, On cack furdo of bho Bady thare are two dsoinny. Mesolesraves, wuista which heican goyer hipqealf all pyer. The Fors- part of the Body: is quite filfed with a black flaid. When it is parfueds if difcharges shis whigh ceolouns ethe Water all arownd, and, rendera is invifibles, This is a wonderful Gifte of Naturs, for the prrfervetian of iam Animal,' otherwift wime ho halplefe.

Tha Andoprefeew star fob is anothar of the Cupioftied of Natures : It is uppuards of a foat in Diametor, having its Mouth in the middle. The Figare of the Trunk, is yentaneruler, amd from the fine, Asogles arife asi many Brapchass which fubdivide iato feneral others, and therfe agein ineo osbers that are lefs, will the laut are fcarice thicker than Horfe-hairs, and in number above' a thosfond, It fuximming be fpreads alt thefe Branchee like a Nes; and when be perceives any Prey wimin whenty draws
draws them in again, and fo takes.it with all the Dexterity of a Fihherman.

Full as furprizing a Creature is the Torpedo, a flat Fifh, mach like a Thorn-back. It is common on the Coats of Provence, and is eaten without any ill Effect. Bat upon touching it with the Finger, the Perfon com monly (tho' not always) feels an unufual, painful Numbmefs, which fuddenly feizes him up to the Elbow, and fometimes up to the Shoulder. It refembles, bat far exceeds, the Pain felt by flriking the Elbow violendy againft an hard Body.' But it latts only a few moments, and gradually wears away. If a Man tooch it even with a Stick, he feels a little of it. If he preffes his Hand Arongly againft it, the Numbnefs is the lefs. But it is fo uneafy as to oblige him, very fpeedily to let it go. Many have attempted to account for this: But hould we not rather, honefly own our lgnorance' i

Tise Sea-mettle, fo called, is another ftrange Preduction of Nature, common, I fappofe, in all the Northerrs Seas. It generally fwims on the top of the Water, and is throughout foft, fmooth and traniparent. It appeary so be a lump of Slime or Jelly. Bur it co-heres firmity together, being marked in the middle wids a Crof fomewhat like a Flower-de-loce.

Targz Creatares are blue, white of red, and fome of them bave many Branches underneath. Thefe are ufually fomething larger than the common Sort, and are of a dark red: They all abound with a corrofive Poifon, which if it drop on any Part of the Body, will caufe a Smart and an Inflammation, much like that produced by Nettles. Hence it has is Name. However it is no Vegetable, but is evidently a living Creature. For it has Senfation: If grows, moves to and fro, contracts and extends iffelf. It often picks up and devours fmall Fing; and is itfelf devoured by others.

The Care of the Creator is obfervable, even in for inconfiderable a Creature as a Limpet, a fmatl Shell-fifh, which fo faftens itfelf to the Rock, that fcatce any thing can unloofe its hold.
The fact has long been known. 'But the Manner of ith fafting itfelf, was not undertood till very lately-

Its Shell approaches to the Figure of a Cone; the Baro of which is occupied by a large Murcle, which alone has nearly as much Flefh in it, as the whole Body of the Fifh. This is not covered by the Shell, but ferves the Creature equally to move forward or to fix itfelf to the Rock. When it is in a State of Reft, which is the common Cafe, it applies this Mufcle every way round to the Surface of fome Stone, and thereby holds itfelf fixt to it fo Girmly, that it is impofible to take it off with the hands. . Thofs who would remove them are obliged to make ufe of aKnife for that purpofe. And even then it is not eafy : For on whatever fide the Blade of the Knife attempts to enter, the Fifh immediately fixes its Mufcle with double. Force to the Stone.

The true Caufe of this Adhefion is a vifcous Joice, a kind of Glue, thrown out by this Mufcle, which tho' it: is not perceptible to the Eye, yet is eafily perceived by: the Touch. For if immediately after the removing a Limpet from the Stone, the Finger be applied to the place, it is faftened very ftrongly to it, by means of the Glue left there. But if any Wet have come upon the. Stone, fince the Fih has been removed, no Vifcofity can be perceived on it, the whole Subflance of the Glue being immediately difolved, This Confideration may lead us to obferve the great Care of Nature over all her Works. How eminently is if manifefted in, this litte Fifh? It was abfolutely neceflary for its Prefervation, that it Should have a Power of fixing itfelf to the Stone, or it would have been wafhed away by every Wave. And this P,ower is given it, by meavs of that Glue whicb fixes it fo firmly. But when it is fixt, how fhall it be loofed ? This is equally neceffary. For if there be not fome Power in the Animal jrelf, to diffolve this Glue, it mutt needs perih for want of Food, when once fixt to a barren Spot. Water is the proper Diffolvent of this Glue. But it cannot be the external Water. This is kept at 2 diffance, by the clofe Adhefion of the outer Rim of the great, circular Mufcle, And 'tis needful it Mhould: Elfe it would always diffolye the Glue, as foon as it was difcharged. But the under Surface of the Body of the Anip mad is covered all over with fmall Tubercles, moft of which
witiffecortain Wher. When thetrefore ft would move;
 and the Ce frent immedia telly siffor ves and fetsitat Kiberty. The other Tubetcles doubtefs cotitain the viflous'Matter. So the when the Animaf would $6 x$ itfelf, it reeds only' tof fquetee one fet of it Tubercles, and when it would Hoofe itfelf, the other.
ONo can hardly tell whether to rank the River-borfe mationg Land or Water-Animals: He fleeps on Lahid, bett paffes" all the reft of his titre under Water. But in' one 'reffeet' he is different from all other 'Creatures, that live paitly on Land and partly in the Water. Alt other Softe of amplibious Animals have the Faculty of fwimming ; but this has not. He has to feed under Wateř, yet is the mioft unwieldy of all Creatures; and cannot flvim at all. He comes out of the Water in an Evening twfleep: And when he goes in again,' he walks very delherately in oveihead; and purfues his Courfe along the: bottom, as eafy and unconcerned as if it were in the open ${ }^{2}$ Air. The Rivers he moft frequents are very deep,' and where they areclear, this affords an aftomifhing Sight:

The River-hörfe is as tall as the talleft Hore'; its Body ntuch larger, and his Legs thicker and fliorter. His Stiń is quite naked, without Hair, and is black and very coarfe. The Head is exceeding "large, and his Mouth: (Whilch he hias a way of opening very frequently, and of ${ }^{\frac{1}{2}}$ toffing upi his Flead at the fame tinter is the moft tertiblethat can' betimagined. His' Teeth are blumt, but veiy thick and long, and are farifer than any othet Animal' Stibftance. The Tail is fhort; and the Feet are not ${ }^{1}$ foliti, like thde of an Horfe, but divided each into Four Toes.'

An Animal of this Size and malke', muft be prie of the ftrongeft in the World.: It therefore required from Na tufe no Swifinefs, either to avoid Purfutit, or to overtake its Prey, as it was defigned to feed on Vegetables. The Mannet of its feeding is this. When he walks into a River, he feldom looks about till he is near the middle: Here he feeks' for the larger Water-herbs;, particulahy:

on the Surface frequently fee this. He roots up thefe with his Nofe, like an Hog, and his Mouth and Throat being very wide, fwallows them in valt Morfels half chewed.

But he has frequently occafion to breathe; in ordet to which, when feeding at his Eafe, his Cuftom is, every Ten Minutes, to rise to the Surface of the Water. This .he does, . Ay a Spring from the bottom, made with all his feet at oace. Having taken a litule frefh Air, and looked about him, he drops to the bottom again.

Anather amphibious Animal, no lefs unwieldy than the -Riverrhorfe, is the Tortoi/e. In feveral Countries they are froall; but in the Eaf-Indies they are five or $\mathfrak{f x}$ feet long. Having fmall and weak feet, they are exceeding now in their Motions. They have neither Tongue, nor Teeth, nor any offenfive Weapon. How then can they either take, how can they chew, or in any degree, comminute their Food? This is well provided for: they break not only Shells, but fametimes even Stoneswith their:Lips :- Which by their exceffive Hardnefs effectually fupply the Want of Teeth. But bow - can they defend therafelves ? Abundant Provifion is made .for this; alfo. Their Shells more than cover the whole ;Body , and are of fo.frm . a Texture, that a loaded Waggon may go over them, without any Injury either to the Shell or the Creature within it.
9. Upon the whole, how natural are the Reflections, which a late Writer makes on the Inhabitants of the Waters?

What anAbundance of Fing do theWaters produce? In thefe I feem to difcern nothing but a Head and a Tail. They have neither Feet nor Hands. Nor have they any Neck: fo that their Head cannot be turned at all, any otherwife than by turning the whole Body. Were 1 to confider their Figure only, I fhould think they were deftitute of all that was neceflary for the Prefervation of their Life. But with thefe few outward, Grgans they are more nimble and dextrous, than if they had feveral Hands and Feet. And by the Ufe they make of their Tails and Fins, they are carried along like Arrows.

Vol. i.

- Bur as almoftall Fifhes prey upon each other, and cianot fuftain their own Lives, any otherwife than by continually deftroying thofe of their own Species, How can the Inhabitants of the Waters fubfitt ? How can many Species eícape utter. Deflruction? God hàs guarded againft this, by multiplying them in fo prodigious a manner. More than Three hundred thioufand Eggs have been counted, in the Roe of a fingle Salmon. By this mearts, let them be deftroyed ever. fo faft, fill their Increafe is equal to their Confumption.

But who can explain, how the Inhabitants of the Sea enjoy their perfect Health, in the midft of Water fo loaded with Salt? And by what Art is it, that they preferve even there; 2 Fleh that has not the leaft Tafte of it?

Why do thofe which are fitteft for the Ufe of Man, come and offer themfelves on our Coafts? While to many that would be ufelefs, if not pernicious, affect Remotenefs from us.

Why do feveral of them, in their fated Seafons, rum up into our Rivers, and communicate the Advanitages of the Sea, to fuch Countries as are far diftant from it? What Hand conducts them with fo much Care and Goodnefs, but thine, \mathbf{O} thou Preferver of Men ?

CHAP.

(171)

C H A P. IV.

Of Reptiles.

1. Of tbeir Motion :
2. Of Serpents :
3. Of tbeir Brain, Stomach, Gemeration:
4. Venom:
5. Of fome Particular Sorts of Reptiles.

1 OT far removed from Fifhes are Reptiles, fo named from their creeping, or advancing on the Belly. Many Species of them have Legs and Feet; but very fmall in proportion to the Body. There is a world of contrivance in their Motion. The whole Body of the Earth-worm, for inftance, is a Chain of annular Mufcles, or rather, One continued Spiral Mafcle, the orbicular Fibres whereof being contracted, make each Ring narrower and longer, by which means it is enabled, like the Worm of an Augre, to bore its Paffage into the Earth. Its creeping may be explained by a Wire wound on a Cylinder. If this is taken off, and one End extended and held faft, it will bring the other nearit. So the Worm having hot out its Body, which is Spiral, takes hold by. ite fmall Feet, and fo brings on the hinder Part. Its feet are placed in a four-fold Row, the whole, length of the Worm. With thefe, as fo many Hooks, it faftens to the Earth or whatever it creeps over : fometimes this, fometimes that Part of the Body, and fretches out or draws after it another.
2. The moft eminent Species of Reptiles are Serpents, which we may therefore particularly confider. Their Bedies are of a very peculiar Make, having a Compages of Bones articulated together. Here Part of the Body is applied to the Ground, and the other Part flot forward, which being applied to the Ground in
its turn, brings the other after it. The Spine of their Back varioully writhed, helps their leaping, (as the Joints of the Feet in other Animals.). They. make their Leaps by means of the Mufcles that extend the folds thereof.
3. Their Brain little differs from that of Fifhes: But their Stomach; very math. It is like a loofe Gut, which rans along, from the Jaws quite to the Tail. They have likewife folid: RGboand-Vertebra, at fmall Diftances, from the Neck to the End of the Tail. Hereby they are combled, tex raife themfolves: up; to fupport, to watiter therafolve into Ringes to spring forward, and to fuck or fwallow any things- with hirprizing Force. And their whalie Pluff is offoce clofe and firm a Texture; that they will live for fome time, even. after thex axo:cut ins pieces

Trarim is a grear deadtof: Geomenical:Nipoty in the fixusus Mation of Serpents. For the affling Hersint,
 ble, lying csofs the Bellig, concrary tor thofe. inp the Back and the reft of the Bitdy- Alfo the Fig gee of the foremont Soades lie over the: Edgros. of the following Soulces from bifeed tou Taih So that whem each Seate is'diawns backty onf fer a: litcle uptighte by ita Miufolo; the: euter Bodgoofit issuasied a. 1 litte from the Brodys tov lay hold on:the. Basth, andt fo prowote the Serpent's Motion: Butthere is ancther admirable Piecenof Mor chanifm, that every Scalch has a diftuct Mufcle, ane End of which is fixt to the sriddle of ite Scale, the other toe the upper Edge of the nexe Seala. Thero
 of which ate oriparew.
 noar the Root of their Tooth, which constial the Per-
 Compreffion of thofe Bags. If they are raken out of a Viper, the Eiquid they contain mixt with the Blood of an Anintal, cames Deash. But if taken in by the Mouth, it does we Harm, lofing itsEfficaey by mixing with other Liquids.

173)

A Viper has the biggef and fatte? Head of all the Serpent kind. It is ufually half an Ell long and an inch thick, with a Snout not unlike that of an Hog. It has fixteen fmalt Teeth in one Row; befide two large, harp, hooked, hollow, tranfparent Teeth, placed at each fide of the lower Jaw. Thefe convey the Poifon into the Wound, thro'a long Slit. They are flexible, and then only raifed, when the Viper is going to bite. The Roots of them are incompaft with a little Bladder, containing a large drop of a yellow, infirid juice. The Slit is a little below the Point of the Teeth, which are not holloiv to the top. Hence arife all thofe dreadful Symptoms, which frequently end in Death. But they are all prevented or removed, by rubbing Oil upon the Wound.

Vipers creep but flowly, and never leap or bite, unlefs provoked. They are of a yellowifh Colour, fpeckled with longifh, brown Spots. The Belly is of the colour of well-polifhed Steel. Other Serpents lay Eggs; the Femate Viper only brings forth her Young. alive, wrapt up in Skins, which break on the third Day, and fet them at liberty.

The Poifon of a Rattle-fnake is equally fatal and more fwift in its Operation. For it frequentiy kills within an Hour. The Snake is from ten to fifteen feetlong. But.whenever it moves in order to bite, the Tail begins to rattle: And that confiderably loud: So that a man if he has prefence of Mind, may eafily get out of his way. When he bites an Hare, he is obferved to lick her all over before he takes her into his Mouth : Probably, that having moiftened and fooothed her Skin, he may the more eafily fwallow her.

It is very remarkable, thac he frequently flays under a tree on which a Bird or Squirrel is hopping about, with his Mouth wide open. And the Event conftantly is, the Creature in a while drops into it. Sir Hans Sloane thinks, he has wounded it firft: And that he then waits under the tree, till the Poifon works and the Animal drops down into the mouth of its Executioner.

(174)

But this is not the care, as plainly appears, from what many hev: been Witneffes of. A fwallow, purfuing his Prey in the Air, if he cafts his Eye on a Snake beneath him, waiting with his Mouth wide open, alters his Courfe, and flutters over him in the utmoft Confternation, till finking gradually lower and lower, he at laft drops into his Mouth.

To the fame purpole is the famous Experiment of Dr. Sprenger, mentioned in the Hamburgb-Magazine. He let loofe a Moufe on the ground, at a little diftance from a common Snake. It made a few turns, and fqueaked a little, and then ran directly, into the Mouth of the Snake, which all the while lay ftill, and without Motion.
5. Ir is a wonderful Provifion which is made for thofe Snakes, who are Inhabitants of the Waters.

[^12]A Water-Snake has no Air-bladder like Fifhes: But. to make amends for this Want, it has a large membranous Air-bag on its Back, which it empties or fills. with Air af pleafure, by an Aperture which it can Thut fo clofe, that the lealt Globule of Water cannotenter. By this means it can inlarge or leffen the Bulk of its Body, and inhabit any Depth of Water.

As for the Serp:nt of tbe W'aters, of which an Account is gravely given, by the Writer of the Natural Hiftory of Norway, which he talk's of, as being five or 600 Yards long, and as rearing his Head higher than the Main-maft of a Map of X'ar, 1 prefume it is very nearly related, to the Craknof the fame Author: A fea-Monfter, to which a Whale is but a Shrimp, larger than twenty Men of War.put together. And this our Writers of Magazines and Reviews, fwallow without any Difficulty ! Is it from the juft Judgment of God; that men who do not believe the Bible, will believe any thing?

The King of all Reptiles which are known with any certainty, is the Crocodile. The Anericur Croco: dile or Alligator, is only fifteen or fixteen feet long. But thofe bred in Afric or the Eaf-Indies, are faid to be between five and twenty and thirty. It may well be faid of Him (which cannot of the Whale) that bis Scales art bis pride: For on his Back, as well as his Head, they are impenetrable as Steel. Contrary to alf mô all other Creatures, he moves only the Upper Jaw. No Creature dares withttand him. He is the king of all the children of pride. And as every Female Crocodile lays fome hundreds of Eggs at once, they would utterly difpeople the Waters, were it not that the Male devours all he can find of them. And fo diligent is he in his Search, that fcarce One out of an Hundred efcapes him. It is another Inflance of Divine Mercy, that he cannot bite under Water. By this Circumfance, Creatures that are able to dive, generally efcape his ravenous. Jaws.

The Cbameleon (as well as the Alligator) is of the Lizard kind. Some in Egypt are twelve inches long; but the Aiabian fold ${ }^{\prime} \mathrm{m}$ exceeds Six. He has fous

Feet and a long, flat Tail, whereby he hangs on Trees, as well as by his Feet. His Snout is long, his Back Charp, and grained, like Shagreen. He has no Ears, neither does he make or receive any Sound. The Tongue is half the length of the Animal, round to the Tip, which is flat and hol'ow, fomewhat like an Elephant's Trunk. And this he darts out, and draws back with furprizing Swiftnefs. The great Ufe of this is, To catch Flies, (which are its proper.Food, not the Air, as is vulgarly thought) by darting it out upon them. Its Colour is not always the fame. One at Paris, when it was in the Shade, and at reft, was of a bluifh Grey. In the Sunfhine this changed to a darker Grey, and its lefs illumined Parts to various Coiours. When handled or ltirred; it appeared fpeckled with dark Spors bordering upon Green. If it was wrapt up a few Minutes in a linen Cloth, it was fometimes taken out whitim. But it did not take the Colour of any other Cloth or Subllance that inclofed it. So that its affuming all the Colours it comes near ${ }_{2}$. is a groundlefs Imagination.

The Cbameleon at London was of feveral Colours, like a mottled Coat. The moft difcernible were, a Green, a fandy yellow, and a liver Colour. When firred or warmed it was fuddenly full of black Spots, as big as a large Pin's head. But when it was quiet, they gradually difappeared.

There are fout Species of Chameleons. I. The Aiabian about the Size of the green Lizard. ' ${ }^{\prime}$ This is of a whitifh Colour, variegated with reddifh and yellowinh Spots. 2. The Egyptian which is of a middle Hue, between a whitifh and a fair Green. 3. The Mexdican, and 4. A kind which has been frequently fhewn in Europe, and differs from all the reft. His Head is large; but he alters his Body at pleafure, inflating it more or lefs : And not only his Body, but his Legs añd Tail. This is peculiar to him. The Body thus puffed up, will remain fo two Hours. But it is infenflbly finking all the time. It can continue a long time in either of thefe States: but it is generally uninfa:ed. It then looks miferably lank and lean: Its Baclabone
may be fean perfectly;; its Ribs counted; and even.the Tendoms of the Feet diftinctly feen thro' the-Skin.

Irs Mouth is furnifhed with continued, denticulated Bones:- But.it.dues not appear what-Ufe they are of, fince it preys on Flies and fwallows them whole, unlefs for holding a. Srick in. its Mouth crofs-ways.: Which, according to Elian, he frequently dees, to. prevent, being fivallowed by Serpents.
$\mathbf{T}_{\text {He }}$ Struchure: and Motion:of his. Eyes are fargrizing Thiey appear to, he large: Spheres, of, which one:half, flands aut of the Head, and is:covered with a thick Skin, perforated with a fmall Hole atitop. Thro' this. is féen a very vivid and bright Pupil, furrounded with. a yellour Iris. This Hole is a .longitudinal Slit, which, he opensmore ar lefs at pleafuret. The Mation of his Eyes is not lefs fingular. It can turn them, fa asto, fee eithor foryards, backward, or an.either fide, without moving the headiat all, which is fixt ta the Shouth ders. And hee can give one Eye. all thefe Mbtions, while the other is pecfectly, fillf. Each Eact has five Toes, all. of one fide, twa behind and three before, He moves very, תowly an the. Ground, but on: Trees more eafily, Its. Tail is. then its Safety, as.it twifts it round the Branches, when in, any Danger of falling. m
Another uncommon Creature of the Lizard kind: is a Salamander. This is fuppofed to live in. Fire : but without any, ground. Is is indeed generally found in the Chinks of Glafs-houfesa or near Furnaces, where the FEat is. fo_{0} great, that no other Animal could endure its without being deftroyed in: a. few Minuses. But fome yeans aga, the Trial was made by feveral Gentlemen, whether it could really live in Fire. Somo
m But how can fo flow a Creature, catch the moft nimble fort of Irifects? What Nature has denied it in Agility, is abuncantly fuppliod by other means. Its Now, and eafy Motion renoers it but little fofpected at a diftance. And when it comes within a proper Space of its. ObjeCt, it fretches out its Tail, poifes its Body, and fixes itfelf, fo as feldom to meet with a difappointment. When aid is ready, it uncoils its long, hender Tongue, and darts it fo fwift as fcarce er, to mais ita Prey.

Charcoal was kindled, and the Animal laid upon the burning Coals. Immediately it emitted a blackih Liquor, which entirely quenched them. They lighted more Coals, and laid it upon them. It quenched them a. fecond time in the fame manner. But being prefently lain on a frefh Fire, it was in a fhort time burnt to Afties.

That Earth-rworms feed upon Earth, will. be put beyond difpute, if any one is at the pains to examine, the little, curled Heaps of Dung, which are ejected out of their Holes. But it is in all probability, not pure Earth, but fuch as is made of Leaves, Roots, and Plants, when gradually rotted and mouldered away. And what makes this the more probable, is that they are obfeived to drag the Leaves of Trees in-: to their Holes.

One more Reptile we may examine a little more: minutely, in which the Wifdom of God is not a little difplayed. It is a common Leecb. When this is at reff, its upper Lip forms a regular Semicircle. When he moves, this Semicircle becomes two oblique Lines, the Junction of which makes an Ang!e, which he applies to whatever he would fix himfelf to. The two Lips then make a fort of Hollow. Both thefe and its Mouth are made of fo Supple Fibres, that they take the Figore of the Part they are applied to, and fix perfectly clofe to it.

The Whunds it makes are not Punctures, but Three Cuts; made like three Rays, which uniting in a Center make equal Angles with each other. They appear as if made by a fine Lancet. They are indeed made by three Rows of fine and tharp Teeth, which the Microfcope hews to be placed along the middle of a flronts Mufcle. When the Mouth has feized on any Part, the Mufcle exerts its Action, and ftrikes in all the Tceth at once.

Between the Mouth and the Stomach, there is a fmall Space, in which are two different Arrangements of Fibres. The One Set are flat and plain, the others are circular. The former contracting in length, enlarge the Capacity of the Throat; and the Circular opes determine the Blood toward the Stomadh, by contracting

(179)

contracting it, when the Blood is received. Hence it paffes into a kind of membranous Sack, which ferves the Animal both for Stomach and Inteftines. This takes up the greateft Part of its Body. On each fide of this long Canal, there is a number of little Bags. Thefe being filled with Blodod, fwell out the Body of the Animal to a great Size. Here it temains for many Months, and ferves the Creature, for Nourilhment. If any thing is excreted, it can be only by infenfible Perfipiration, fince the Creature has no An,us, nor any Aperture which can fupply the Place of one.

C H A P. V.

Of Infects.

1. Of their Shape, and \| 10. Of the Death-watch:

Make:
2. Ofthitir Eyes :
3. Of their Heart, Refpiration:
4. Of their Generation; particularly of tbe Silkworm and Silk-Spider:
5. Of the common Spider :
6. Of the Tarantula:
7. Of Microfoopic Animals :
8. Of the Slea :
9. Of the Loufe:
11. Of the Eggs of Flies :
12. Of Gnats:
13. Of the Cicadula :
14. Of the Drome-fly:
15. Of the Fire-fyy:
16. Of the Epbemeron:
17. Of Butterfies :
18. Of Caterpillars:
19. Of the Transformations of Infects:
20. Of Ants:
21. Of the Ant-Eater:
22. Of Bees.

1. THERE remains only the lowet Order of Animals, ufually termed $I_{n j e c t s, ~ b e c a u f e ~ t h e y ~}^{\text {i }}$ have an Incifion, as it were, which in a manner cuts them into two Parts. Of thefe I would fpeak the more largely, becaufe generally they are little known. Rather

Raitfer they are definfed and purpofely paphed over, as unworthy of our Confideration. And yet it is certain, the W ifdom of the Great Creator, toes moft confpricuoully flime in them.

As to the Shape of their Bodies, tho' it be fomewhat different' from that of Birds, being for the mort 'Part not fo' fharp before, to cat and make way thro' the Air, yet it is better adapted to their Manner of 'Life. For confidering they have little need of long 'Flights, and that the Strength and Attivity of their Wings, far farpafs the Refiftence they meet with from the Air, there was no occafion for their Bodies to be fo fharpened. But the Nature of their Food, the Manner of gathering it, and the great Neceflity they had of accurate Vifion, and large Eyes in order thereto, required the Largenefs of the Head, and its Amplitude before. The reft of the Body.js all well-made, and ricely poifed for their ${ }^{\text {Flight and }}$ otherOccafions.

The Make of their Bodies is no lefs admirable : Not built throughant with Bones, covered over with Flefh, and then with Skin, as in moft other Animals: But cloathed with a curians. Mail of a middle Nature, ferving both as a Skin and Bone too. As it.were on purpofe to . hew, that the Great Contriver.of Nature is not bond up to one way only.
How admirably are the Legs and Wings fitted Yor their intended Serwice? Not to overload the Body, nor so retard it, but give it the moft proper and convenient Motion. What, Ifor example, can be better contrived for this Service tihan the-Wings ! Diftended and Arengthened by theifineft. Bones, and thofe covered with the finef and 1 dighteft. Membranes ; Some of them adorned with beautiful Feathers: n. And many of them provided with the fineft Articulations, and Foldings, in order to be laid up in their Cates, when they do not ufe them; and yet always ready, to be extended for Flight.

[^13]2. The Struturre of the Eye io in isd Croatates ait admiazble Pieco of Mechanifm. But this is poculiarby obfervable sint chat: of an lnfoct. Its Hafdnefs is an excellent Guard, againt external Injuries. Aad in outer Coat is dil over befor with curious, tranfparent Ingets, enabling it to fee ewery way, iwithout any Lofs of time or trouble to move the Eyes.

And their Fackrs, befides their Ufo in cleaning the Eyes, are a good Guard to them in their Walk. on Flight, onabling: them by the Seafe of Feeling:to dif: comer Anmoyatces, which by thair : Neesrefs mighe efeape the Sigit.

The Eye of a Fly is in truth ,manfionblage of mulitudes, !often, many thoufands of firill Eyces. Natwre bee given sach Fly two laugo raticular Eyes (thate is, covered with a kind of Net-worky) Aad as eack contains fuch a mallituda of \&naller: Byes, one would imagioe, this might fuftice. Yot fome Flies have Cour reticular Eyes; the two fanaller are placed as wrual, the two larger ate behind the other, on the upper Pant: of the: Head.
Indifferent Species the setioularimpea are of different Colours. Someare browns fome.gellow, groen, red! and this in allthe different Sliades of thole Colours. Andifome have the' Glafs of Motals highily poifthed.

But befide thefe, many Species of Flies have afort of Eyes, which ate not seticulars, buteof a perfectly fmooth and even Surface, and far fmaller than the mes. sioular. . Three of thefe areson the back of the :Henid of vafllNumbers, whicheare triangulanly ptaced. Somie have miove, andifome heve lofs then Three. Gnats have none of shem. Their Heads are in a manaer covered with their roticular Byed, , 5 a as to:leave de reompr occafion far fmootb anes.

Nor are thefermooth Eyes peculiar toiRlies, Other Infects alfo have them: The Grafs-hopper in pastib oudar has Two, which are placedinear the Nofe.
3. The Species of Infeap are almof inhumerablé All of thefe fome fuppofe to Have no ifliart, as they have no fenfible Heat, none thistoan be perceived eit ther by the Touch, or by any other Experiment.

Vol. I.

But this is a miftake. Many indeed have not fuch an Heart as other Animals have: But all have fomething analogous to it, fomething that anfwers the fame purpofe.

Some likewife have thought, That Infects have no Reppiration.s But later Experiments Shew, that there is no Species of them which has not Lungs, and thofe larger in proportion than other Animals. In moft of them they lie on, or near the Surface of the Body. And hence it is, that if Flies are befmeared with Oil, or any other unctuous Matter, they die in a fhort time, their Refpiration being ftopt, fo that they are properly fuffocated.
4. Some alfo have imagined, That Infects wers generated out of mere Putrefaction, becaufe they obferved Worms come out of putrefied Flefh, which afterward turned to Flies. But it is certain, if putrefying Flefh be thut up clofe, no Worms are ever generated from it. Hence we learn, that Flies lay their Eggs in Flefh, which hatch when if putrefies: So that the Animal juft comes to Life, when its Food is ready for it. All Infects lay their Eggs, where there is Heat enough to hatch them, and proper food as foon as they are hatched. Thofe whofe Food is in the Water, lay their Eggs in the Water: thofe to whom Flefh is a proper Food, in Flefh. Thofe to whom the Fruits or Leaves of Vegetables are Food, are depofited on the proper Fruits or Leaves. And conftantly the fame kind is found on the fame Fruit or Plant. Thofe that require more Warmth are lodged by the Parent, in or near the Body of fome Animal. And as for thofe to whom none of thefe Methods are proper, the Parents make them Nefts by Perforations in the Earth, in Wood, in Combs : Carrying in and fealing up Pro+ vifinis, that: fesve both to produce the Young, and to feed them when produced.

The Eggs of all.Infects become Worms, commonly called Nympha. They are next changed into Aurebia, fo called, inclofed in a Cafe: And thefe dying; a Fly or Butterfly fucceeds.

To trace thefe wonderful Changes a little, in one kind of Infect. A Silk-worm, from a fmall Egg; becomes a Worm of the Catterpillar kind, and feeds on Mulberry-leaves, till it comes to Maturity. Then it winds itfelf up into a filken Cafe, about the fize and Thape of a Pigeon's Egg, and is metamorphofed into an Aurelia, in which State it has no Motion or Sign of Life : till at length it awakes, breaks thro' its filken Sepulcher, and appears a Butterfly.

As foon as the Silkworm has Strength, he makes his Webb, a flight Tiffue, which is the ground of his admirable. Work. This is his firft Days Employ. On the fecond, he covers himfelf almoft over with Silk. The third, be is quite hid. The following Days he employs in thickening his Ball, always working from one fingle End fo fine a. Thread, that thofe who have examined it, affirm it would reach fix Miles.

Thb Silk-pider makes a Thread, every whit as Arong, glofly and beautiful as the Silkworm. It fpins from feven Nipples. Thefe, as fo many wiredrawing Irons, draw out a vifcous Liquor, which gradually dries in the Air, and becomes Silk. -

Each of thefe Nipples contains many fmaller Nipples, invifible to the naked Eye; thru' the feveral Per: forations whereof, numberlefs finer Threads are drawn. Before the Spiders begin to fpin, they apply more or fewer of the large Nipples to the Body whence the Webb is begun. And as they apply them more or lefs ftrongly, more or fewer of the fmall Nipples come to touch: And accordingly the whole. Thread will be compounded of more or fewer fingle Threads: One compound thread frequently confifts of fifteen or fixteen fingle ones.
: Their Threads are of twokinds: One ferves only for the Webb with which they catch Flies. The other is much thicker and flronger, in which they

$$
Q 2 \quad \text { wrap }
$$

[^14]wrap up thoir Egges in otder to Shelter thene Aom the Cold, as wall as from devorring Infelts. Theft Threade they wind loofely roond, seferibling the Balls of Silf-worth that have beta loofaced for the Bitaff.

THE Balld are grey, al fufts butturn blackion, when 10ng expofed to the Air. From thefo Balls a Silk is made, nothing: inferior to thecommon Bilk It take all kind of Dyes, and: may be made into, alt kind of Stuffs, Only there is a difficulty in keeping the Spiders: for they ate fo extremety quarrelfome, that if an hundred of them be put togecher, in a few Houra fearce twenty will be left alive.
5. Andagzing Wifdom is difplayed in the make of the Compmom-Spider. She has Bix Teats, eaph forniffed with innumerable Holes. The Tip of each Teat is divided into numberlefs little Prominances, which ferve to keep the Threads apart at their firf Exit, 'til they are hardened by the Air. In every. Teét; Threads may come out at aboxe a thourand holet. Bur the are formed at acconfiderable Diftance, each of theat having at little Shoath in which it is. brought to the Holes In the, Belly are two litelo foft Bodies, which are the firft fource of the Silk. In thape and tranfparency they refemble Glafs Beads, and the Tip of each goes winding toward the Teat. Prom the Root of each. Bead proceeds another Branch much thicker, which alfo winds toward the fame Part. In thefe Beads and their Branches is contained the Matter of which the Silk is formed, the Body of the Bead being a kind of Refervoir; the two Branches, Canals proceeding from it.

Ir was before obferved, that the tip of each Teay may give Paffage to above a thoufand Threads. And yet the fize of the Teat in the largeft Spider, does not exceed a fmall pin's head. But the fmatlef Spiders no fooner quit their Eggs, than they begin to. (pin. . Inadeed their Threads can ftarce be perceived, but the Web formed thereof is as thick and clofe as any. And no wonder, as 4 or 500 little Spiders often concur in the fume- Wort, How minute are their Teats! When
perhaps the whole Spider is lefs than the Teat of its Parent. Each Parent lays 4 or 500 Eggs, all wrapt up in a Bag. And as foon as the young ones have broken thro' the Bag they begin to fpin.

And even this is not the utmoft which Nature does. There are fome kinds of Spiders fo fmall, as not to be difcerned without a Microfcope. And yet there are Webs found under them! What mult be the Finenefs of theie Threads? To one of thefe the finett Hair is as 2 Cart-Rope.

There are feveral Species of Spiders that fly: and that to a furprizing Height. "The lat October, fays an eminent Writer, I took notice that the Air was very full of Webs. I forthwith mounted to the top of the higheft Stecple on the Minfter [in York] and could thence difcern tnem yet exceeding high above me. Some of the Spiders that fell upon the Pinnacles I took, and found them to be of a kind, which feldom or never enter Houfes, and can't be fuppofed to have taken their flight from the Steeple." P
p There are divers Animals, as well as Spiders, that have fome way of Conveyance, utterly unknown to us.. Thus the Animals on the ftanding Waters, to numerous as often to difcolour them, and tinge them red, yellow, or green. That thefe have fome way of Conveyance is certain, becaufe not only moft ftagnating Waters are ftocked with them, yea, not only new Pits and Ponds, but even Holes and Gutters on the top of Houfes, Churches and Steeples. That they have not Legs for travelling fo far, is manifeft : It is therefore probable, either that they dart out Webs, and can make themfelves Buoyant, and lighter than the Air : Or that their Bodies are naturally lighter than Air, and fo they can fwim from place to place. It is highly probable, the Eggs of fuch as are oviparous, may be light enough to float therein.

To trace this matter farther: Every one muft have obferved Threads floating in the Air: But few confider what End they ferve. They are the Works of Spiders. Their ufual Method is, to let down A Thread, and then draw it after them. But in the midft of this work they Sometimes defift; and turning their tail according to the wind, emit a thread with as great violence, as a Jet of Water difcharged from a Cock. Thus they continue darting it out, which the Wind carries forward, till it is many yards long. Soon after, the Spider throws herfelf off from her Web, and trufting herfelf to the Air, with this long tail, will afcend fwift, and to a great height with
6. A Tarammla is a kini- of Spidef, chiefly found sear the City of Tarentum in Apulia. It is about the gae of an Acorn and has eight Eyes and eight Feet. Its Skin is hairy : From its-Mouth rife two Trunks, al lintle crooked and exceeding Tharp. Thro' thefe it conveys its Poifon: they feem likewife to be a kind of moveable Noftrils; being in continual Motion, efpecially when it is feeking its Food. It is found in other Parts of Italy, but is dangerous only in Apulia. And there it does little Hurt in the Mountaing (which are cooler) but chiefly on the Plains. Indeed it is not yenomous, but in the Heat of Summer, particularly in the Dog-days. It is then fo insaged, act to fly upon any that come within its reach. The
it. Thefe Lines, which the Spiders attach of to them (tho' unobferved) make thefe Air-threads, that waft them along the Air, and. enable them to prey on maxy Infects, which they could not feach by any other means.

Air Spiders that fpin. yourig as well as old, caft out thefe threate, and fill thereby in the Air. And the Threads themfelves thew the Ufe thereof, being ufually humg with the fragments of devoured Asimate.

Whin the threads are newly fpun, they are alway fingle, and are generally feen afcending higher anid higher. But whien they are feen coming down, they are fometimes cornpofed of three or four, and either without anty Spider or with feverat. 'Tis plain this happerts. from the threads metting andintangling in the Afr, which of courfe brings them down.

IT is common to fee' a Spider mount to the topmof Branch of a Buth, and from thence datt out feveral threads one after anothet, trying as it were how fle fikes them. When fhe has darted one feTcital yards, the will of fưdden draw it ap.againg and wind it into a link with her fore-feet, but more frequently break it of and let it go. A S'pider will fometirted dart out and break off many thread, Betore it Spin's ofre that it witt truft to. Bat at length the Spirts onde to ber liking, and commits birfelf to the Air upon it.

In E Butinefs of Frédiag is not aft the Urfe of thefe threads: but they evidertly fiort and entertiam therafelves by meams of them; Eqating to and fro in the Air, and changing thetr height at pleafure.

TME Bt Ait-threads ate not orfly found in A detam, buteven in the the Depth of Wintet. The feterte Diys at Chtilitixis orisg ote ma-
 Spidérs, butchet in Aututth, ahid dre thrown out, as it feems ondy this fort. The thichecr onts of Aatumn are the only ones intended \$0 lupport the old Spiserts, when there is pienty of fmall flit! in the

(187)

THs Bits carace 2 Pain, like that ory the finging of a Bee: In a few Hours the Paxient foels a Numbenef, and uhe Part is marked wish a funall livid Circle, which foon rifes into 2 painful' Tumour. A fixtle after, ha fallo into a deep Samnefs, byeathes with much Difficulty, his Pulfe grows feebleard his Senses dull. At length he lofts all Senfe and Motions, and dies; ualefs fpeedily rolieved. An Averfion to Blime and Black, and an Affection for White, Red and Green, ase other unaccountable Symptoms of this Diforderi

Tafer is no Remedy but One. White he lies fenfelefs and motionlefs, a Mufician plays feveral Turres: Whent he hits on the right, the Pacient ims mediately begins to make a faint Motioni. His Fixgers firft move in Caiderice, then kis Feex: Then his Legs, and by degrees his whole Body. At length he fifes on his feet, and begins to datce, which fonte will do for fix Heurs withertinterwifion. Afier this. He is put to bed, and when his Stirength is reeruited, it ealled up by the fame Tune to a Second Dance. This is continued for fix or fever Days at leal, till he is fo weak he ean dance no longer. This is the tige of his being cured; for if the Poritentaded Aill, he would dance till he dropt down dead. When he is throughly tired he awakes as out of skeep, without remembring any thing that is paft. And fometimes he is totally cared : but if not, he firds a melancholy Gloom, frune Men, feeks Warer, and'fifnot capefully watched, often leaps into a River. In fome the Diforder returns that time twelve-month, perhaps for 20 or 30 Years. And each time it is removed as at firft. Cab even Dr. Moad account for this? ${ }^{\text {a }}$
7. Mention.

[^15]7. Mention was made of the extreme Sthallnefs of tome Spiders. But how much fmaller are thofe Animakcila, difcerried by the Microfiope? Thefe are in almoft all Water. Eyen in that wherein the beft Glaffes can difcover no Particle of animated Matter, after a few Grains of Pepper, or a fmall Fragment of a Plant of almoft any kind has been fome time in it Animals full of Life are produced and fo numerous as to equal the Fluid itfelf in Quantity.

A small Quantity of Water taken from any Ditch in Summer, is found to abound in juft fuch Creatures, only larger. Nay any Water, fet in open. Veffels in the Summer Months, will after a few Days yield Multitudes of them.

These we know by their future Changes are the Fly-worms of Gnats, and feveral other forts of Flies. And we eafily judge, they owe their Origin to the Eggs of the Parent-fly there depofited. No doubt then but the Air abounds with other Animalcula, as minute as the Worms in thefe Fluids.' And thefe are the Flyworms of thofe Animalcula, which after a proper time fpent in that State, will become Flies like thofe to them they owe their Origin.

The Waters it which difierent Liquors are infufed afford a proper Matter for the Worms of different Species of Flies. And fome of thefe doubtlefs are viviparous, others oviparous. This may occafion the different time taken up for producing Infects in different

Fluids.
ceafed during the Concerts. In Ten Dayf, Mufic wrought an entire Cure, and he relapfed no more.

The other Cale is that of a Dancing-Mafter, who, thro' fatigue, fell into a violent Fever. On the fourth or fifth Day he was reized with á Lethargy, which after fome time changed into a furious Delirium. He threatened all that were prefent, and obftinately refuied all the Medicines that were offered him. One of them laying that perhaps Mufic might a little compre his imagination, 2 Friend of his took up his Violin, and began to play on it. The Patient ftarted up in his bed, like one agreeably furprized, and fhewed by his Head (his Arms being held) the pleafure that he felt. Thofe who held his arms, finding the Effects of the Violin, loofened their hold, and let him move them, according to the Tunes. In about a quarter of an hour, he fell into a deep Sleep. When he awoke, he was ous of all danger.

Milds: Thofe proper fior the Woimss of a viriparous Flys will be, foomeft foll of them Whereas orger time is wequired to hanch the Eggs of the Oriparoas:

Now every Animalcule being an organized Body, how deficate muft the Parts be; that are neceflary to make it fuch, and to preferve its wital Actions? It is hard to conceive, how in fo narrow a Compals, there is ant Heart, to be the Fountain of Life, Mufcles neceffary for its Motions, Glands, to fecrete its Fluids, Stomachr and Bowels to digeft its Food, and other innumerable Patts, without which an Animal cannot fabfift. And every one of thefe muft have Fibres, Membranes, Coats, Veins, Arteries, Nerves, and an infinite Number of Tubes, whofe famalinés exceeds all Efforts of Imagimation. And yet there are Parts that muft be iafinitely fmaller than there, namely the Flaids that move thro' them; the Bluod, Lymph and Animal Spiris, whofe Subrilty even: in large Animalc is incredible.

As tofome of the Animalcules obferved by Levoenboeck; he computed, that 3 or 400 of thera placed clofe together in a line, would only equal the Diameter of a grain of Sand. Twenty Seven Maitions then of thefe Animals equal in bulk a grain of Sand!

But Haxtfonker carries the Matter fill farther. "If fays he, acconding to our prefent Syltem of Generation, all Animals were formed from the beginning of the World, and inclofed one winhin another, and all of them in the firf Animal of each Species: How minute muft the Animateula produced now, have been at the beginning ?
8. Even the meaneft and moft contemptible offinfects, Siews the Wifdom of its Creator. Fleas, for inftance, depofit their Eggs only on fuch Animals, as afford them a proper Food. Thefe hatch into Worms of a thining pealu-Colour, which feed on-the Scarf of the Cuticle. In a fortnight they are very, active, and if difwrbed, fiuddenly rolf themfelves into a Ball: Soon after they bogin to creep, with a yery fwift Motion. When arrived aetheir full fize, thex fpin a thread out of their Mouth, wherewith they form themfelves a Cafe. After a fortaight's Ref here, each of them busfs out a perfect Flea, leaving

(190)

leaving its Exavia behind. It is milk-white 'till the fe-: cond Day before its Eruption : then it changes Colour and gets Strength, fo that upon its firt Delivery, it' pprings nimbly away.
9. A Loufe alfo affords to our Obfervation, a very delicate Structure of Parts. It is divided into the Head, the Breaft and the Tail. In the Head appear two fine, black Eyes, with a Horn that has five Joints and is furreunded with Hairs, flanding before each Eye. From the Nofe projects in a Sheath the Piercer or Sucker, which it thrufts into the Skin. This is judged to be feven hundred times finer than an Hair. It has no other: Mouth than this.

The Skin of the Breaft is tranfparent, and from the under part of it proceed Six Legs, each having five Joints; Each Leg is ierminated by Two Claws, which it ufes as we would a T'humb and middle Finger.

If one of them when hungry be placed on the back of: the Hand, it will thruft its Sucker into the Skin, and the Blood it fucks may be feen paffing in a fine Stream to the Fore-part of the Head. Falling into a roundith Cavity there, it paffes on to another Receptacle in the mid-' dle of the Head. Thence it runs to the Breaft, and then to a Gut which reaches to the hinder Part of the Body, where in a Curve it turns again a little upward. It then flands fill, and feems to undergo a Separation: Some of it becoming clear and watry, while other black Particles pafs down to the Anus.

Lice are not Hermaphrodites; and the Males have Stings, which the Females have not. A Female lays in twelve days an hundred Eggs, which hatch in Six Days.
rMinuti Animals are found proportionably much ftronger and more active than large ones. The Spring of a Flea in its Leap vaftly exceeds any thing greater Animals are capable of. Mr. De Lifle has computed the Velocity of a litte Creature, which ran three Inches in half a Second. Now fuppofing its Feet to be the fifteenth Part of a Line, it muft then, in order to travel over fuch a Space in fuch a time, make five hundred Steps, in the Space of three Inches : That is, it muft fhift its feet five hundred times in a Second, or in the ordinary Pulfation of an Artery. What is the Motion of any large Animal, in comparifon of this? Or what is the Swifnefs of ta Grey-hound or a Race-horfe, to that of fuch an Animalcule?

Suppofe thefe produce fifty Males, and as many Pemales: Thefe Females coming to their full Growth in Eighteen Days, may each in twelve Days lay an hundred Eggs more. And thefe in Six Days more may produce a Young Brood of five thoufand. So fwiftly do thefe Creatures multiply !

Most Animals are fubject to Lice, but each of a different kind, and none of them like the Human. Nay even Infects are not free. Beetles, Ear-wigs and Snails are particularly fubject to them. Numberlefs little red Lice are often feen about the Legs of Spiders. A fort of whitifh Lice are common on Bees. They are alfo found on Ants.

Fishes, one would think, living in the Water, and perpetually moving to and fro, !hould be free from Lice. - But they have their Sorts 100 , which nef under their Scales, the Salmon in particular. Befide which; there are frequently found great numbers of long Worms, in the Stomach and other Parts of Fiif. And thefe work themfelves fo deeply into their Flefh, that they cannot cafily be got out.
: Man Y Infects are bred in the Noftrils of Sheep. One may take out twenty or thirty rough.Maggots at a time. A rough, whitifh Maggot is found alfo within the Intefti-- mum Rectum of Horfes. Others are generated in the : Backs of Cows, which at firft are only a fmall Knot, being an Egg. laid there by fome Intect. Afterward it grows bigger, and contains a Maggot, lying in a purulent Matter.

In Perfia flender Worms fix or feven Yards long, are bred in the Legs and other Parts of Men's Bodies. Yea, there have been divers Inflances, of Worms taken out of the Tongue, Gums, Nofe and other Parts, by a Perfon of Leicefter, before many Witneffes.
10. A very extraordinary kind of Infect, is that which is called a Deatb-watch, becaufe it makes a Noife like the beating of a Watch. They are of two kinds. One is a fmall Beetle, fomewhat more than a quarter of an inch long, of a dark brown, and fpotted, having a large Cap on the Head, and two Feelers fpringing from beneath the Eyes. Dr. Derbam obferved it to draw back

泓s Monch, snd beat wish is Forehead. He kept two, :a Male and a Femate, in a box, for forme KMonths, and couild bring one of ciren to boat when he pleafed, by itmitating iss beating. And hefoon found this ticking toibe the way, whereby they; wrood dre:another.

The other kind is a greyifh laffet like a Louff, wuthich beats fome Hours tageinter without Interamifion; wand that flowly, whereas thelfoomer beats only feven or eight Serokes at a time, and mack quicker. It is wewy common in Summer in all Parts of our Hoifes, is nimble in ruaning to fhelter, andifly of bearing, ifdifturbed; but is fiee to beat, and to anfiverysut beating, if you do not thake the place where it lies. This commonty, if not-always beats, eicher in or near Raper. It is at firft a finall, white $\mathrm{Egg}_{\mathrm{g}}$, like; Nit. It hatches in March, ,and creeps about with its Shell on. $\mathbf{l t}$ is chen fmalter than the Egg:itfelf, but foon ghows to the perfect Size.
11. A Fomale-Fly, within fear and twenty: Hours. after her Congrefs with the Male, begias ito depofit Her Eggs, on fome Subitance proper to give Nourifimentso the Worm that is to be produced. There Eggs in genogal are whiterand oblong. Bur thore afe foune of them which are fingular. To defcribe one 8pecies of them may fuffice, the Eggs laid, on Eloggidung.

They are white and oblong, but of z peculiar malke. At one end of each of thefe Eggs, between that End and the middle, are two little Wings, flanding oit on either Side. As foon tas the Fly : thas laid Her Hgge, fhe thrufts them into the Dung. This keeps: thie Calit of the Egg, foft; otherwife the Embryo could never get ou:. Hut if the whole Egg were thruft in, the: Creatuie would bo fuffocated, as toon as is is: hatched. Therefore Purt only is to be immerfed; and Patt to be ieft out. And this is admirably:prowided for: by thefe Wings. Por when the Female thrufts in ihe Egg, it eafily enters on the faraller End, which is the Part: fift protruded from her-Body: But it flops at the Wings, and fottie upper Part temains opien to the Air.

Some Species of Flies fatten their Eggs. to thetfiter of Veffels of'Water. All thefe Eggs have a thinifiake rwaming down the two Sides dianmerrically oppofise. So:that
they look as if they were inclofed in a Frame. The Ure of this Frame is, to hold the Body of the Egg more' firmly to the Side of the Veffel. Thofe Eggs which have it nut, are depofited by the Female-fly with a vifcous Matter about them.

Some Flies lay their Eggs in the Bodies of Catcrpillars. Thefe are at great pains to carry thofe Caterpillars to the places where it is proper their Eggs fhould be hatched. There is one Species whofe Worm can neever fucteed, unlefs it be both bred in the Caterpillar, and that Caterpillar buried under ground. To t is purpofe the Parent, when ready to lay her Eggs, forms a hole in the ground, and covers it with a little Clod. Then fhe goes in fearch of a proper Caterpillar, perhaps one much larfer than herfelf, which neverthelefs fhe drags to her Hole. This fhe uncovers and goes in to fee if all is right. Then fhe goes and draws the Caterpillar in. depofits her Eggs in his Flefh, and fops up the Hole with feveral Pellets of Dirt, and Duft carefully rammed in between. When the Worms are hatched, they feed on the feeth of the Caterpillar tilt they are full grown: Then they change into Aurelia,' and aferward into the form of the parent-fly: In which State they eafily make their way out of the ground.

Some of thefe lay their Eggs in the Bodes of fmaller Flies. They often fly with one of them in their Legs; the Head of it being clofe to their Bellics. They carry thefe to little Holes in the Ground. In the firil they tay their Eggs. Then they bring others, to be food for their Young when hatched. One Fly is not enough: therefore their Parents carry them more every day: Crawling backward into the Hole: and dragging in the Flies after them. When the Worms change into Aurelix, their Cafes are made of the Exuvize of the rilies they have been feeding on. ${ }^{s}$

Vol. I.
R
12. There

[^16]12. There are few Infects more prolific than the Gnat. All its Changes from the Egg to the perfect Animal are fulfilled in three Weeks or a Month: And there are ufually feven Generations of them in a Year, in each of which the Parent lays 2 or 300 Eggs. Thefe fhe ranges in the form of a Boat, and Each Egg is Thaped like a Nine-pin. The thicker Ends of thefe are placed downward. They are firmly joined together by their Middles, and their narrower Parts ftand upward.

Viewed with a Microfcope, the larger End is obferved to be terminated by a fhort Neck, the End of which is bordered by a kind of Ridge. The Neck of each is funk in the Water, on which the Boat fwims: For it is neceflary it fhould keep on the Surface, fince otherwife the Eggs could never be hatched.

[^17]The ranging thefe in fo exact Order, requires the utmoft Care in the Parent. Gnats lay their Eggs in the Morning Hours, and that on fuch Waters, as will give Support to their Young. Here the Parent places herfelf on a fmall Stick, a Leaf, or any fuch Matter near the Water-Edge, in fuch a manner, that the laft Ring but One of her Body, touches the Surface of the Water. The laft ring of all, where there is the Paffage for the Eggs, is turned upward, and every Egg is thruft out vertically. When it is almoft difengaged, She applies it to the Side of the Clufter already formed : to which it readily adheres by means of a vifcous Matter wherewith they are covered.

The great Difficulty is, To place the firt laid Eggs in a proper Poftion to receive the reft, and to fuftain themfelves and them, in a proper Direction. Thefe She with great Precaution places exaetly, by means of her Hinder legs. And when a fufficient number of them

Not only the Willow and fome other Trees, but Plants alfo, Nettles, Ground-ivy and others, have fuch Cafes produced upon their Leaves. The Parent-Infeet, with its fiff Tail, bores the Rib of the Leaf when tender, and makes way for her Egg into the very Pith. Probably fhe lays it there, with fome proper Juice, to prevent the Vegetation of it. From this Wound arifes a fmall Excrefcence, which when the Egg is hatched grows bigger and bigger, as the Worm increafes, fwelling on each fide the Leaf, between the two Membranes. This Worm turns afterwards to an Aurelia, and then to a fmall, green Fly.

Thi Aloppo-Galls wherewith we make our Ink, are of this Number, being only Cafes of Infects, which gnawed their way out, thro' the little Holes we fee in them.

For a fample of the tender Balle, fee the Balls as round, and fometimes as big as fmall Mufket-bullets, growing under oakenleaves, clofe to the Ribs, of a greenifh, yellowifh Colour. Their Skin is fmooth, with frequent rifings therein. Inwardly they are very foft and fpungy; and in the very Center is a Cafe, with a white Worm therein, which afterward becomes a Fly. As to this Gall, there is one thing peculiar. The Fly lies all Winter within this Ball, and does not come to Maturity 'till the following Spring. In the Autumn thefe Balls fall to the ground with their Leaves. Yet the Infeet inclofed in them, is fenced againft the Winter-Frofts, partly by other Leaves lying upon them, and partly by the thick, fpungy W dll, afforded by the Galls themfelves.
are arranged, all the reft is eafy: Jnarmuch as thefe are 2 firm Support, to all that follow them.
13. A Cicadula is a mall Inleet found in May and fone, on the Stalks and Leaves of Plants, in a kind of Froth, commonly called Cuckoo-Spit. This Froth is not from the Plant, but the Mouth of the Animal; and if it be gently wiped away, will be prefently feen iffuing ous of its Mouth, 'till there is as large a Quantity of it as before. They are of the fhape of a Loufe, fome being whitioh, fome yellowifh, and others green. They often change their Skins, while they live in this Froth, and only creep a little. But when they leave the Plant they hop and fly, having Wings which cover the whole Body.
14. The moft fingular Part of the Life of a Dromefy, is that it paffes in the forpl of a Worm. It is 中han diftipguifhed from all other Worms by its lang Tail: At different times this is indeed of different Lengths 3 but it is always longer than the Worm itfelf. If is found, finooth, and very fmall at the Extremity; femetimes no thicker than a Horfe-hair. To know the Ufe of this Tail, we muft firlt know the Nature of the Worm jitelf. It is an Aquatic, and never leaves che Water, still it changes into its fly-State. They lie in multitudes in the mud at the bottom of Veffels of ftioking Water. Put them into Veffels of clean Water, and they will foon thew the Ufe of their Tails. Tho' they live under water, they cannot live without breathing frefh Air. This is the End to which their longTails ferve. For even while they lie buried in the Mud, their Tails are extended to the top of the Water, and being open at the Extremity, let Air into their Bodies. And as foon as they are in a Veffel of frefh Water, they get to the bottom and thruft up their Tails to the Surface. They can lengthen them at pleafure: To be affured of this, you need only pour in more Water. The Worms then lengthen their Tails proportionably, in order to breathe from the Surface: By adding more and more Water you will find, they can extend their tails to the length of five Inches: An extremely remarkable length for a Creature little more than half an inch long. Beyond five Inches however they cannot go. And if you make the Water
of a greater Depth, they leave the bottom, and either travel up the fides of the Veffel to a proper height; cr elfe fwim in the Water, at the depth of five Inches.
15. No Species of Flies is more remarkable, than the larger Fire-fly of Yamaica. It is above an inch long, and proportionably broad. Moft of its internal Parts are luminous; only the thicknefs of the Cover hinders its appearing. But on forcing the Rings that cover the Body a little afunder, Light iffues from all the Entrails. The Head has two Spots juft behind the Eyes, which emit Streams of ftrong Light. But tho' thefe flow naturally from the Infect, yet it has a power of interrupting them at pleafure. And then thefe Spots are as opake as the Surface of the Body.

A Person may read the fmalleft Print by the Light of one of thefe Infects, if held between the fingers, and moved along the Lines, with the luminous Spots over the Letters. They are feldom feen in the day, but wake with the Evening, and move and thine moft pait of the Night. They readily fly toward cach other. Hence the Negroes have learned, to hold one between their fingers and wave it up and down, which others feeing fly direclly toward it, and pitch upon the hand. They are fo torpid by day, it is hard to make them difiover Signs of Life; aind if they do, they prefently relapfe into the fame State of Infenfibility. As long as they remain awake, they emit light: But they are vigorous only in the Night.
16. One more Infect of the Fly kind, we cannot pafs by unnoticed: The Epbemeron, or Fly that lives but Part of a Day. It appears ufually about Midfummer. It is produced about Six in the Evening, and dies about Eleven. But before it becomes a Fly, it exifts three Years as a Worm in a Clay Cafe. It never eats from the time of its Change to its Death, nor has any Organs for receiving or digefting Food. The Bufinefs of its Life is fummed up in few Words. As foon as it has dropt its Clay-Coat, the poor, little Animal being now light and agile, fpends the reft of its Chort, winged State, in friking over the Waters. During tbis the Female being impregnated, drops her Eggs upon the Water. Thefe fink to the bottom, where they are
hatched by the heat of the Sun into little Worms, which make themfelves Cafes in the Clay, and feed on the fame, or on what the Waters afford, without any need of Parental Care. Thus they are Inhabitants of the Water, 'till the Time comes for fhaking off their Shell, and emerging into Air.
17. The Eggs of Butterfies do not increafe in Bulk while in the Body of the Female. As foon as they are impregnated by the Male, they are ready to be laid. But this requires fome time, both becaufe of their Number, and the Nicety with which fhe arranges them. This indeed is the whole Bufinefs of her Life. For when the are laid, the dies.

The Female does not depofit them at random, but fearches out that fort of Plant, which the Caterpillars can feed on as foon as they are hatched. Neither does fhe fcatter them irregularly and without order, but difpofes them with perfect Symmetry, and faftens them together by a vifcous Liquor difcharged fiom her own Entrails. And thofe Species whofe hinder Part is covered with long Hairs, gradually throw them all off, and therewith make a Neft, wherein the Eggs are kept fafely, 'till the time of their hatching.
18. Some Caterpillars are hatched in the Spring, as foon as the Leaves they are to be fed on begin to bud. After thirteen days, they change into Aurelix, and having paft three Weeks in that State, they iffue for:h winged, with all the Beauty of their Parents: Their Wings are fcarce dry, before they ftek to prepagate their Species. This dore, the Male dies. The Female lives only to depofit her Eggs, and then follows him. Nature never intending they hould eat in this State, bas given them no Organs for it : So that they would foon die of Hunger, could they efcape thofe great Devourers of them, tine Birds.

Caterpillars are of no Sex, it not being their bufiaefs to propagate, 'till they commence Butterfies. Yet many of them are not fo harmlefs as they feem; for they deftroy their Fellows, whenever they can. Put twenty Caterpillars of the Oak together in a Box, "ith a.fufficient Quansity of Leat es, their natural Food. Yet
their numbers will decreafe daily, 'till only one remains alive. The ftronger feizes the weaker by the Throat, and gives him a mortal Wound. When he is dead, the Murderer begins to eat him up, and leaves only the Skin with the Head and Feet. But this is not the Cafe of all. Many. Species live peaceably and comforrably together.

Yet even thefe are e:pofed to Dangers of a more $^{\text {en }}$ terrible kind. The Worms of feveral Sorts of Flies, continually prey upon them. Some are upon, fome under the Skin, and boilh eat up the poor, defencelefs Animal alive,

IT is furprizin ${ }^{\text {with }}$ what Induftry thefe little Creatures weave the Cales, in which they pafs their AureliaState. Some are made of Silk, mixt with their own Hair, with picces of Bark, Leaves, Wood or Paper. There is one fort that builds in Wood, and gives its Cafe an Hardnefs greater than that of the Wood itfelf. This is the Caterpilar of the Willow, which is one of thofe that eat their Exuvize. He has tharp teeth, wherewith he cuts the 'Wood into a number of fmall Fragments. Thefe he unites toge:her into a Cafe, by means of a peculiar Silk, which is a vifcous Juice that hardens as it dries. In order to make this Silk thithe very Subflance of the Fragments, he moiftens every one of them, by holding them fucce? fively in his Mouth, for a confiderable time. In this firm cafe he is afterward to be included till he becomes a Butterfly. But how fhall a Creature of this helplefs kind, which bas neither Legs to dig, nor T'eeth to gnaw, get out of fo firm and flrong a Lodgment as that wherein it is hatched? Nature has provided for this alro. As foon as it is hatched, it difcharges a fiquor which diffolves the vifcous Matter that holds the Cafe together, fo that the Fragments fall in pieces of themfelves. And accordingly, near its Mouth, there is always found a Bladder of the Size of a fmall Pea, full of this Liquor.

Some Caterpillars fpin all the way they walk, a thread of Silk which marks their Journey. Now what End does this ferve? A little Obfervation will fhew. Trace one of them till he chances to fall, and you will fee the

Ufe of this thread. Being faftened to the Leaves and Twigs, it ftops the Creatures Fall. Nor is this all. It can alfo by means of this Thread, re-afcend to the Place from whence it fell. And when it is fafe got up again, it continues its Motion as before.

Another curious Artifice is that by which the fame Species of che Caterpillars makes themfelves Cafes of Leaves before they change into Aurelix. The niceft Hands could not roll thefe up fo elegantly, as they do without Hands or any thing like them. They perform it thus. The Caterpillar places itfelf on the upper Side of a Leaf, fo far from the Edge that he can reach it with his Head. Tarning himfelf round, he then brings the Edge of the Leaf, to the the point juft oppofite to it. It next draws lines from this Edge of the Leaf to that Point: And doing this all the way along the Leaf, its narrownefs toward the Point make's it form a clofe Cafe there. It frengthens the firft bending of the Leaf, by many parallel threads, and then faftening other threads to the back part of the Leaf, draws them as tight as it can. The Cafe is then formed. The fame Method repeated makes the additional Cafes, five or fix over each other. And every one of thefe is fufficiently ftrong, fo as to make the inner ones ufelefs. He then enters his Cell, and undergoes his Change. Meantime his Covering ferves him alfo for Food. For fo long as he has need to eat, he may feed upon the Walls of his Caftle : All of which may be eaten away, except the outer one of all. Probably every Caterpillar makes his Cafe thick enough, to ferve the neceflary Calls of his future Hunger.

MANY Species of Butterfices lay a great number of Eggs in the fame place. Thefe all hatch very nearly at the fame time. And one would naturaliy fuppofe, that the young Brood of all, would be inclined to continue and live together. But it is not fo, the different Species have different inclinations. Some keep togecher from the time they are hatched, till they change into Aureliz. Others feparate as foon as able to crawl, and hunt their fortune fingle. And others live in Community till a certain time, and then each mifts for itfelf.

Thofe that live wholly together, begin by forming a Line with their little Bodies upon a Leaf; their Heads all ftanding even, and in this manner they move and eat together. And often there are feveral Ranges of this fort, which makes fo many Phalanxes, and eat into the leaf they fland on, with perfect Equality.

Many do this while young, which when they grow large, make one common Habitation, furrounded by a Web, which is the joint Work of all: Within which, each has a Neff of its.own Spinning.

When they have made their common Lodging, each takes its courfe over the Tree or Bufh for Food. Thus many hundreds of them form a regular Republic. The reparate Cell of each, is finally the place, where it paffes its Change into the Aurelia and perfect State. But nany Species co not feparate even then: but are found in their Aurelia-State all huddled ragether, numbers of their Cafer making one confufed Mals.

Ons thing more is bighly obfervable in them, The Regularity of their Marches. They ave exactly obedient to their Chief. When they change their Quarters, one marches fingle fir n . Two others follow, and keep their Bodies very nicely in the fame pofition with his. Afier thefe there follows a large Party. Thefe regulate their Motions by the former. And fo the Order is continued, thro' the whole Company. When the Leader turns to the right or left, the whole Body does the fame inflantly. When he ftops, they all immediately nop, and march again the moment he advances.
19. The Outward Covering of the Body is, in many Animals changed feveral times: But in nove more frequently than the Caterpillar. Moft of thefe throw it of at leaft once in Ten days. Indeed in the whole Infect Clafs, the molt numerous of all animated Beings, there is fcarce one which does not caft its Skin, at lealt cnce, before it arrives at its full Growth. But the Caterpillar changes more than his Skin: Even the outward Covering of every, the minuteft Part of its Body. And what they throw off has the Appearance of a compleat Infect, prefenting us with all the external Parts of a living Animal. If the Caterpillar be of the hairy kind,
the Skin it throws off is hairy, containing theCovering of e veryHair. And even theClaws and otherPartsthat are not vifible without a Microfcope, are as plain in this as in the living Animal. But what is more amazing is, that the folid Parts of the Head, the Skull and Teeth are diftinguifhable therein. The throwing off an old Skull and 'T'eeth, to make way for new ones, is an Act beyond all Comprehenfion! A day or two before, the Creature refufes to eat, and walks very flowly, or not at all. He turns from fide to fide, and often raifes his Beak, and gently depreffes it again. He frequently raifes his Head, and frikes it down rudely againft any thing he ftands upon Frequently the Fore-part of the Body is raifed from the place, and thruft very brikly backward and forward, three or four times together. There are likewife diftinct Motions within every Ring. Thefe are feverally inflated and contracted alternately, by which the Skin is loofened from them; till by this means, and its remaining without Food, the Body is quite difengeged from its Covering.

When this time approaches, all the Colours of the Skin grow faint and lofe their Beauty, receiving no Nourifhment from the Body. And as the Creature continues fwelling and fhrinking, the Skin, being ne longer fupple, cracks along his back. The Crack always begins, at tre fecond or third Ring, from the Head. As it opens, the New Skin is feen within. This Opening he eafily inlarges, thrufting his Body like a Wedge, out of the Slit, till he lengthens it thro' four Rings. Then he has room to draw out the whole Body. Firft, the Head is by feveral Motions loofened, drawn out of the old Skull, and raifed thro' the Crack : This is then laid foftly on the old Skin of the Part. By the fame Motions the Tail End is difengaged, drawn out and laid fmoothly on the old Skin. Ittakes the Animal feveral Days, to prepare for the laft Operation. But when the Crack is once made, the whole remaining Work is done in lefs than a minute.

The Hairs found on the caft Skins of the hairy Caterpillars feem at firf, like the other Part of the Exuvix, to be only the Covering of the Hairs inclufed. But that

(203)

is not the Cafe. They are folid things themfelves, not barely Coverings. In truth, the Creature when firt hatched, has all its Skins perfectly formed, one under another, each furnifhed with its Hairs, fo that the old ones fall off with the old Skins. And probably the erecting thefe is one great Means of forcing off the old Skins.

Perhaps the fame fort of Mechanifm is ufed even by thofe Caterpillars, which do not appear to be hairy. For they really are fo, as the Mifcrofcope fhews. When the upper Skin of one jult ready to change, is lit longitudinally in the place where the Crack would be, the Skin may be taken off; and it is eafily feen, how the New One lies below. The Hairs are difpofed in the niceft manner, for lying fmooth under the Upper Skin. They grow in feparate Tuffs, which never lie upon one another, but together form one Surface.

Ir is remarkable, That immediately after this Change they appear much larger than they did before. And they really are fo. The very Head and Skull are greatly larger than before the Change. The Operation of the Cray-fifh in changing its Shell, may explain this. This alfo is found confiderably larger, when out of the Shell than before. In both Cafes, the Body had grown fo much, that it was too big for its Covering. However while it remained in it, the Parts were compreft, and forced to lie in that narrow Room. But as foon as that Covering is off, every Part ditends itfelf to its proper Size.

Indeed fo large a Skull, being a hard Subflance in the Caterpillar, could not have been compref into a fmaller. But the fact is, the New Skull never hardens till the Change approaches, and then imperfectly. At the fame time it neceflarily takes from the place it is in, an oblong Form. In this Shape it is found a few-Hours before the Old Skin is caft off; not inclofed within it, but extended under the Skin of the firt Ring of theBody. When the Old Skull is thrown off, the new one foon hardens and takes its proper Figure.

We call the Creature hatched from the Egg of a Butterfly, a Caterpillar. But it is a real Butterfly all that time. A Caterpillar changes its Skin four or five times,
and when if throws offone, appears in another of the fame form. But when it throw's of the lant, as it is now fo perfect; as to nced no farther Nourifhment, fo there is no farther meed of Teeth, or any other Parts of a Ca. terpillar.
'Tr's plain from hence, that the Change of a Caterpillar into an Aurelia, is not the Work of a moment, but is carrying on, from the very time of its hatching from the Egg. Bat, while the Butterfly lies in the Body of the Caterpillar, its Wings are long and narrow, and wound up into the form of a-Cord, and the Feelers are rolled up on the Head. The Trunk alfo is twifted up and laid on' the Head, but in a very different manner, from what it is in the perfect Animal; or indeed in the Aurelia.

A Burterfly then in allits Parts, is in the Cater-: pillar in all its States. But it is more eafily traced, as it comes nearer the time of being changed into an Aurelia. The very Eggs hereafter to be laid by the Butterfly, are to be found not only in the Aurelia, but even in the. Caterpillar, all arranged in their natural, regular Order: In the Caterpillar indeed they are tranfparent : But inthe Aurelia, they have their proper Colour.
As foon as the Limbs of the Butterfly are fit to be expofed to the more open Air, they are thrown out from the Body of the Caterpillar, furrounded only with thin: Membranes. And as foon as they arrive at a proper degree of Strength and Solidity, they break thro' thefe and appear in their perfect Form.

The Animal then creeps a little on, and there refts: . The Wings being quite folded up. But by degrees they expand, and in lefs than half an hour, appear in all : their Beauty.

20. The

[^18]20. The Ant fays Eggs hike Fies, fitm whith ate hatected fmall Worms without Legs. Thefe are fharp at orte end, and blunt at the other : After a fliott time they change into large, whife Atrelite ; HAgarly called fints-Eggs: Wfieteas they are larger than the Ants themefelves. They move thefe at their pleafurc. When
 of Stme Vdegerables, that new y' perfect Polypes dorpetiually griok Wike Brapehes from the Trunk of the Parent. Yea, if a Polype be cut in pieces, every Piece will grow into a perfect Polype..
 opportomity of fecing feveral bratichea Cotallintec, alige in Sod-watet, By the help of $\&$ cormatodious Mierofcope, and wis fully zffiencl, that thefe applifent Plantes wese real Animalsy in theit proper Cafee, which were fixt to the Shells of Oyfers and other tmall Shell-fid. And at Brigbtbelmfonic, 1 faw thófe Coralithes in morion, whole Fostypts's aire crntained in Oups, fappotita by a lotig Sienh that apppenfs Horr of Ringety or twifled in form of accent. In the middle of cte tantifarent Steher or Gafed, I coutd effily, difeern the throat-like cender Pase of the Animals.

On feveral Parts of thefe Corallifes there are little Bodies, which thro the Micicrofcope a appeetr as fo many Bladders. Tht the ufe of thefe I was quite a Atringter befote; but I how Afocvetud, they ateHabituione of young Polypits, which are produced here and there on the fides of the Pareftry astin tre freft-water Polype: Omly in the marine ones they art protected by this veficular Covering. Thefe V eficles appeear at a certàiñ feafon of the Year, àecoraing to the offeremt Species of Coralinnte,
 airride at dataturity.

B甘' Corathinds are Cafos not of Potypen only, but of various Sorts of Animals: Which occafions their being tuade of various Materials, and in great Variety of Pormis. Some are united clofity and compactly together, forming jrregular Brinches, fike Treed. Othets rife in Tuffi; lifie the dibular Sott of Plants; dininet froti ghe inculter. Some Matrefe Corathnes are of a peculiay kintd. The Anintalis inclofed in thefe, refemble the mary-legged Spidors, ufaally known by the name of Scolipendiä. Their outfide Coats ate
 interr Coat, which is tough, Horiny, teinlpareht, wad oxtremely singott. The Cavity of the Tube is guike round; tho' the Aiplinal is' 'f 'a long' Figures like a Leech extenided. It can tutn itreff in chis Tubej and move up and down the better to attack and fecure its Prey.

It has tuo reroarkable Aimbs. The Left muctif farget thin the Right. Thieffe aft dolubly featicted. The number of its Feet on enfilide fide the Body exceeds an hundred and fifty.
an Ant's Neft is difturbed, and the Aurelix fcattered abroad, the Ants are at infinite pains to gather them and make them a Neft again. Nay, thofe of one Neft will often do this for the Aurelix of another.
At the bottom of an Ant's Neft, which is built ivith fmall pieces of dry Earth, there is always a large Quantity of Eggs, Worms and Aurelia.. The Aurelixe are covered only with a thin Skin, and if opened thew the Ant in its feveral Stages toward Perfection.

In every Neft, as in every Bee-hive, there are three kinds of the Infeet, Males, Females, and working Ants, or Labourers. Thefe laft are neither, Male nor Pemale, nor have any Bufinefs, but taking care of the young Brood. Male Ants have four Wings and three lucid Points on their Head, and their Eyes are larger than thofe of the Females, or Labourers. They are not found in the Nefts at all Seafons, but only at particular times. It feems they are killed, (like Drone Bees) as foon as the Seafon for impregnating the Females is over. : The Body of the Female is larger and thicker than that of the Male, or Labourer; and contains a great number of Eggs, placed in regular lines. She has alio the three lucid Points on her Head, which feem to be three Eyes.

The Ant examined by the Microfcope appears a very beautiful Creature. Its Head is adorned with two Horns, each having twelve Points. Its Jaws are indented with feven little Teeth, which exactly tally. They open fideways exceeding wide, by which means the 'Ant is often feen grafping and carrying away Bodies of three times 2 lla own Bulk. It is naturally divided into the Head, the Breaft and the Belly, each joined to the other by a flender Ligament. From the Breaft proceed three Legs on each fide. The whole Body is caled over with a fort of Armour, fo hard as fcarce to be penetrated by a Lancet, and thick-fet with Chining, whitifh Brifes.
To prevent the fprouting of the Corn, the Ants cut off all the Buds, before they lay it up. Yet tho' the Buds are cut off, there remains another Difficulty. Corn under ground will fwell and rot. To prevent this they have an Expedient, whereby it is kept as dry in
their Nefts as in our Granaries. They bring it out about Noon every Day, and fpread it near their Neft, in little Heaps, on a kind of dry Earth, provided for that purpofe. They carry it back at Night to their Magazine. But it is obfervable, they never bring it out, unlefs in a Day that promifes to be fair. In the Prognofticks of this they thew great Sagacity. Where it is dangerous to expofe their Riches in the Day time, by reafon of the Birds, they vary their Rule, bringing it out in the Night, and carrying it back in the Morning.

They fcout roond the Country in queft of Corn. Sometimes they find none. However none returns empty. One brings a Grain of Wheat; Another, of Rye or Oats. A third, if he find nothing elfe, a particle of dry Earth, to lay the Corn opon.

They do not eat at all in Winter, but fleep like molt other Infects. So that the Provifion they make in Summer is intended, not for themelves but for their Young: There is a ftrait Hole in every Ants Neft, about half an inch deep; after which it goes floping into their Magazine, which is a different Place from that where they eat and reft. Over the Hole they lay a flat Stone or Tile, to fecure them from their great Enemy, the Rain. Ia a fair Day, the Hole is open; but when they forefee it will rain, and every Night, the Cover is drawnover, with great Ingenuity as well as Labour. Fifty of the ftrongeft of them furround the Stone, and draw and fhove in Concert. The like pains they take every Morning, to thruft it back again.

An Ant never goes into any Neft but her own ; if the did, the would be feverely punifhed. And if the returned again after this Warning, the others would tear her in pieces. Therefore they never attempt it, but in the laft Extremity: Sometimes they will rather faffer themfelves to be taken.

Anrs do not bite, as is vulgarly fuppofed. But Red Ants have 2 Sting, which exprefles a corrofive Liquor, that raifes a flight Inflammation. The black Antshave no Sting.
O_{N} opening an Ant-hill, a great Quantity of Eggs is ufually found. They look like the Scatterings of fine

(208)

Salt, and ane too minote to be feen difinally hy the naked. Eye. Thro' a Micmpcoppe they appear like the Eggs of frall Birds, and are as clear as bbe Air-bledder of Fithes. They lie in Clutters under coner of fome light Earth, The Anss feem to brood over them, cill eyefy Granule. f hatehed into a Worm, not much large then a Mite. If a thort time thefe tyen yellowidh and baiy end grow 50 near as big as their Pareat. They then get a whitioh Fi\#p over them, and are of,ap pual Form. If this Cover be opened after fame Days, all the thineamenty of. an Ans may he traced; : tho 'sbe whole is trapfparent. exxept the Eyefs which arf two dark Specks.

The Care theff Creaturne take of decir Young is amazn ing. Wheneyer a Hill i\& difurbed, all the Ants ant found bufy, in confulting the Safety, not of themfedve4 but of their Qffspring. They garty them out of fighe as foon as poofible; and will de if pyer and over, az offea as they are diffurhed. They carry the Eggs and Worms topacther ip theis beate : - Bot as, fapa as the Danger ip over - they ccyefully feparate them. and place each by themp位ves. under heliter of different kinds, and ar karim
 which sheir different Staves require
In the Summer they every. Morning bring ap the Aur relix near the Surface of the Earch And from Ten in the Morning till about five in the Affernomn, they may be found juaf ponder the Surface. Bur if you fearch a Ejght in the Evening, they will be found to have garn ried them all down. And if raing Weathef be coming on, they lodgo them at lealt a foot deep.
21. One of the molt dreadful Enemies of the Ants in the Formica-keo or $A \mathrm{~mm}$-Eater: It is foft $2 \mathrm{~s} a$ Spider, bus has in its Form fome refemblancy of a Wood.loure. It Body is compofed of feveral Rings: It has fix Lege, fayt joined to the Breaft; and the other Twa toa long Part which may be termed the Neck. Iu Head is fman and flat, and it has two remarkable Horns ; the Sixach of an jnch long, as chick as a Hair, hard, hollow and hooked at the End. At the origin of each of thele Horas, is bas a clear and bright black Eyfo
He_{E} is not able to hunt after Prey, nor to deftroy large Irfects. He can only infnare fuch as come by his Habitation, and of thefe, few are fuch as he can manage. All the winged Tribe efcape by flight, and thofe that have hard Shells are of no ufe to him, the Snallinefs of the Ant, and its want of Wings, make it his deftined Prey. The Manner wherein he proceeds is this. He ufually incamps under. an old Wall for Shelter, and always chufes a place where the Soil is compofed of a light, dry Sand. In this he makes a Pit in fhape of a Funnel, which he does in the following manner.

If he intends the Pit to be but fmall, he thrufts his hinder Parts into the Sand, and by degrees works himfelf into it. When he is deep enough, he tofles out with his Head the loofe Sand which is run down, artfully throwing it off, beyond the Edges of the Pit. Then he lies at the bottom of the fmall Hollow, which comes lloping down to his Body.

But if he is to makea litger Pit, he firf traces a larger Circle in the Sand. Then he buries himfelf in it, and carefully throws off the Sand, beyond the Circle. Thus he continues running down backward in a fpiral Line, and throwing off the Sand above him all the way, till he comes to the point of the hollow Cone, which he has formed by his Paffage. The length of his Neck and the Flatnefs of his Head, enable him to ufe the whole as a Spade. And his Strength is fo great, that be can throw a Quantity of Sand, to fix Inches diftance. He likewife throws away the remains of the Animals he haa devoured, that they may not fright other Creatures of the fame Species.

Whbre the Sand is unmixt, he makes and repairs his Pit with great Eafe. But it is not fo, where other Sub ftances are mixt with it. If when he has half formed his pit, he comes to a flone not too large, he goes on, leaving that to the laft. When the Pit is finifhed, he creeps up backward to the Stone, and getting his backfide under it, takes great pains to get it on a true poife, and then creeps backeward with ii, to the top of the Pit.

We may often fee one thus labouring at a Stone four times as big as his own body. .And as it can only move S 3 back-

Dggtreoc by Google
back-ward, and the poife is hard to keep, efpecially up a Alope of crumbly Sand, the Stone frequently lips when near the verge, and rolls down to the bottom. In this Cafe he attacks it again, and is not difcouraged by five. or fix Mifcarriages ; but attempts it again, till at length he gets it over the verge of his place. Yet he does noe leave it there, lea it thould roll in again, but always removes it to a convenient Diftance.

When his pit is finihed, he baries bimfelf at the bottom of it in the Sand, keaving no part above it, bot the tips of his Horns, which he extends to the two Sides of the pit. Thas he waits for his Prey. If an Ant walk on the edge of his pit, it throws down a litte of the Sand. T'his gives notice, to tofs up the Sand from his Head on the Ant; of which he throws more and more, till he brings him dowa to the bottom, between his Horns. Thefe he then phunges into the Ant, and baving fucked all the blood, throws out the Skin as far as poffible. This done he moants up the Edges of his Pit, and if they have fuffered any Injary, repairs it carefully. He then immediacely buries himfeff again in the Center, wo wair for anoither Meal.

Thns Cereatase has no Mouth, but it is theo' its Horns that ix seceives all ixo Nourithocent. And as they are fa meceefieny fos its Liffe, Natire has provided for the reftoring them, in vafe of Accidents: So that if thay are can ef, they foon grow xgain.

When be has lived his Stated time, he bames his ping, and is only fedn daxuing traces on the Sand. Afiver this We buries hizafelf under itt, sand jaciofes himfolf in ale Cafe. This is made of a fort of Silk with Grains of samed con menesed rogedier by a glatinous Elumoar which he emits. But this woatd be too barh for his Body: So it forvers only for the Outward Covering. He fpins withie it Ono of pure, finie, peast-ollowred Silk, which covers hie whole Eody. When he has hais fometime in this Cafo he whows off his outer Skin, wixh tise Eyes, the Horns and an other exterior Parts, and becomes an oblong Worm, in which may be traced the form of the future Fiy. Thro' its tranfparent Skin may be feen, new Eyes, now Homs and all other Pars ef che perfect Animal. This

Worm makes its way about half out of the Cafe, and fo remains, without farther Life or Motion, 'ill the perfect Fiy makes its way out of a sidi in the back. Is mach refembles the Dragon-fly. The Mate then couples with the Pemule atd dies.
22. Thz Sagacity of Bees im making their Cembor cannot be too mact adinired The L, ithour is offribued fegularty among thent. Tle fime Bees, Cometimes carry the Wax in their Jaws, and moiten to with a Liquor which they difil upon it, and fometimies boikd the Walls of their Cells. Bat they that form the Cells, never polifh them. Others make the Angles exaet, and fimooth the Sarface. The bits of Wax which ave fraped off in doing this; others pick up, that none may be loft.

Those that polifh, work longer than thofe that build the Wals; Polifting not being folaborious a Work as butilding. They begin the Comb at the rop of the Hive, faltning it to the moft folid Part thereof. Hence they: continue is from top to bottom; and from Side to fide. And to make it more fulid, they add a kind of tempered. W/ax, pretty much like Glew. The Cells are always. Six-fided : A Figure, which befide the Advantage it has in common with the Square, of leaviag no Vacancies. between the Celts, has this peculiar to itfelf, that it init Adudes a greater Space within the fame Surface than any: other Figure.

Howey exfudes from all forts of Flowers, the bittereft not excepted, if they have any Utricle at the bettom of che Flower-leave:; for there ctriefly it is todged: The Bee thrufting in his trunk fucks it out, into a fmall BlaidIer in his Belly. When this is foll he returns, enters. one of the Celts, and diffluatges it there, thro his Mouth, which the then operss wide, moving his Head at the fame time.to and fro. If a Drop be ill placed, he furks it up again, and difcharges it anew. When a Cellis filled, they ftop is up with Wax.

It is a grand Queftion, Is there any Part of a Plant without Iron? It is certain, Honey is not. And if fo delicate an extrat from the fineft Part of Flowers, and that farther elaborated in the bowels of the Infect: If: this be not without Iron, we may delpair of feeing any Partfo.

The Sting of a Bee or Wafp is a curious piece of Work. It is an hollow Tube, within which, as in 2 Sheath, are two Tharp-bearded Spears. A Walp's Sting has Eight Beards on the Side of each Spear, fomewhat like the Beards of Fifh-hooks. Thefe Spears in the Sheath lie one with its Point a little before that of the other. One is firf darted into the Flefh, which being fixt, by means of its foremof Beard, the other ftrikes in too, and fo they alternately pierce deeper, the Beards taking more and more hold in the flefh: Afterward the Sheath follows, to convey the poifon into the Wound. When the Beards are lodged deep in the Flefh, Bees often leave their Stings behind them, if they are difturbed, before they have time, to withdraw their Spears into their Scabbard.

The Queen-Bee is fomewhat larger, confiderably longer, and of a brighter Red than Others. Her Office is, to direct and lead the Swarm, and to raife a new Breed. She brings forth Ten, Fifteen, or Twenty Thoufand young ones in a Year: So that She may literally he faid to be the Motber of her People. In an Hive of Eight or Ten Thoufand, there is ufually but One Queen Bee.

Drones, or Males have no Stings, and are larger and darker-coloured than the working Bees. The Eggs for them are placed in a larger fort of Cells. They are alfo Nurfes to the Young Brood.

It is certain Bees forefee Rain, tho' we know not how. Hence no Bee is ever caught in a fudden Shower: Unlefs it be far diftant from the Hive, or any way hurt or fickly.

Thus much may be feen on the Outfide of the Hive. But when we look within, how in the Wonder increafed! To fee fo many thoufands all fo bufily at work, and with fuch admirable Regularity! Nor is there lefs wonder in obferving the Clulters of them, when they take fome reff. Their Method then is to get together, and hang one to another in valt Numbers. When thefe Cluaters are large, they are only chapelefs Heaps; when finaller, they aue a fort of Feftoon or Garland, each End bwiag faftened to the

Branch, and the middle dropping fropn it. The mape. ner in whig they hapg is this. Each with one or both of his Fore-legs lays hold of one or both of the Hindef-lege of the Ree that is nextabove it

Thro a Glafs-hixe we fee, that as the Copphs are. carried down from the top to the botpom of the Hive, each is placed parallgl to the former, but not touching it, there being a Space between for the Bees to. wally. Thefe ape their public Streets, and by mequs of thele they can make pife of exery Cell. T There ate: likewife Alleys cut from Strees to Street, thro the Subtance of the feveral Combs.

Adf the Gells axe ufed in compont Some of the contain gnly Honey, and are covgred with a Inid of. Wax. Thefe are never touched by any Bee. But other Cellis are qpen, and a Ber in often feen fo lodged ip ope of thefa, that puly its hinder Part appeara, The Meaning therepfis, each of thefe apen Cells conp tains at the botsom a Ree-Worme Certain Bees duly vifitt thefe, plunging their Heads into the feveral Cells, one after another.

Tha Fruitfulmefo of the Female is the lofs ftrapgos? when we confider the number of the Males. In any Hive there qre, at the \$eafon, feveral Hundreds: In: fomen, swa or thre thoufand. Thefo are the jpiant Fathers of the numerous Offspring, and when they. have dque thair Work, are all killed. The Wingcof. the Female reach only to the third Ring of her Body; Whereas thofe of all other Bees cover the whale Body, But tho' ine is thus eafy to be diftinguifhed, yet faw have aver feen a Quen-Bes: As the is always clofe: covered in the Hive.

Mr. Reaumur, defiring to try, how far the:Accounts given of the Hoqmage paid by the others to the Queen- Hee war, trup, caufed a Swarm of Bees to bo fwept down isto a Glafshaive. Among thefe thers was ane Fempale. She was faon difinguined by her: Shape, and the Shortnets of her Wings. For a while the weiked alone at the hottom of the Hive; the reft feeming to regard nothing but their own Safety. The Female after going twice or thrice up the fiden of the. Hives to the top of is, where they were bung, at late going

(214)

going in among the Clufter, brought down' about a dozen with her. Attended with thefe, the walked along nowly at the bottom of the Hive. But the reft continuing at the top, the went again and again, 'till they all came down and formed a Circle about her, leaving her a free Paffage wherever fhe turned to walk, and feeding her with the Honey they had gathered for themfelves.

The Hive was large enough for more than their Number. However the Female feemed to find, it would not be large enough for the Family the was to produce. So gathering them all about her, fhe went out and flew to a neighbouring Tree. All followed her, and formed a Clufter about her, in the common way.

The Bees follow their Queen wherever the goes. And if the be tied by one of the Legs to a Stick, xll the Swarm will gather in a Clufter about her, and by removing the Stick may be carried anty where.

Nature feems to have informed the commom Bees, that they are to bring up the Offspring of this Female. Therefore they ferve her in every thing. If by any means the is dirted, all the reft try who Shall clean her. And in cold Weather, they clufter together about her, to keep her warm. Nor do they shew this refpect to One Female only. Mr. Reaumur, at feveral times, put feveral Females, marked with different Colours, into the fame Swarm. And all thefe were, for a time, received as well as the proper Female.

The Swarm which leaves an old Hive, have ofren three or more Females. Thefe have their feveral Followers. And each with her Followers, were the number fufficient, would form a diftinet Swarm. As it is not, they all go into the fame Hive. But all, except one, are foon deffroyed. The reafon is, The working Bees of an Hive have enough to do to prepare Cells, for lodging the Eggs of one Female; and it would be impoffible for them, to prepare twice or shrice that number.

Sometimes in Two Parts of a Swarm, there are more than two Female Bees. In this cafe too, as foon as

(215)

shey are lodged in the Hive, all are killed but One. Nature defigns but one Female for each Swarm. But as many things may deftroy, the Egg or Worm of this fingle Femaie, it was needful, that Provifion Mould be made for Accidents. So that there are often twenty Females which live to Maturity with the Bees of one Swarm. But One only is then (pared, whether they go out with the Swarm, or remain within.

As foon as the Swarm is gone out, the firf Work of the remaining Beas, is to deftroy the young Fe males. Thefe are all immediately killed and carried out of the Hive: and it is common, the Morning after the going out of a Swarm, to fee fix, eight ar more Female Bees, lying dead at fome diftance from the Hive. What determines the Bees in favour of One, is her having Eggs ready to be hatched. Accordingly if new made Cells be examined, fhe will be found the very next day, to have laid Eggs in many, if not all. Whereas if the Bodies of the rejected Females be examined, there will be found either no Eggs at all, or Eggs fo extremely minute, that it muft have been a long time before any could have been laid.

It is not at all times however, that the Bees are .thus cruel to the fupernumerary Females; but only at : the time when they are newly eftablifhed in their Ha.bitation, and in Want of all things. At other times -they are as kind to Atrange Females as to their owin. Mr, Reaumur tried the Experiment, by putting a ftrange Female into a Hive, where the Combs were perfect, and filled with Honey. And the Bees thewed the fame Refpect to Her, as to their proper Sovereign.

The Wax is furnifhed by the Farina or Meal of Flowers; the Honey, by certain Veficles, near the Bafis of the Flower-leaves, which continually fecrete - fweet Juice. From thefe the Bee fucks either Honey, or a Juice of fuch a Nature as will produce. Honey. under her Management.

The Common Food of the Bee is the Farina of Flowers: A great Part of which after it has ferved them forNourihment, is thrown oat at theirMouths in
form of Wax: 'The' Honey defofited in choir wamo Cells, is for Food when ithey cannot go abroad to fearch for orher Foot.

The Boe that comes loaded to any GeH, foon dif--tharges his Honey into it. No footer is hd gone, than alrocter conkee, and fo odiy till the whote Cell is fithed. Bot that which lies uppermoft is always- of a different Appeanance from the reft of the Honey. It is a kind of Cream, which both keeps the Hosey moif, and prevents its running outt by Accident

Thats Cruft or Croam was not, as one wound think, voided laft, buti was gathering frón the firt. For the Bee which comes loaded to the Call, does mot at once difclauge his Honey; but ontering inted it as *eep do may be, thrufts out his fore-legs, and pierees an Hode thro the Cruft. Keeping thits open with his ftet, tie difgorges the Honey in large Drops from his Mouth. He men clofes the Hole, and this is:vogitarly doas by every Bee that conoributes to the common Stoke.
Bow every Bec that comes loaded to the Hive, does not depofiz his: blotey in the Cell. Thdy ofter dtypofe of ic by the way. Inftead of going to aty Gell, they often go to thofe that are at work and caill thom to feed upon the Honey they have brought, that they may not be obliged to interant their Works on the atsourv of Haniger. Thefe feed on the flone of the friendly Bee, by putting their Trurik into her Mouth, exactly in the fame maniter as olieg do, into the botcons of Ploweys.

Sonve Cells in every Hive comtain Honey for immediante Confumptions, as in oafe of bad Weather. And there are aliways dpen at the top. Others eoneain chete Provifion for the Wimer. Thefe ave all clofed down with a frong kid, mot eaffy to be reHovel. Such is the Wifdom which the Great Authyr of Nature has. imparted to fome of the soof ineonfcerable of his Creatures!

C H A P. VI.

General Obfervations and Reflections.

1:

AS to the Number of Animals, The-Species of Beafts, including alfo Serpents, are not very numerous. Such as are certainly known and clearly defcribed, are not above an hundred and fifty. And yet probably not many that are of any confiderable Bignefs, have efcaped the Notice of the Curious.

Thb Species of Birds, known and defcribed are near five Hundred, and the Species of Fißes, fecluding Shell-fifh, as many: But if the Sbell-fik are taken in, above fix times the Number. How many of each Genus remain undifcovered, we cannot very nearly conjecture. But we may fuppofe, the whole Sum of Beafts and Birds to exceed by a Third Part, and Fifhes by one Half, thofe that are known.

The Infects, taking in the Exfanguious, both terreftrial and aquatic, may for number vie even with Plants themfelves. The Exfanguious alone, by what Dr. Lifier has obferved amd delineated, we may conjecture cannot be lefs (if not many more) than three thoufand Species. Indeed this Computation feems to be much too low : for if there are a thoufand Species in this LAand and the Sea near it ; and if the fame proportion hold between the Infects native of England, and thofe of the reft of the World (about a Tenth :) The Species of Infects' on the whole Globe, will amount to Ten thoufand.

Now if the number of Creatures even in this lower World, be fo exceeding great ; How great, how immenfe muit be the Power and Wifdom of Him that formed them All! For as it argues far moreskill in an Artificer, to be able to frame both Clocks and Watches and Pumps and many other Sorts of MaVol. I. T chines,
thines, than he could difplay in making bat one of thofe Sorts of Eigines: So the Almighty declares more of his Wifdom, in forming fuch a multitude of different Sorts of Creatures, and all with admirable and unreprovable Art, than if he had created but a few.
2. Again. The fame Superiority of Knowledge would be difplayed; by contriving Engines for the fame Purpofes after different Fafhions, as the moving Clocks or other Engines by Springs inftead of Weights: And the infinitely wife Creator, has hewn by many Inflances, that he is not confined to one only Inftrument, for the working one Effect, but can perform the fame thing by divers Means. So tho' moft flying Creatures have Feathers, yet hath he enabled feveral to fly without them, as the Bat, one fort of Lizard, two forts of Fifhes, and numberlefs Infects. In like mahner, altho' the Air-bladder in Fifhes feim neceffary for Swimming: Yet are many fo formed as to fiwim withour it, as firf the Cartilaginous kind, u hich neverthelefis do afcend and defcend at pleafure, altho' by what means we cannot tell. Secondly, The Cetaceous kind: The Air which they receive into their Lungs, in fome meafure anfwering the fame End.
Y_{ET} again. Tho' God has tempered the Blood and Bodies of moft Fifhes to their cold Element, yet to thew he can preferve a Creature as hot as Beafts themfelves in the coldeft Water, he has placed variety of thefe Cetaceous Fifhes in the Northermoft Seas. And the copious Fat wherewith their Body isinclofed, by reflecting the internal Heat, and keeping off the external Coldf, keeps them warm even in the neighbourhood of the Pole.
Another Proof that God can by different Means produce the fame Effect, is the various Ways of extracting the Nutritious Juice out of the Aliment in various Creatures.

In Man and Beafis the Food, firf chewed; is received into the Stomach, where it is concofted and reduced into Chyle, and fo evacuated into the Inteffines, where, being mixt with the Choler and Pancreatic

Juice, it is farther fubtilized, and rendered fo fluid, that its finer Parts eafily enter the Mouth of the Lacteal Veins.

In Birds there is no chewing: But in fuch as are not Carnivorous, it is immediately fwallowed into the Crop, or Anti-Stomach (which is obferved in many, efpecially pifcivorous Birds) where it is moiftened by fome proper Juice, and then transferred to the Gizzard, by the working of whofe Mufcles, affifted by frall Pebbles, which they fwallow for that purpofe, it is ground fmall, and fo tranfmitted to the Inteftiaes.

In oviparous Reptiles, and all kind of Serpents, there is neither Chewing nor Comminution in the Stomach; butthey fwallow Animals whole, fo they void the Skins tubroken, having extracted the nutritious Juices. Here, by the by, we may obferve the wonderful Dilatability of the Throats and Gullets of Serpents. Two entire adult Mice have been taken outof the Stomach of an Adder, whofe Neck was no bigger than one's little finger.

Fi/bes, which neither chew, nor grind their Meat, do, by means of a corrofive Juice in their Stomach, reduce Skin, Bones and all into Chyle. And yet this Juice fhews no Acidity to the Tafte. But how mild fo ever it taftes, it corrodes all animal Subftances, as Aquafortis does Iron.
3. Several eminent Men have been of Opinion, that all Brutes are mere Machines. This may be agreable enough to the Pride of Man ; but it is notagreeable to daily Obfervation. Do we not continually obferve in the Brutes which are round about us, a degree of Reafon? Many of their Actions cannot be accounted for without it : As that commonly noted of Dogs, that running before their Mafters, they will ftop at a Parting of the Road, 'till they fee which way their Mafters take. And when they have gotten what they fear will be taken from them, they run away and hide it. Nay, what account can be given, why a Dog being to leap on a Table, which he fees he cannot reach at once, if a Stool or Chair flands near it,
firt mounts That, and thence proceeds to the T'able ? If he were mere Clock-work, and his Motion caufed by a material Spring, that' Spring being once fet to work, would carry the Machine in a right Line, toward the Object that put it in motion.

Were it true, that Brutes were mere Machings, they could have no Perception of Pleafure or Pain. But how contrary is this, to the doleful Significations they give, when beaten or tormented ? How contrary to the common Senfe of Mankiad ? For do we not all naturally pity them, apprehending them to feel Pain juft as we do? Whereas no man is trquibled to fee a Plant torn, or cut, or mangled how you pleafe. And how contrary to Scripture ? A rigbteous man regardeth the life of bis beaft: but the terdetr mercies of the wicked are cruel: Prov. xii. !o. The former Claufe is, ufually rendered, A good man is'mercifill to bis beaff. And this is the true rendering, as appears by the oppofite Claufe, That the wicked is cruill. Cruelty then may be exercifed toward Beafts. But this could not be, were they mere Machines.
4. The Natural Infing of all Creatures, and the fpecial Provition made for fome of the uroft helplefs, do in a particułar manner demonftrate the great Crear: tor's Care.
first, What an admirable Principle is the Nat. tural Affection of all Creatures toward their Young! Fy means of this, with what care do they nurfe them: up, thinking no pains too great to te taken for them, no Danger too great to be ventured upon, for theirGuard, and Security!'How will they carefs them: with their Affectionate Notes, put Food into their Mouths, fuckle them, cherih and keep them warm, teach them to pick, and eat, and gatherfood for theme felves: And in a word, perform the whole Part of fo: many Nurfes, deputed by the fovereign Lord of the World, to help fuch young and Miftefs Creatures, till they are able to fhift for themfelves.

Other Animals, Infects in particular, whofe Offfpring is too numerous for the Parent's Provifion, are fo generated, as to need none of their Care. For they arrive
arrive immediately at their perfect State, and fo are able to fhift for themfelves. Yet thus far the Parental Inflinet (equal to the mol rational Fore-fight) 'extends, that they do not drop their Eggs any where, but in commodious Places, fuitable to their Species. And fome includeng in their Nefts, fufficient and agreeable Food, to ferve their Young till they come to Maturity.

And for the Young themfelves. As the Parent is not able to carry them abcut, to cloath them and dandle them, as Man doth: How admirably is it contrived, that they can foon walk about, and begin to fhift for themfefves! How naturally do they huni for their Teat, fuck, pick and take in their proper Food!

On the other hand, the Young of Man, (as their Parent's Reafon is fufficient, to help, to nurfe, feed and cloath them) are born utterly helplefs, and are more abfolutely than any Creature, caft upon their Parent's Care.

Secondiy, What admirable Provifion is made for fome of the moft helplefs Creatures, at a time when they muft otherwife utterly perifh ! The Winter is an improper Seafon to afford Food to Infects and many other Animals. When the Fields, Trees and Plants are naked, and the Air is chilled with Froft ; what would become of fuch Animals, whofe tender Bodies are impatient of Cold: And who are nourifhed only by the Produce of the Spring or Summer? To prevent their total Deftruction, the wife Preferver of the World has fo ordered, that in the firft place, thofe which are impatient of Cold, fhould have fuch a peculiar Structure of Body, as during that Seafon, not to fuffer any Wafte, nor confequently need any Recruit. Hence many Sorts of Birds, and almoft all Infects, pafs the whole Winter without any Food. And moft of them without any Refpiration. It feems all Motion of the Animai Juices is extinct. For tho' cut in pieces. they do not awake, nor does any Fluid ooze ont at the Wound. This Sleep therefore is little lefs than Deaths T 3 and
and their Waking, than a Refurrection : When the returning Sun revives them and their Food together.

The next Provifion is for fuch Creatures as can bear the Cold, but would want Food. This is provided againft in Some, by a long Patience of Hunger, in Others by their wonderful Inftinct, in laying up Food before-hand, againft the approaching Winter. Py fome of thefe, their little Treafuries are at the proper Seafon well focked with Provifions. Yea, whole Fields are here and there befpread, with the Fruits of the neighbouring Trees, laid carefully up in the Earth and covered fafe, by provident little Animals.
5. And what a prodigious Act is it of the Creator's Indulgence, to the poor, flaiftlefs Irrationals, that they are all ready furnihed with fuch Cloatbing, as is proper to their Place and Bufinefs! With Hair, with Feathers; with Shells, or with firm Armature, all nicely accommodated, as well to the Element wherein they live, as to their Reveral Occafions there. To Beafts Hair is a commodious Cloathing; which together with the apt Texture of their Skin, fits them in all Weathers, to lie on the Ground, and to do their Service to Man. The thick and warm Fleeces of others, are a good Defence againft the Cold and Wet, and alfo a foft Bed: Yea, and to many a comfortable Covering for their tender Young.

And as Hair is a commodious Drefs for Beafts, foare Feathers for Birds. They are not only a good Guard againft Wet and Cold, but nicely placed every where on the Body, to give them an eafy Paffage thro the Air, and to waft them thro' that thin Mediun. How curious is their Texture for Lightnefs, and withall clofe and firm for Strength ! And where it is neceflary they fiould be filled, what a light, medullary Subfance are they filled with? So that even the ftrongeft Parts, far from being a load to the Body, rather help to make it light and buoyant. And how curiouny are the Vanes of the Feathers wrought, with capillary Filaments, neatly interwoven together, whiereby they are fufficiently clofe and ftrong, both to guard the Body againft the- Injuries of the Weather,
and to impower the Wings, like fo many Sails, to make ftrong Impuilfes on the Air in their Flight.

No lefs curious is the Cloathing of Reptiles. How: well adapted are the Rings of fome, and the Contortions of the Skin of others, not only: to fence the Body fufficiently, but to enable them to creep, to perforatethe Earth, and to perform all the Offices of their State, better than any other Covering?

Observe, for inflance, the Tegument oftio Eartbworms, made in the completeft manner, for making their Paffage thro' the Earth, wherever their Occafions lead them. Their Body is made throughout of frutal Rings, which have a curious Apparatus of Mufcles; that enable them with great Strength to dflate, extend or contract their whole Body. Each Ring is. likewife armed with ftiff, fharp Prickles, which they: can open at pleafure, or fhut clofe to their Body. Lafty, under their Skin there is a flimy Juice, which they emit, as occafion requires, to lubricate theBody, and facilitate their Paffage into the Earth. By all thefemeans they are enabled, with eafe and fpeed, to work themfelves into the Earth, which they could not do, were they covered with Hair, Feathers, Scales, or fuch Cloathing as any of the other Creatures.

How wifely likewife are the Inhabitants of the Waters cloathed! The Shells of fome Fi/bes, are a ftrong Guard to their tender Bodies, and confiftent enough with their flow Motion: While the Scales and Fins of others afford them an eafy and fwift Paflage thro" the Waters.
6. Admirable likewife is the Sagacity of BrateAnimals, in the Convenjency and Method of their Habitations. Their architectonic Skill herein, exceeds. all the Skill of Man. With what inimitable Art do fome of thefe poor, untaught Creatures, lay a parcei of rude, ugly Ssicks or Straws together! with what Curiofty do they line them within, year wind and place, every Hair, Feather or Lock of Wool, to guard and keep warm the tender Bodies, both of themelves and thẹir Young ? And with what Art do they thatch over and coat their Neft's without, to deceive the Eye
of the Spectators, as well as to guard and fence them againf the Injuries of the Weather?
Even Injecis, thofe little, weak, tender Creatures, what Artifts are they in building their Habitations? How does the Bee gather its Comb from various Flowers, the Walp from folid Timber? "With what Accuracy do other Infects perforate, the Earth, Wood, yea, Stone itfelf? Farther yet, With what Care and Neatnefs do moft of them line their Houfes within, and feal them up and fence them without? How artifically do others fold up the Leaves of Trees; Others glue light Bodies together, and make floating Houfes, to tranfport themfelves to and fro, as their various. Occafions require !
7. Another Inflance of the Wifdom of Him that made and governs the World we have in the Balance of Creatures., The whole Surface of the Terraqueous Globe, can afford Room and Support, to no more than a determinate Number of all Sorts of Creatures. And if they fhould increafe to double or treble the Number, they muft ftarve or devour one another. To keep the Balance even, the great Author of Nature has determined the Life of all Creatutes to fuch a Leng:h, and their Increafe to fuch a Number, proportioned to their Ufe in the World. The Life indeed of fome hurfful Creatures is long. of the Lion in particular. But then their Increafe is exceeding fmall: And by that means they do not overflock the World. On the other hand; where the Increafe is great, the Lives of thofe Creatures are generally fhort. And befide this, they are of great Ufe to Man, either for Food, or on other Occafions. This indeed hould be particularly obferved, as 2 fignal Inftance of Divine Providence, That ufeful Creatures are produced in great Plenty; Others in fmaller

[^19]frimaller numbers. The prodigious Increafe of Infects, both in and out of the Waters may exemplify the former Obfetvation. For innumerable Creatures feed upon thiem, and would perifh; wete it not for this Supply. And the latter is confirtied by what many have remarked, That Creatures of little Ufe; or by their Voracioufnefs pernicious, either feldom bring forth, or have but one or two at a Birth.
8. How remarkable is the Defirustion and Reparation of the whole Animal Creation? The Surtace of the Earth is the-inexhautlible Source wherice both Man and Beaft derive their Subfiftence. Whatever lives, lives on what vegetates, and Vegetables in their tuirn, live, on whatever has lived or vegetated. It is impoffibie for any thing to live, without deftroying fomething elfe. It is thas only that Animals can fubfift themfelves, and propagate their Species.

God in creatirg the firf individual of each" "pecies, Animal or Kegetable, not only gave a form to the Duit of the Earth; but a Principle of Life, inclofing in each, a greater or fmaller Quantity of Organical Particles, indeftructible, and common to all organized'Beings: Thefe pafs from Body to Body, fupporting the Life, and minifting to the Nutition and Growth of each. And when any Body is reduced to athes, thefe organical Patticles, on which Death hath no power, furvive and pafs into other Beings, binging with them Nourifftment and Life. Thus every production; every Renuvation, évery increafe by Ge. neration or Nutrition, fuppofe a preceding Deffructon, a Converfion of Subitance, an acceffion of thefe organtical Particles, which ever fubfitling in an equal. number, render Nature always equally full of Life.

The total Quantity of Life in the Univerie is therefbre perpetually the fame. And whatever Death feemis to dellroy, it deftroys no part of that primitive Life, which is diffufed thro' all organized Beings. Inttead of injuring Nature, it only caufes it to fhine with the greater Luffre. If Death is permitted to cut down Individuals, it is only, in order to make of the Univerfe, by the Reproduction of Beings, a theatre evercrouded, a spectacle ever new. But it is ne-
ver permitted to deftroy the moft inconfiderable Species.

That Beings may fucceed each other, it is neceffary that there be a Deftruction among them. Yet like a provident Mother, Nature in the midft of her inexhauftible abundance, has prevented any Wafte, by the few Species of carnivorous Animals, and the few Individuals of each Species; multiplying at the fame time both the Species and Individuals of thofe that feed on Herbage. In Vegetables fhe feems to be profufe, both with regard to the Number and Fertility of the Species.

In the Sea indeed all the Species are carnivorous. But tho' they are perpetually preying upon, they never deftroy each other, becaufe their Fruitfulnefs is equal to their Depredations.
" Thus thro' fucceffive Ages fands Firm fixt thy providential Care!
Pleafed with the Works of thy own hands. Thou doft the Waftes of Time repair."
9. I Add a few more Reflections on the World in general. The fame wife Being, who was pleafed to make Man, prepared for him alfo an Habitation, fo advantageoufly placed, that the Heavens and the reft of the Univerfe might ferve it both as an Ornament and a Covering. He conftructed likewife the Air which man was to breathe, and the Fire which was to fuftain his Life. He prepared alfo Metals, Salts and a!1 terreftrial Elements to renew and maintain throughout all Ages, whatever might be on any account neceffary for the Inhabitants of the Earth.

The fame Divine Ruler is manifef in all the Objects that compofe the Univerfe. It is he that caufed the Dry-land to a ppear, abuve the Surface of the Ocean, that gauged the Capacity of that amazing Refervoir, and proportioned it to the Fluid it contains. He collects the rifing Vapours and caufes them to diftill in gentle Showers. At his Command the Sun darts his inlivening Rays, and the Winds featter the noxious
noxious Effluvia, which if they were collected together might deftroy the Human Race.
H_{8} formed thofe Hills and lofty Mountains which receive and retain the Water within their bowels, in order to diffribute it with œconomy to the inhabitants of the Plains, and to give it fuch an impulfe, as might enable it to overcome the unevennefs of the lands, and convey it to the remoteft Habitations.

He foread under the Plains Beds of Clay or compact Earths, there to ftop the Waters, which after a great Rain, make their way, thro' innumerable little Paffages. Thefe Sheets of Water frequently remain in a level with the neighbouring Rivers, and fill our Wells with their redundancy, or as thofe fublide, flow into them again.

Hв proportioned the Variety of Plants in each Country, to the Exigences of the Inhabitants, and adapted the Variety of the Soils, to the Nature of thofe Plants.

He endued numerous Animals with mild Difpoftions, to make them the Domeftics of Man: And taught the other Animals to govern themfelves, with an averfion to Dependence, in order to continue their Species without loading Man with too many Cares.

If we more nearly furvey the Animal and Vegetable World, we find all Animals and Plants, have a certain and determined Form, which is invariably the fame. So that if a Monfler ever appear, it cannot propagace its kind, and introduce a new Species into the Univerfe. Great indeed is the Variety of organized Bodies. But their number is limited. Nor is it pofible to add a new Genus either of Plants or Animals, to thofe of which God has created the Germina, and determined the Form.

Tue fame Almighty Power, has created a precife namber of fimple Elements, effentially different from each other, and invariably the fame. . By thefe he varies the Scene of the Univerfe, and at the fame time prevents its Deffruction, by the very Immutability of the Nature and Number of thefe Elements. So that the World is for ever changed, and yet eternally the fame.

(228)

Yet if.we would account for the prigin of there: Elements, we are involved in endlefs Uncertainty. We can only fay, he who has appointed their different Ufes in all Ages, has rendered thofe Ufes infallible, by the impoffibility of either deftroying or increafing them.

Herein we read the Chara\&ters of his Powef, which is invariably obeyed ; of his Wifdom, which has abundantly provided for every thing, and of his tender Kinḍefs, toward Man for whom he has provided Services equally various and infallible. It is an additional Proof of his continual Care of his Creatures, that tho' every thing be compofed of fimple Elements, all placed within our reach, yet no power is able to deftroy the leaft Particle of them. Nothing but the fame Caufe which was able to give them birth, can annihilate them, or change their Nature. In truth, the Defign and Will of the Creator, is the only phyfical Caufe of the General CEconomy of the World: the only phyfical Caufe of every organized Body, every Germen that flourifhes in it ; the only phyfical Caufe of every minute, elementary Particle, which enters into the Compofition of all.
W_{B} muft not then expect, ever to have clear and full Conceptions of Effects, Natures and Caufes. For where is the thing which we can fully conceivet We can no more comprehend either what Body in general is, or any particular Body, fuppofe a mass of Clay, or a Ball of Lead, than what a Spirit, or what God is.

Is we turg our Eyes to the minuteft Parts of animal Life, we ffatut be loft in Attonihment! And tho' every thing is alike eafy to the Almighty, yet to us it is matter of the highelt wonder, that in thofe Specks of Life, we find a greater number of members to be put in motion, more Wheels and Pullies to be kept going, and a greamp Variety of Machinery, more Elegance and Workmanthip (fo to fpeak) in the Compeftition, more Beauty apd Ornament in the finifhing, than are feen in the enormous bulk of the Crocodle, the Elephant, or the Whale. Yea, they feem to be the Effects of an Art, as muel
trere exquifife, ws the Movernents of a Wateh are, thant thofe of a Coach or Waggon.

Henee we learn, That an Atom to God is as \# Worlds anid a World bute as an Atorn : Juft as to Hin, one Day is as a thoufand Years; and a thoufand Years But as one Dlay. Buery Species likewift of theie Anit malcula may ferve to correct our Prite, and fiew how indideguave otir Notions are, to the reat Nature of things. How extretmely little can we poffrbly kriow, either of the largeft or frualleft Part of the Creation? We are furnithed with Organs capable of difcerning, to a certain Des gree of Great or Little only. Alt beyond is as far botyond the reach of our Conceptions, as if it had never exifted.

Prooplsi of a wifes a good and powerfff Being are indeed deducible fromt every thing around us: But the taitemely Great and the extremely' Smadl feem to fornilh ds whith thofe thatare moft convincing. And perhaps, if duly confidered, the Fabrick of a World, and the Fabric of a Mite, may be found equally fitiking and conclufive.

Gyasse's difeover to us numberiefs kinds of living Creatures, quite indifcernible to the naked Eye. And how many thoufand kiods may there be, gradually decreafing in' fize, whith we cannot fee by any help whatever? Yet io all thefe we muft believe God has notonly appointed the moft wife means for Prefervation and Propagation, but has adorred them with Beauty equal at leaft to any thing our eyes have feen.

Is flort, the Wortd around us is the mighty Volume whierein Goo hath declared himfelf. Human Languages and 'Characters are diffetent in different Nations: And thofe of one Nation are not underftood by thie reff. But the Book of Nature is written in an univerfal Character, which every man may real in his own Language. It confifis not of Words, but Things, which pitture out the' Divine Perfeclions. The Firmament every where expanded, with all its farry Hoft, declares thie Immenfity and Magnificence, the Power and Wifdom of i:s Creator:- Thunder, Lightining, Storms, Earthquakes and Vofcanos; flew the rerror of his Wrath. Seafonable 'rns, Sun-hine and Harveft, denote his Bounty and Vol. I.

Goodnefs, and demorifrate how he opens his hand, and fill all things living with plenteoufnefs. The conftantly fucceeding Generations of Plants and Animals, imply the Eiternity of their Firf Caufe. Life fubfilting in Millions of different Forms, thews the valt diffufien of his animating Power, and Death the infinite Difproportion between him and every living thing.

Even the Actions of Animals are an eloquent and pathetic Language. Thofe that want the help of Mant bave a thoufand engaging Ways, which, like the Voice of God feaking to hi heart, command him to preferve and cherifh them. In the meantime the Motions or Looks of thofe which might do him harm, frike him with terror, and warn bim, either to fly from, or arm bimfelf againft them. Thus it is, that every Part of Nature dieets us to Nature's God.
10. The Reader will eafily excufe my, concluding this Chapter alfo, with an Extract from Mr. Herveg.
" In all the Animal World, we find no Tribe, no Individual neglected by its Creator. Ever the ignoble Creatures are moft wifely circumfanced and mof liberally accommodated.

They all generate in that particular Seafon, which fupplies them with a ftock of Provifions, fufficient not only for themfelves, but for their increafing Families. The Sheep yean, when there is Herbage to fill their Udders, and create Milk for their Lambs. The Birds hatch their Young, when new-born Infects fwarm on every fide. So that the Caterer, whether it be the Male or Female Parent, needs only to alight on the Ground, or make a little Excurfion into the Air, and find a Feaft ready dreft for the Mouths at home.

Their Love to their Offspring, while they are helplefs, is invincibly frong: Whereas the moment they are able to mift for themfelves, it vanimes as tho' it had never been. The Hen that marches at the head of her little Brood, would fly at a Mafiffin their defence. Yet within a few Weeks, fhe leaves them to the wide World, and does not even know them any more.
$=$ If the God of 1 frael infpired Bezaleel and Aboliab suith wijdom and kngwledge in all manner of workman/hit, the God of Nature has not been wanting, in his Inftructions to the Fowls of the Air. The Skill with which they erect their Hooufes, and adjuft their Apartments is inimitable. The Caution with which they hide their Abodes from. the fearching Eye or intrud,ing Hand is admirable. No Gereral, tho' fruitful in Expedients, could plan a more artful Concealment. No Architect, with his Rule and Line, could build fo commodious a Lodgment. Give the moft celebrated Artificer the fame Materials, which thefe weak and unexperienced Creatures ufe. Let afones or a Demoivre have only fome rude Stones or ugly Sticks, a few bits of Dirt pr Scraps of Hair, a lock of Wool, or 2 coarfe Sprig of Mofs: And what Works could they. .produce ?

We extol the Commander, who knows how to take advantage of the Ground; who by every Circumflance embarraffes the Forces of his Enemy, and advances the Succefs of his own. Does not this Praife belong to the feathered Leaders? Who fix their penfile Camp, on the dangerous Branches that wave aloft fin the Air, or dance over the Stream i By this mearrs the veroal Gales rock their Cradle, and the murmuring Waters lull their Young, while both concur to terrify their Enemies, and keep them at a diftance. Some hide their little Houfhold from view, amidt the Shelter of intangled Furze. Others remove it from Difcovery, in the Center of a thorny Thicket. And by one Stratagem or another they are generally as fecure; as if they intrenched themfelves in the Earth.

If the Swan has large, fweeping Wings and a copious Stock of Feathers, to spread over his callow Young, the Wron makes up by Contrivance, what is wanting in her Bulk. Small as fhe is, fhe will be obliged to nurfe up, a very numerous Ifue. Therefore with furprizing Judgment the defigns, and with wonderful Diligence fini hes her Neft. It is a neat Oval, bottomed and vaulted over with a regular Concave: Within made foft with Down, without
edtatcked with Moff, only a fman A pertwe laf for her Entrance. By chis means the Sutivening Heat of bet Body is greatly increafod Awing the tinte of Incubationi. And her Young no foomer burf the Shell, than they Ind themfelves foweened from the Annoyance of the Weather, and comfonably repofed, till they gather Strength, in the Warmith of a Bagnio.

PERHAPS we have been atcuftomed to lobk upon Injetas, esf fo many rude Scraps of Ereation. But if we examine them with Axtention, they will appear fome of the moft polifhed pieces of Divine WorkmanShip. Many of thesm are docked with the rictref PRnery. Their Eyes are an Affernbinge of Mierofeopes: The common $P 1 y$, for inftance, who fupmotuded with Enemios, has neither Strrength wo tefift; hor a Pliece pf Retreat to fecure berfales. For this rexion fhe thats need to be very vigilant, and always upon her guape. But her Headis to fixt, that oxtoarinocturn to fot what paffes, either behind or around her. Prowidence itherefore has given her, not biarcly a Retirue, but more than a Legion of Eyes: Infomuch that a fingle Fly is fuppofed to the mintels of no loft tian Eishty Thowand. By thehelp of chise ipuly raminaing Apptsatus, she fees on every fide; with the uwnofl tate and Gpead, tho? withopt any Motion of the Eye, or Flexion of the Neck.

The Drsf of Infects is a Veltare of refptendenter lours, fet wish an Arrangerment of the brifhtert Geths. Their Urizgsare the fineft Expanfion imaginable, compared to which, Lawn is coarfe as sackcloth. The Cafes, which inclofe their Wings glitedr wifth the fineft Varnifh, are foooped into ornemental Flatingis, are ftudded with radiant Spots, or pinked with elegant Holes. Notone but is oadued with Weaprois to fitise their Prey, and Dexterity to efcape their Fie, to difpatch the Bufinefs of their Station, and enjoy the Pleafures of their Condition.

Whar if the Elephant is diftinguifind by his huge Probofis P The Ufe of this is antweted in thefe his meaner Relations, by their curious 'Fecters, remarkable, if not for their enormeus Sises: yet for their

(233)

ready Flexion and quick Senfibility. By thefe they explore their Way in the darkel Road: By theie they difcover and avoid, whatever might defile their neat Apparel, or endanger their tender Lives.

Every one admires the majeftic Horfe. With how rapid a Carreer does he bound along the Plain ? Yet the Grafs-bopper fprings forward with a Bound abundantly more impetuous. The Ant too, in proportion to his Size, excells him both in Swiftiefs and Strength : And will climb Precipices, which the moft couragious Courfer dares not attempt to fcale. If the Snail moves more flowly, the bas however no need to go the fame way twice over: Becaufe whenever the departs, wherever The removes, fhe is always at home.

The Eagle it is true, is privileged with Pinions that: out-flrip the Wind. Yet neither is that poor outcalt, the groveling Mole, difregarded by Divine Providence: Becaufe fhe is to dig her Cell in the Earth, her Paws ferve her for a Pickax and Spade. Her Eye is funk deep into its Socket, that it may not be hurt by her rugged Situa-. tion. And as it needs very little Light, the has no Reay fon to complain of her dark Abode. So that her fubterranean Habitation, which fome might call a Dungeon, yields her all the Safety of a fortified Cafte, and all the Delights of a decorated Grot.
Even the Spider, tho' abhorred by Man, is the Care of all-fuftaining Heaven. She is to fupport herfelf by trepanning the wandring Fly. Suitably to her Employ, the has Bags of glutindus Moifure. From this fhe fuins a clammy Thread and weaves it into a tenacious Net.; This the Preads in the moft oppottune Place. But know, ing her Appearance would deter him from approachinge the then retires out of fight. Yet the conflantly keeps within diftance, fo as to receive immediate Intelligence when any thing falls into per toils, ready to fpring out in the very Inftant. And it is obfervable, when Wintef chills the Air, and no more Infects rove thro' it, 'knöw ing her labour would be in vain, fhe leaves her ftand, and difcontinues her Work.
I must not foget the Inhabitants of the Hive. The Bics fubfift as a regular Community. And their induft
gent Creator has given them all Implements necefiary, either for building their Combs, or compofing their Honey. They have each a portable Veffel, in which they bring home their collected Sweets: And they have the moft commodious Store-houfes, wherein they depofit them. They readily diftinguif every Plant, which affords Materials for their Bufinefs: And are complete Practitioners in the Arts of Separation and Refinement. They are aware that the vernal Bloom and Summer 3un continue but for a Seafon. Therefore they improve to the utmof every fhining Hour, and lay up a Srock folizcient to fupply the whole State, till their flowry Hafvett returns..

If the Mafter of this lower Creation, is ennobled with the Powers of Reafon, the meanent Claffes of feniritive Beings, are endued with the Faculty of Infinta: A Sagacity, which is neither derived from Obfervation, nor waits the finifhings of Experience: Which without a Trator teaches them all neceffary Skill, and enables them without a Pattern, to perform every' néedfut Operation. And what is more remarkable, it never milleads them, either into erroneous Principles, or pernicioas Practires: Nor ever fails them in the mott nice and difficult of tieir Undertakings.

Lex us fep into another Element, and juft vift the Watry World. There is not one among the innumeta ble Myriads, that fiwim the bouhdlefs Ocean, bat is watched over by the fovereign Eye, and Jupported by hig almighty Hand. He hás condefterided even to beainify them. He has given the moft exact proportion to theit Shape, the gayent Colours to their Skit, and a polithed Surface to their Scales. The Ejes of fome are furroonded with a fcarlet Circle; the Backs of others, diverffifed yith crimion \$sains. View them when they gtarice . ${ }^{\circ}$ ong the stream, or when they are fref from their nasive Brine, the Silver is not more bright nor the Rain-

Büt as they have neither Hand shor Flet, how eats they help: themfolves, or efcape their Enemies? By the Beneficial, as well as ornamental Furniture of Fims. There when expanded, like Mafts above and BaHat be=
low, poife their floating Bodies, and keep them fteddily upright. They are likewife greatly affitedby the Flexibility and vigorous Aetivity of eheir Tails. - With which they ghout : thro' the Pachs of the Spa, fwifer chan a Vef. fel with all its Sails. But we are loft in Wonder at the exquifite Contrivance and delicate Formation of their Gills: By which they are accommodated, even in that denfe Medirm, with the Benfifits of Refpiration! A piece of Nechanifm this, indtriged to the meaneft of the Fry : Yet infinitely farpafing in the Finenefs of its Structure and Operation, whatever is curiour in the Works of Ant pr kompodious ip:the Palaceit of Pinkes.

Part the Third.

Of Plants and Foffils.

C H A P. I.

$\%$

1. What we mean byPlants:
2. Their liquid Parts:
3. Their Jolid Parts:
4. Of the Bark :
5. The Wood:
6. The Pitb:
7. Tbe Root and Brancbes:
8. Of the Leaves :
9. The Nutrition of Plants: 1 15. Their Fruits.
10. DY Plants we mean organied Bodies, deftitute of Senfe and Motion, fixt in the Earth, and draw, ing their Nourifhment from it by their Roots. Touching thefe, we may confider, firf, the Structure of their Parts, and theia their Nutrition and their Generation.
11. The Parts of which they are compofed are either liquid or folid. The Liquid are ufually divided into fuices and Tears. The Juice is to the Plant what Blood is
toin Animal; and is various in fie watious *intest Plamts. Teairs are Liquors which are emitred fromit them, whether they fweat out of them naturatly ; or are Grawn out of them, timber by Afr, or by thie Heat of the Son. Beme of thefe temain liquid; Ohbers grow by atgrees into a firm confifitente.
12. Plantrs confift of three diffimilar, folid Parts, the Root, the Trank, and the Braniches. In each of thefe we inay obferve three Simitar Yarts, the Bark, the Wook and the Pith.
13. To begin with the Trunk. Here we may firf obferve the Bark; whofe Surface confifts of litte Bladders, which furroumd the Trunk tike a Ring, Thefe, thich arecommonly filted with fome kind of Juice, be: ing remowed, there occur various Ranks of wooddy Fibey, curioully wrought in a kind of Net work, one. Row abowe mather. The Imervals alfo betwaen thofe Ftomes; are ant flled with little Veffets. 'The Ule of the Bark feems to be, not only like Skin, to cover the Wead and Pith, but alfo to concot the Nuttitive Juice, and foownard the Growth of the Plant. And as to the Fitrivion of the Bafk, ty is probable the Juice afcends: from the Roor, thot the fibres, and is fuftamed by the Unevenineft thetcin, 4 ith it is loaged in the Veffets. In thefe the new yource being mixt; with that they containod before, is fermented and rarefled to fuch a Degree, as it needful for its Nourlhinent:

Ir has been a common Opinion; That 'Trees orily live by the Afcent of the Sap in the Bark, or between the Bark and the Wood: But this evidemly appears to be a Valgar Ertor, from the Inftamee of a large old, Elin, in Magidatene-Collage Grove at Oxford, which was quite dibarked all round, at moft places two feet, at fome, four feet from the Ground. Notwithftanding this, it grew and Hourifhed many Years, as well as any Tree in ${ }^{1}$ the Grove. What is more, it was likewife without ah Fith, being hollow within as a Dram. Add to thik, that the Plane and Cork-trees, diveft themfelves every Year, of all their old Bark, (as Snakes do of their Skins) and acquire a netv one. Now during the Ctiange from one to the other, it is clear they are not nourifmed by

$\left(123^{8}\right)$:

the Bark. Therefore there mult be other Vefels, befide thofe of the Bark, capable of conveying the Sap. It is probable, the Bark may ordinarily do this : But that when the ordinary Conveyance fails, fome the of the wooddyParts (which were all Sap-veffels once) refume their antient Office: So far, at leaft, as to keep the Tree alive, tho' not to increafe its Bulk. Perhaps this is the Ufe of the Sap-veffels in the Wood, different from that of thofe in the Bark. Thefe are defigned for the Continuation of a Tree, thofe in the Bark for its Augmentation.

Again. As Animals are furnihed with a Panviculus. Adiofous, ufually replete with Far, which invefts and covers all the flefhy Parts, and fcreens them from external Cold: So Plants are incompaft with a Bark, replete with fatty Joices, by means whereof even the Winter Cold is kept off, and bindred from freezing the Juices in the Veffels. And thofe forts of Trees, whofe Bark abounda with Oil, remain green all the Year round.
5. In the Wood likewife there are obferved concave Fibres, woven as it were of various Veficles, and fretching all the length of the Wood, as do the Fibres of the Bark. Thefe have Intervals between them, in which are tranfverfe Veficles, reaching to the very Pith. There are other Fibres, which sun obliquely, and are far larger, but not fo numerous as the former. In fome. Trees there are alfo feveral Rows of Tubes, which emit. a thick, milky Liquor.
6. The Pith is in the middle of the Wood. It confifts of various Rows of hollow Globules, covered with a fine Membrane. In fome trees it contains a peculiar. Juice, which fometimes hardens, or grows black. In teoder Shoots the Pith (which is frequently hexagonal) is. not exaaly in the middle : but is nearer the Bark on the South-fide, than on the North-fide of the Plant. It is a conftant Oblervation, that the Pith lefiens as the Tree grows. Some have imagined it to be the Heart of the, Plant: But this cannot be. For fome Trees will flourifh and bear Fruit, after the Pith is taken out; ... Befide this, there is in fome Trees a white and tender SubLance, between the Bark and the Wood.
7. THB

Google
9. The Root has nearly the fame veffels as the Trunk. Through it the Juice paffes that nourifhes the Plant: The Roots of fome Plants are full of hollow Theeads, which tranfmit Nourifhment to the Upper Parts. This in other Plants infinuates itfelf thro' the Pores that are in the Bark of the Root. The Branches of a Plant agree with the Trunk, in all the effential Parts of its Structure,
8. On the fmalleft Part of the Branches grow the Leaves; Of thefe we may obferve, 1. The Fibres of the Leaf ftand not on the Stalk in an even Line, but always in an angular or circular Pofture: And their vafcular Fibres or Threads, are three, five or feven. The 'Reafon, of this Pofition is, for the more erect Growth, and for the greater Strength of the Leaf; as alfo for the Security of jits Sap:-2. The accurate Pofition of théfe Fibres, f_{o} as often to take in the Eight Part of a Circle, as in Mallows; in fome Plants a Tenth ; but in moft a Twelfth. 3. The Art in folding up the Leaves before their Eruption, is incomparable both for Elegance and Security. They take up the leaft room their form will bear ; and are fo conveniently couched, as to be capable of receiving Protection from other Parts, and of giving it to each other.

Leaves confif of Fibres continued from the Trunk of the Tree. They are cloathed with an extremely thin Pellicle which is covered with the fineft Down. Their Skin or Coat is only that of the Branches extended, as Gold is by beating. In the Bud they are folded up, almoft in the manner of a Fan, fometimes in two, fometimes in feveral Plaits. But if they are two thick ta plait commadiounty in Two, and to be ranged againf each other, or if they are top fmall a Number, or their Fibres too delicate; inflead of being plaited, they are rolled up, and form either a fingle Roll, or two Rolls, which begin at each Extremity of the Leaf, and meet in the middle. There are alfo fome Plants, as Fern in particular, which form three Rolls

The chief Ufes of Leaves feem to be, $\mathbf{1}$. To catch the Dew and Rain, and fo convey more Nourifhment to the Plant, than the Root alone could do: 2. To take in ,Air; (of which more bereafter:) And 3. To minilfer
to a kind of Ioferfible. Perfiration, by which Redundancies may be thrown off.
9. The Nutrition of Plants feems to be performed thus.. . As the Earth abounds with Particles of every. fort thofe which fuit each Plant, being diffotyed by Moifture and agitated by Heat, enter the Roor thro' its 'Threads or Pores, afcend thro' the wooddy Fibres, and being in the Veficles of the Plant mixt with its native Juice, and Fibbilized by Fermentation, infinuate themfelves into all the Parts of it. Part of this nourifthes the Plant and Eormsithe, Fruit; the Refidue cranfires. But as all Particles'are not equally fot to enter the Pore of every Wlant, neither can all be fermented into a Juice proper to thourifi it ; she Reafon is plain; why every Plant will not thourian in every'Soit.
ai Baxt: altho' Vegetnbles deltght in peculiar Soils, they do nintowe their Nouriftiment, to the Earth itfelf, but to zuices refidingi therein. Of this Mr: Biolli has given us flain Proof. He ordered his Gardiner to dig up forme Farth, to dry itin an oven, to weigh it, and then platit therein fome Spidnifh Seeds; (a kind of Pumpkin.) The Sedds when fown were watred with Rain or SpringWhaneronly. A plant was produced in one Experiment, of near three pound; in another of above Fourteen. And yet the Earth when dried and weighed again; was not diminiffit at all in its weight.
10. As to the Motion of the Nutritive Juice, fome think it afcends by the Wood, and deferids by the Bark. But it is not eafy to fhew, by what particular Tubes it either afcends or defcends. Neither after all our Refearches does it appear, what is" the - Principte of this Motion P' Whether there be any fuch thing as an Attractive Force in the Plant itfelf: Or whether it be 'performed on the mere Principles of Mechanifm, by the Expanfion of the Air contained in the Juice, which moves and propells the Particles of it into every Part of the Plant.

Howsver that the Sap in Plants does circulate is made probable by an eafy Experimient. On a Branch of a.plain Jeflamine, whofe Stem ipreads into two or three Branches, inoculate in Autumn a Bud of the'yellow ftip.

(-241)

ed Jeffamine. When the Tree fhoots the next Summer, fome of the Leaves will be ftriped with xellow, even on the Bracehes not inosulated. And by degrees, the whole Tree will:be ftripeds yea the veny Wood of the young Branches.

It is probable the Circulation is performed thus. The Wood of Plants confifts of fine, capillary Tubes, which ran - parallet with each other from the Root, and may be looked upon asArtaries. On the outfide of thefe, between the Wood and the inner Bark, are larger Tuberp which may do the Office of Veins. Now the Root haying imbibed Juice from the Earth, this is putinto: Morio by the Heat. Hereby it is rarefied and cauledr to afcend in the form of a Sceapa or Vapour: 'rill meeting the Mouths of the Arterial Veffels, it paffes. thro' them to the Top, and to the extreme: Parts of the Tree, with a Force anfwerable to the Heat whereby it is moved. When is arrives there, meetingwith the Cold of the External Air, it condenfes into a Liquoly, and in chat Form returas by its own Weight, to the Root of the Venal Veffols.
18. From what has beon faid it plainly appears, chat there is a confiderable Agromont' botween Plants and Awishals, as welk with regard to their Nutrition, as to the Struefure of their Parts. Somie extend this farther, and theinke there is fomeching in Planss anfwerable to Répiration in Animals. They fuppofe the Spiral Fibres to be in the place of Lungs, and to ferve this very purpofe: That in each of thefe chere is a fpinal Lamina, which is eunended or contrated; asit is impelled this way or that, by the clatic Ain ix includes: That thefe Eibres af ceading Alrait thro' the Trank, are difperfed thro' aHl the Branches, aud thence into the Leaves, whare they are woven togecher is a kind of Net-werk. By this means the more fubtle Parts of the Air are ftrained thro' thofe 8piral Fibres, tokeep the Juices of the Plant fluid, and perhaps to fupply them with Niste or Ether, to affift their Berrkentation.

Thy Air enters Vogetables various ways, by the Trank, Leaves, Roots and Branches. For the Recepcion as well as Expultion of it, the Pores are very laige in. forme Plants, So one fort of walking-Canes feem

Vol. f.
W
full
full of large Pin-holes, refembling the Pores of the Skin in the Ends of our Fingers. In the Leaves of the Pine, if viewed thro' a Glafs, they make an elegant Show, Standing, as it were,-in rank and file, throughout the Leogth of the Leaves.

Air-vessels are found in the Leaves of all Plants, ond in many are vifible to the naked Eye. For on breaking the chief Fibres of the Leaf, the likenefs of a fine, woolly Subftance, or rather of curious, fmall Cobwebs 'may be feen to hang at both the broken Ends. Now thefe are the Fibres of the Air-veffels, loofed from their Spiral-Pofition, and drawn out in length.

Thie Potes in the Leaves of Plante are almof inHumerable. Mr.i Lewenbock found above an handred, and feventy two thoufand, on one fide of a Leaf of Box. The leaves of Rue are as full of Holes as an HoneyComb. Thofe of St. Fobn's Wort likewife appear full of Pin-holes to the naked Eye. But the places where thofe Holes feem to be, are really covered with a thin and white Membrane. Thro' a Mifcrofcope the Backfide of the Hietb Mercury looks, as if rough with Silver ; and all the Ribs are full of white, round, tranfparent Balls, faftenéd by flender Stalks, like fo many Grapes. A Sage-leaf appears like a Rug or Shag, full of Tufts of Silver-Thrumbs, and embellifhed with round, chry fal Beads, faftened by tender Eoot-ftalks. The Prickles of a Nettle are formed for acting juft as the Sting of Animals. Every one of them is hollow, and terminates in a fine Point, with an opening near its End. At the bottom of each Prickle ties a pellucid Bag, containing a clear Liquor, which upon the leaft touching the Prickle, is ejefted at the little Out-let, and if it enters the Skin caufes Pain and Inflammation, by the Pungency of its Salts.

The Leaves of Plants are of great Confequence to their Life. At thefe the Air paffes in, and goes thro' the whole Plant, and out again at the Roots. If the Leaves have no Air, the Plant will die, as is eafily proved by the Air-pump : Whereas if the Leaves be left on the Outfide of the Receiver (parted by a Hole cemented with Wax) while thefe have Air, the Plant will thrive
and grow, tho' its Roots and Stalks are kept in Vacuo. The Leaves likewife chiefly perform the necefiary. Work (But who can explain the Manner?) of altering the Water received at the Roots, into the Nature of the Jaices of the Plant. And hence it is, that the Life of Plants depends fo immediately upon their. Leaves. The Hufbandman often fuffers, for want of this Knowledge. A Crop of Saint-foin is valuable; and its Root being perennial, will yield an Jncreafe many Years. But it is often deftroyed at firft, by fuffering it to be fed upon by Sheep. For if they eat up all the Leaves, the Root can't be fupplied with Air, and fo the whole perifhes.

Leraves being fo neceffary in all peremnial Plants, a reverfionary Stock of them is provided. The Leaves of thefe Plants are always formed in Autumn, tho' not unfolded 'till the foilowing Spring. They then open and increafe, in proportion to the Motion of the Sap, and the Quantity of Nourifmment it receives. There Leaves alfo, tho' not yet appearing out of the Bud, may fuffice for the extremely fmall Motion, which the Sap of thofe perennial Plants, that drop their Leaves, has in Winter.

But befide thefeAutumnal Leaves, there is another fet formed in Spring and expanding 'ill Midfummer. Thefe are of infinite Service to many fort of Trees, particularly to the Mulberry, as they five its Life, when the firft Set of Leaves have been all eaten up by the Silk-worms.

The Analogy between the Parts of Plants and thofe of Animals may now more fully appear. The Parts of Plants are 1. The Root compofed of Abforbent Veffels, analogous to the Lacteals in Animals: Indeed performing the Office of all thofe Parts of the Abdomen, that minitter to Nutrition : 2. The Wood, compofed of capillary Tubes running parallel from the Roots, altho' the Apertures of them: are commonly too minute to be feen. Thro' thefe, which are analogoas to Arteries, the Sap afcends from theRoot to the top: 3. Thofe largerVeffels, which are analogous toVeins. Thro' ihefe it defcends from the Top to the Root :- 4. The Bark, which communicates with the Pith by little Strings, paffing between
the Arteries: 5. The Pith confeting of tranfparent Globules, like the Butbles shat eompofe Fsoth.

The Sap enters the Plant in the form of pare Water, and the neaver whe Root, the more it retins of shat Nature. The farther ix goes, the more it partakes of the Nature of the Plant. In the Trank and Branches it remaims acid. In the Buds it is more concocted. It is farther prepared in the Leaves, (as Blood in the Lungs) which being expeffed wo the alversate Action of Bleat by day, and Cold by Night, are alcernately dilaced and cenerateet:

Is not then the Mation of the Sapin Plants, (like that of the Blood in Aninals) produced chiefly by the Altion of the Air ? AH Plants have the two Orders of Woffels, 1. Thofe which convey the purticous yuices, 2. Airveffes, thellow Tubes, within which at tive orher Veffels are contained: Now the leaf Heat rarefies the Air in thefe Air-veffels, theveby dilating then, and fo caufing a perpetual 'spring, which promotes the Ciicuracion of the Juires. For by the Expanfion of the Air-vefiele, the Sap veffels are preft, and the Sap continua'ly propelt led. By the fame Propuifionit is comminuted more alde more, and fo fitted to enter finer and finer Voffets. Whaite the thicker Part is depofited in the lateral Cells of the Bark, to defend the Plant from Cold and other Tajuries.

Thus is every Plant afted on by Heat in the Daytime, efpecially in Summer; the Sap protroded, theo evacuated, and then exhaufted. In the Night the Airveffets being comeracted by the Cotd, the \&ap-veffets are relaxed, and difpofed to receive frof Food, for the next Day's Digeftion. And thus Plants do, as it were, eat and drink during the Night-Seafon.

The Veffels themfives confift ofmere Earth, cemented by Oil and Water: Which being exhaufled by Fire, Air or Age, the plant returns to $\%$ Es Earth. Thus in Plants, burnt by the fiercet Pire, the Matter of the Neffels is left entire: Wbich confequently is neither Water, Air, Salt, nor Sulphur, but Earth alone. The Sapoonfifts of fome Foffile Parts; others derived from Air, Rain, and putrified Plants or Animals. Confequently in Plants
are contained, Salts, Oils, Water, Eatth; and probably all Metals too. In fact, the Afhes of allVegetables yield fomething, which the Loadftone attracts. a
a Plants do likewife perfire. To find the Quantity imbibed and perfpired by Plants, Df. Hale took a Pot with a' large Sun-fower planted in it,' and by various Experiments found,: the greateft Perfpiration in a very warm day, to be one pound, four-: teen Ounces; the middle peripiration, one pound, four Ounces. It perfpired 3 Ounces in a warm Night, when there was noDew. If frmall Dew fell,' it perfpired nothing; if a large Dew, it gained 2 or 3 Ounces.

ThI Weight of this Flower was three Pounds : the weight of a well-fized Man. is 160 . The Flower perfines 22 Ounces il 24 bours: The Man about 25 : (befides fix, Ounces, which are carried of by Refpiration from the Lungs.)

A midding Man eats and drinks in 24 hours, about four pounde, ten Ounces. The Plant imbibed und perfpired in the fame time 22 ounces. But taken bulk for bulk, the Plant imbibes fes. .venteen times more Food than the Man. For deducting five Ounces for Fæces, there will remain but four pounds, 5 ounces, which enter the Keins and pale offin 24 Hours. And fince, taken butk for buik, the Plant imbibes fo much more Fpod than the Man, it was neceffary, by giving it an extenfive Surface, to provide for a plentiful Perfíration, fince it has no other way of difcharging Superfluities, as a Man has. It was neceffary likewife, that the Plant fhould imbibe a larger Quantity of fref Fluid than the Man, becaufe the Fluid filtrated thro' its Roots does not contain fo many mutritive Pa ticles, as the Chyle which enters our Veins.

But there is a Latitude of Perfpiration both in Men and Planta. In this Flower it varied from 16 to 28 ounces during 12 Hours day, as it was watered lefs or more: in an healchy Man it varies from a pound and half to 3 Pounds:

Ever greems perlipire far lefs than other Plants. In proportion, they need lofs Nburifhment: Hereby they are better able to bear the Winter: Like Infects, which as they perfire little, live the whole Winter without Food:
Is order to try whether any Sap rofe in Winter, He made various Experiments: From all which it appeared, it does rife then alfo, tho' but in fmall Qnantities. And hence we fee, why an Ever-green grafted on an Oak will remain verdant, when the Oakleaves drop. Perfpiring lefz, it needs lefs Nourifmment than the Oak, and fo is fufficiently fed by the Sap that rifes even in Winter.

In Summer, when hot Sunfhine follows a Shower, the Vines in the widdle of an Hop-ground, are often all feorched up, almoff from one End of a large Ground to the other: At the fame time the $\mathrm{V}_{\mathbf{a}}$. pours afcend plentifully. The feorching of the Vines feems to be caufed by thefe foorching Vafours, which afcetid molt in the middle.

There is a confiderable Difference as to the Time when different Plants revive after the Winter. No fooner does the Sun begin to warm the Earth, than the vernal Flowers appear, and the Trees, one after another, open their Buds, and cloathe themfelves with Leaves. But why do many Wood-plants, as Coltsfoot, Pile-wort, Violets, and many Gardenplants, as Snowdrops, Aflara-bacca, Cracus, flower in the very beginning of Spring, when we cannot by any pains or care, bring them to flower after the Summer Solftice? Nay, thefe very Plants, which are fo patient of Cold in Spring, are in the Autum fo very weak and tender, that they die on the first touch of Froft. Why, on the contrary, do. Thifles and many other plants, never flower before the Summer Solftice ?

In the fame manper, Trees obferve fixt Laws, and a certain order in their Leafing. Does the Caufe lie in
of the Ground, the Air there being more denfe, and confequently hotter than on the outfides.

Thi white Clouds likewife which appear in Summer-time, oceafion a vehement heat, by reflecting many of the Solar Rays, which otherwife would not touch the Earth. And if the Sun be on one fide, and the Clouds on the orher, they are perfect Burning-glaffes.

Sometimes there is a kind of hollow Clouds, full of Hail or Snow. During the continuance of thefe the Heat is extreme, fince by fuch Condenfation they reflect more ftrongly. By thefe likewife thofe Blafts may be produced, as well as by the reflection of denfe Vapours.

The Sun-flower being tender, if the Sun rife dear, faces to the Eant. The Sun continuing to buine, at Noon it faces to the South, and at Six in the Evening to the Weft. The Cause is that Side of the Stem which is aext the Sun, perfirices the moft, and thereby thrinks.
"What degree of Heat will Plants bear"? The common temperate point in Thermometers is 18 Degrees. The external Heat of an Human Body, will raife it to 54 Degrees. Very hot Sunfhime will raife it to 88. Plants endure a confiderably greater Heat than this, near the Line, for fome Hours a day. But the hanging of the Leaves of many of them fhews, they could not long fubfift under it.

The Winter Heat is from the freezing point to Ten Degrees; the Vetmal and Autumnal, from 10 to 20 . The May and June Hiat, is from 17 to 30, in which the Generality of Plants flourifh
the different Depth of their Roots? If fo Shrubs would have Leaves before Trees of the fame kind. But they have not. We can only fay, the Fa't we know, but the Reafon of it we know not.

The Order of the leafing of feveral Trees and Shrubs, obferved in Norfolk in 1755 was as follows.

1. Honey fuckle, - - - January 15:
2. Goofeberry, Currant, Elder, - March is;
3. Birch, Weeping-willow, - - April 1.
4. Rafberry, Bramble, - 3 .
5. Briar, - 6lum, Apricot, Peach, - - $-\frac{4}{6}$.
6. Filbird, Sallow, Alder, - - - 7 .
7. Sycamore, ———
8. Elm, Quince, - - - - - - 10.
9. Marh-Elder, - - ili.
10. Wych-Elm, ————————12.
11. Apple-tree, - - - - - 140°
12. Willow, - - \rightarrow - - - 17.
13. Oak, Lime, - - 18.
14. Maple, - - - - -19.
15. Walnut, Plane, Black Poplar, Beech, - - .2r.
16. Ah, Carolina-Poplar, - - Inder.
beft. The Heat of July is, in the Shade, about 3^{8} degrees: in the Sunthine, at Noon, about 50. The Heat of an Hor-bed, when too hot for Plants, is 85 or more: And near this is the Heat of the Blood in high Fevers. The due Heat of an hot bed is 56 degrees ; and the fame Heat hatches Eggs.

A continual Steam is afcending during the Summer; the Sun-beams giving the Moifture of the Earth, at two font depth, 2 brik, undulating Motion, which rarefied by Heat, afcends in the form of Vapours. And the vigour of warm and confined Vapour (fuch as is that which is 2 or 3 feet deep in the Earth) muft be great, and penetrate the Roois with fome vigour; as we may reafonably fuppofe, from the vaft force of confined Vapour in the En. gine for raifing Water by Fire.

Tho' Vegetables have not, like Animals, an Engine which by its alternate Dilatations and Contractions, drives their Juices thrp ${ }^{\text {a }}$ them, yei has Nature contrived other Means, powerfully to raife the Sap and keep it in motion. And their Roots are covered with a

Indeed the Leafing of feveral of thefe varies much; as the Spring is earlier or later. But others of them, be the Winter ever fo mild, do not put out before their time. This alfo depeids on fome fecret Properties, which Man is not able to explain.

That the Leaves of certain Plants affume at Night a Difpofition different from that of the Day, is well known. But to what is this owing ?. Not to the variation of. Heat or Cold, Moifture or Drynefs. For However thefe are varied, the fame thing happens with. equal Regularity. It is Light alone that occafions this Change, which by the fmalnefs of its Particles, is capable of entering Bodies, and by its Adivity, of producing great Changes in them. It changes the Pofition of the Leaves of Plants, by a Motion it excites among their Fibres.. The natural Pofition of the Lobes-
very fine, thick Strainer, that nothing may enter but what can be seadity carried off by Perfipiation.

- Tua r there is a !ateral Communication of the Sap-reffels in Plapts, as of the Blood-veffels in Animals, plainly appears from the experiment of inarching Trees. For when three Wall-trees-are thus incorporated, the Root of the middlemoft may be dug up, and the Thee will grow ftill, as receiving Nouriftment, from the trees with which it is connefted. And hence Elders, :Willows, Wines and moft Shrubs, will grow with their tops downward in the Earth. For the fame reafon, if you frequently, in an Evening, wafh the Hodies of new-planted Trecs, they will grow quicker and better thian any others of the fume Plantation.

Whether the Sap in Plants circulates or no, is fill warmly difputed. To the Argument drawn from the Feffamine-tree, Dr. Hal replies, "We have many vifitte Proofs in Several Trees, of the Saps receding. and puffing forward alternately, at different times of the Day and Night." Probatly in all Trees, it recedes in fome meafure from the tops of Branches, as the Sun leaves them; becaufe its rarefying Power then ceafing, the rarefied Sap and Air mixt with it, will condenfe and take up lefs room, and the Dew and Rain will then be ftrungly imbibed by the Leaves: and the Body and Branches which have been exhaufted by the Evaporation of the Day, will imbibe the moifture from them.

That the Sap does not defcend between the Bark and the Wood, as the Favourers of a Circulation fuppofe, feems plain from hence, That if the Bark be taken off 3 or 4 inches broad quite round, the biceding of the tree above the place will much abate: Whereas juft the cuatrary muft barpen, if the Sap defcended by the Barko

Lsobes in thefe Leaves is drooping. This is their Pofture of Repofe. But, Vegetavion is very infiperfe\&ly performed, while they remain in it. It is Light whicts aibers that Pofrion, by its quick Vibrations.

In the Evering, Auguft 7 . (in order to make a fullExperiment) Dr. Hill placed a Plant of Abrus, in a room where it had moderate Day light, without the Sun's shining upon it The lobes of the Leaves were then fallen perpendiculatly from the middle Rit, and atofed togecker by their under fades. Thas they continued all night. Half an hour after Day-break. they ibogan to feparate, and a quarter of an hour after Suntife, were perfeetly expandod. Long before Sunfet they began co drop again, and toward Evening were ciored as at firt.

Next Day the Plant awas fet, where there was lefs Liptht. The Lobes wene raifed it whe Morming, tut not fo much. And they droaped embier at Evening.

Tuir thind Dey it nvas fet in a Soush Window, open to the fulld Sun. Easely in the Mowning the Leaves 'had attained their Horizontad Sievation: By nine ooclock, they were raifod aboveik, and continued to till Evening. Then shey fell to the Horizontal Situation, and thence graduatyy to she ufual Etace of Ref.

True Fourch ilay the Plant fiood in the fame Place, bat the Son did noc eppeear. The Lobes early attained their horizomal Sizuation, but did not rife begond it, and inthe Ewening, clofod as uffal.

Theresexporimehts prove, that the whole Change is. ocoofioned by Light onily. To put this beyond difpute, in the Evening of the Sixth Day. the Plant was fet in a Book-Cafe, on which the Merming Sun fhone, the Doors fanding open. The next Day was bright. The Lobes which had clofod in the Evening, began to open early in the Morning, and by Nine o'clock, they wese raifed in the ufual manner.

I then fhat the. Doons of the Book-cafe; on opening ohem an hour after, the Lobes were all clofed as at Midnight. On opening the Doors, they opened again, and in twenty minutes they were folly expanded. This has fince been many times repeated, and atways with the fame Succefs. We can therefore
therefore, by admitting or exclading the Light, make the Plant put on all its Changes. Hence we are certain, that what is called the Sleep of Plants, is caufed by the, Abfence of Light alone, and that their various intermediate States are owing to its different Degrees.

Ir has been fuppofed that the daily Motions of the Senfrtive Plant, were likewife owing to Light and Darknefs; becaufe it expands itfelf in the Morning and clofes again in the Evening. From the main Branches of this Plant (pring feveral fmaller ones, and from thefe others flill lefs, which fupport the Leaves, ranged on each fide, in pairs over againt one another. Several other Plants are of the fame Form, and all thefe clofe their Leaves in the Evening, and open them in the Morning, which therefore is not peculiar to the Senfitive Plant. But this clofes them at any, time of the Day, if touched, and foon after opens them again. You can fearce touch the Leaf of a vigorous, fenfitive Plant fo lightly, as not to make it clofe. The large Rib which runs along its middle, is as an Hinge, on which the two halves of the Leaf move, when they turn upon being touched, 'till they fland erect, and by that means meet one another. The flighteft touch gives this Motion to one Leaf; if a little harder, it gives the fame Motion to the Leaf oppofite. If the touch be till tougher, the whole Arrangement of Leaves on the fame rib clofe in the fame manner. If it be flonger ftill, the Rib itfelf moves upward toward the Branch on which it grows. And if the touch be yet more rough, the very Branches flhrink up toward the main Stem. The Motion which has the greatef Effeet of all others upon it, is the mhaking one. Winds and heavy rains alfo caufe this Plant, to clofe its Leaves ; but not gentle Showers : The Contraction being caufed by the Agitation of the Wind, and the Strokes given by the large Drops.

ThE natural fhutting and opening of its leaves at Night and Morning, are not fo fxt, as not to be variable by many Circumflances. In $A u g u f$ a fenfitive Plant was carried in a pot into a dark Cave. The Shaking in the carriage fhut up its Leaves, fo that they did not open for four and twenty hours. Apd when they did open, they.
ciofed no more for three Days and Nights. Being then brought again into the open Air, the y recovered their natural Motions, fhatting at night and opening in the Morning, as vigoroufly as ever. While in the Cave, it was as much affected by the Touch, as in the open Air.

By this and many Experiments it appears, that it is not the Light that opens thefe Plants, nor the Darknefs which huts them. Neither is it owing to the Increafi of Heat or Cold. Indeed great Heat will affect them a little, but not in any confiderable Degree. Concerning the real Caufe, we may form many Conjectures: But nothing certain can be known.
12. As to the Generation of Plants, firf the Tree produces Buds, which afterward expand into Leaves, Flowers or Branches. In the Buds entire Plants are contained. A fmall Stalk, confifting of wooddy and fpiral Fibres, fprings out of the middle of the Plant, wherein the Bud inheres. Itis involved in a thin Bark, which may bedivided into various Leaves, lying one upon another like Scales.
13. Buds are followed by Leaves and Flowers. b The Flower is as it were the Womb, which contains the Eggs or Seeds of Plants, and in due time brings them forth. It is near the Bud, and lies hid with it during the Winter, 'rill it is brought out by the Heat of the Summer. The moft fimple Plants bear a Bud, which contains
b In Flowers we may confider 1. The Calix or outer Cup, deGigned to be \& Security to the other Parts of the Flower. Thofe whofe Leaves are firm and ftrong, as Tulips, have no Calix at all, Carnations, whofe leaves are ftrong, but hender, have a Calix of one Piece. Others have it confifting of Several Pieces; and in divers Rounds: 2, The Foliation or Petala, the Flower-leaves, which are properly the Flower itfelf. In there not only the admirable Beauty, aud tuxarianc Colours are obfervable, but alfo their curious Foldings in the Calix, before they are expanded.

It is remarkable, that many, if not moft Vegetables, efpecially thofe of a tender kind, expand their Flowers, or Down, every day, if it be warm, fun-fhiny Weather. But they clofe them, as the Evening approaches; and fome, at the approach of Rain. This is particularly done, at the beginning of Flowering, while the Seed is young and tender: As is eafily feen in the Down of Dandelion, and emin ntly in the Flower of Pimpernel. Thefe ferve as a Weather glafs to the Coustryman : By the opening or fhutting of thefe, he can tell, without any danger of being deceived, whether the Weather will be foul the next Day.
sontains a Seed, of an Oval Figure. We may earily diltinguin from the Blower iffelf, the Leaves of the Covering which innolves the Bud. From thefe arife the Leases of the Flower, ferving for the lat Concoction of the Sap : in which are both wooddy and fpirad Fibrew, with various Rows of Utrieles. In the middle of Rlowers Filamoms and little Pillars arife, whofe Bxtremitios are covered with a kind of Dyff. Thefe Pillaws are hot low, and have Veficles full of Liquor, and the Rudiments of Seeds, which gradually grow and harden.

That Duft is of ewo kindo, Male and Female. The Male Duft is formed in the rop of the Pikementoy, where when it is ripe; it burfts its Cafe, and is fpit on the Heads of the Pillars, and thence conveyed to the Utricle or Matrix thereof, to impregnate the Femate Duft contained therein.
'This Duft in any one Plant being viewed winh a Microfcope, every Particle is of the fame Size and Figure. But in different Plaats, the Colour, Size and Figare are widely different. In fome it is: clear and tranfparents, as Chryftal; in others, whice and opake: In fome, blue; purple or zed, and in others, flefli-caloured. And its Colour varies in the fame Species, fuppofe Tulips; aco cording to the Colour of the Flower.

The molt goneral Figure is the Oval; more or lefs Sharp at the Ends, with one or more Farrows running leng hways. But the Seeds of Melilot are Cylinders. Thofe of the Panfy are Prifms, with four irregular Sides. Others reprefent twa Chryftal Globuter faftened together. Thofe of the funquil are in the form of a Kidney. But indeed the Varieties are not poffible to be nump bered. c

[^20]The Office of the Blofom is partly to protect, partIy to draw Nourifhment to the Embryo, Fruit or Seed. The Gourd, Pumkin, Melon, Cucumber, -and mof bearing Trees, have both Male and Female Blofioms on the fame Plant. Male-Bloffoms, (ufually called Gatkins) may be diffinguifhed from Female, by having no Pifil or Rudiment of Fruit about them; but only a large Thrum, covered with Duft in their middle. The Female Blofioms have always a Piftit, within the Flower-leaves: and the Rudiments of the Fruit is always apparent; at the bottom of the Fruit befóre it opens.

Vol. I. . X ••But
thirty three Millions of Seeds. Add, that if its Head be cut off, it puts forth as many Branchts within half an inch of the Place where it wascut as it had before. And at whatever height it is cut off, the Effect will be the fame. Hence it appegra, that the whole Trunk, from the Ground to the aife of the Branches, is full pf Embryo-Branches, each of which will, actualiy fpring, forth, if the Head be lopped off jufiover it. Now if thefe had ferung out, they would have borne an equal Number of Seeds, with thoic that did. Thefe Seeds therefore are already coptained in them: And if fo the Tree really contains 15340000000 Seeds, wherewith to multiply iffelf as many times. But what fhall we fay, if each Seed contaips another Tree, containing the fame number of Seeds? And if we can never come, either at a Sped which does not copdain Trees, or a Tree which does not contain Seed?

Timber-Trees of any kind mightcertainly be planted to more advantage than they generaily are. There is a Foreft two mules from St, Loe in Normandy, planted chiefly with Oaks, many of which are but of a moderate Height, tho' of a large Circumference. But near its Entrance from St. Loe, there is a Plantation, about twenty five years old, wherein none of the Oaks are under Seventy, and fome an hundred feet high. They are fet fo clofe, that they almoft feem to touch one another, and are no more than four or five inches in diameter. This timber is of great ufe, both for making Charcoal, and many other Purpofes. And the Owners may reap four Craps of them in an hundred Years.
$\mathrm{T}_{\mathrm{h} I \mathrm{~s}}$ Foreft belongs to the King of France, who ordered the Plantation to be made by way of.trial. And his Minifters have caufed feveral of the trees, an hundred feet high, to be tranfplanted, to fee them brarch at the top, and to leave ftanding Proofs, of the woiderful Effects of the Experjment.

As to Sowing, the Perfection of Agriculture canfifts, in fetting Plants at due Diffances, and giving a futficient Depth to the Reotso that they may fread and receive due Nourifhment, Yet this is

But there is a Species of Willow, which appears to change its Sex every Year. One Year it products Male-Bloffoms, and Female-Blofoons; the next.
14. The Seed, when it is ripe, is inclofed in a peculiar Covering. In fome Plants it ‘o increafes, as to become a Fruit. And in thefe alfo we fipd Fibres apd Utricles difperfed with endlef \forall ariety.

Varjou's are the Methods which the Wirdom of tinn takes for towing Seeds of various kinds. Thofe of Arum and Poppy are heavy enough to fall directly to the Groutia. Others that are light, have Hophs to fop them; from Atraying too far from their proper Place. "So hive Agrimony and Gaofe. Gra/s, the one wanting a warm Bank, the other an Hedge for its Support.

Wittle reigarded, but all Sorts of Grain are fown by Handfulls caft ak sandom:: By this means four Parts in 5 of the Seed is utterly loft: To remedy thisa Spanith Gentleman contrived an Engine (defcrited in the Pbilofopbical Tranfactions, under the name of the Spaniß/ Sembrador) which being faftened to the Plow, the whole Bufinerg of Plowing, Sowing and Harrowing is performed at once; and the Grain is fpread at equal Dittances, and equally deep in the Furrow. An Experiment being made, Land which ofually produced five-foldy by this means produced Sixty fold. One Stalk io all that fprings immediately from one Grain : But on the fides of thisg near, if not within the ground, iffue feveral lateral Stalles. Arid fome of thefe fend forth roots, whence osic or feveral other: Stalka spriag, if they are eariy formed, the foil good, and the Weather favourable. Ey this means one Grain of Wheat planted in a Garden, thas produced 90, yea 100 Ears. If then each Ears, aking one.with another, contain 90 Graips, a fingle Grain may produre five thoufand. Nay; Gentleman in York/bire, who made the Experiment in his Gardens fome Years ago, counted upwards of Eight-Thoufaed Grainsj which rprung from a fingle one.
Arien all that has been faid and wrote for fo many Cemtaries, on the Generation or Propagation of Plants and Animale, a late Author (to whom the Frenob Naturalifts in general fobscribe) tot allif denies the whole, and cenfures all who prerend to difcover any Ania malcula in the Semen of Animale. He will by no Meads allow, that every Animal or Plant, proceeds from an Eeg.lodged in the Parent Plant or Animal. On the contrary, he fuppofes; "there are in Matter certain organical Parts, difpofed for the formation of animal and vegetable Subftances, which by coalition conftitute she firft Stamina of all Aioimal and Yegetable Bodiest. Thefe are fimple;

On the other hand, many Seeds have Wingl, that the Wind may carry them off the Plant, and may fcatter them afunder, that they may not fall together, and come up too thick. The Kernels of Pines have very thort Wings, juft enabling them to flutter on the ground. But fome Seeds have many long Feathers; by which they are wafted abnut eveny whete.

Othiris are lodged in Elaftic C̦afes, iwbich dart out the Seed to convenient Diflances. Thus Hhootforrel having a running Root, needs to have its Seeds Sown difant from each othero. And this is done, by means of a tetidinous Cover, which when it begins to dry, borts open on one fide in an inftant and is violently turned infide out. The Seed of Harì-tomge is difperfed in a different manner. It has a Spring wound round its Cafe. When itis ripe, this fudden1y breaks the Cafo in two Halves, and fo throwsort the Seed. Equally remarkeble, is the : ways wherein Fern-Seed is, fcattered. If a quantity of this be laid on a Papar, the feminal Veficke burf, and ure feen by a Microfcope projecting the Seeds to a cosnideräble Difance.
uniformy comeson to ath; and ceonfequently to be foùid, mbite of befs, in. every : Portion of nutritive füice. From thence they are digefted, and when the Subjeat betoritits adilt, fecreted for the formation of the Seed of tevery Plaft and AAnimal. Thefe Organicul Rarts, moving whem difongrged; ahd thence imagined to be alive, are extremely fimple in théricoonpofition, being perhaps onily elaftic Springs, more or lefa compref, "Hore or tefa diverfified in the direction of their force.
:c All microfropic Anumals, fo called, :are indeed no other than fuch organical Parcicles. Seeds macerated in Water; fiftt difonite into froall: Particles, which fobn after, foreve and feem ahice, tho' they are not fo. The fame may be obferved of the Juices of Animalis, as Muttor,-Gravy and the like. And ás to the common Imagination that the Male Semen, white in the Veffels, contains Miflions of Animaicula like Tadpolet; it is certain, they are produced, after the Evacuation of the Fluid, and rife from Principles contained therein, by a real Vegetation, and a fablequent Change from the vegetable to the Animal Life.
" SIMEN immediately evacuated is an homogeneous Fluid: In a few moments it begins to fepirate, and afier this a kind of vege-

(: 256)

:Blac-foruecred Gectianelha requirds wet Weather to be fown in. \backslash As foon as any Rain touches the Seed-reffels, they burft open and throw the Seed on every fide. Candamines barft their Pods and dart out; their Seed, on a fight Touch of the Hand: Nap, the Cardaniue Impetiens does fo, evea by the Apprach of the Hand. Other Seeds, by their agreeable Tafteor Smell, invise Birds to feed upon then, who drop them again, fertilized by paffing thro? theis Bodg. : So Mifaltoc is : ufuadly fows.
The Progrefs of Germination was accurately obferveat by Mdepigbzinthe Seed of a Gound. The day after it.was committed to the ground, he foond the outor,
table Filaments grow in it, and thoot out ramifications on every fide. Thefe ofea and divide into moving Globules, which trail after: them fomething like long Tails; which are in truth only Strings of the vifrid Matter, from anhoirg which the Glatales were feparated. By degrese the Blabule gec pid of thom, and than neve atmer at sare.
"Turs vegetable power of fhooting into Filaments, is in an Animal and Vegetable Subftances, down to the leaft microfcopic Point. And to this is really owing, all that is called Animal Life; in-the Fluide produced from Vegetables.
"I In aff our Obfervations on thefe Subftances, the whole Quantity of Matter, after a separscion of Sonne-volatile and falige Purts, always divides into Filaments and vegetates into namboride Zoopbys. tes, which afterward yield all the Species of microfoopic Animals. After this, thofe fuppofed A nimals themfelves fubifure te the bottom of the fiquor, become motianlers, refolve into a selatipous, filamentoua Subftace, and then afford new Zoophytes or Animals of 2 fmaller kind.
"Hence we may obferve, That every Animal or Vegetable Subflance, advances as faft as it can, to refolveinto oine compan Principle, which is the Source of all : a avishd of univerial Semen, from which each Atom may again afcend to a New Life. Thefo Animalcula then in the Semen of Animale, and in the Infufionss and juices of Animal and Vegetable Subftances, are not of the nature of any other Beings, nor to be ranked with them. They conftitute a Corís apart from all others, the Characteriftic of which is, that they neither are generated, nor fubfift by Nutriment, like other Plants or Arials, nor do they gencrate in the ordinary way."

What then becomes of this whole boafted Branch of Modern Pini'ofophy? If this be fo, moft of our Microfcopic Difcoveries, va: nifh into Air!

Coat a little fwe:led; and in its Tip a fanall Cleft appeared, thro' which the Sperm was feen. The Second Day the outuard Coat was much fofter, the Inner turn and corrupted, the Germ fomewhat longer and more fwelled, and the beginning of the Root appeared. The 'Third Day, the Root had made itfelf a Paffage thro' the Coat, near the former Cleft. The Germ and Seed-leaves alfo were now grown much bigger. On the Sixth, more of the Seed-leaves had broken thro', and were found thicker and harder. The Root had Shot out many Fibres, and the Stem grown a finger's Length. About the twenty firf Day the Plant feemed compleat, from which time the Seed-leaves began to droop, 'till they died away.
15. The Parts of different Fruits are different: But in all, the effential Parts of the Fruit, are only Continuations of the Fibres, obferved in the other Parts of the Tree. And there is a direct Communicaion beiweer the Fruit and the remoteft Part of the Tree. Thus an Apple eut crefsways appears to confift of four Parts. Firft, the Skin, derived from the outer Bark of the Tree; 2. The Pulp, which is an Expanfion of the inner Bark: 3. Ramifications of the wooddy Part of the Tree, difperfed throughout the Pulp. To thefe are faftened the Coats of the Kirnels. And thefe being at firl extended to the Flower, Part of them directly, and Part obliquely, furnifh it with its Nourifhment. But the Fruit increafing intercepts the Aliment : And then the Flower is farved and falls off: 4. The Core, which is a Production of the Pith of the Plant, frengthened by Fibres. of the Wood intermixt. This is a Cafe for the Kernels, filtrates the Juice of the Pulp and conveys it to them.

Fruits ferve not only for the Food of Animals but to guard and nourifh the Seed inclofed; to filtrate the coarfer Part of the nutritious Juice, and tranfmit only the pureft for the Support and Growth of the Plantule.

In every fort of Grain, Wheat, Barley or any other, there are three Particulars obfervable, 1. The OuterCon: which contains all the reft. This in the fame

Species of Grain, is "of a very diffeient Thicknefs in different Years, as alfo in different Soils: 2. The Germ or Bud. This is always hid in the Grain, and is the Plant in Miniature: and 3. The Meal which is inclofed in the Skin, that furrounds the Germ and gives it Nourihment, when firf put into the Earth, before it is capable of drawing it from the Earth itfelf.

The whole Structure of the Plant which produces thefe Grains is equally admirable. The cbaffy $H u / k$ is well adapted to defend the Grain, as long as that is neceflary, and then to let it fall : The Stalk, hollow and round, is at once light and flrong, capable of fuftaining the Ear, without abforbing too much of the Juices deftired for its Nourifhment. And the Beards are a defence againft the Birds, that would otherwife deftroy the Grain before it ripened. The Covering of the Grain is formed of Fibres, which meet in a line and form a kind of Furrow. This is the Place at which the Seed, when moittened, is to burft open: Were not this Means prepared for the Germ's coming out, the Toughnefs of the outer Cont, would have kept in both the Meal and the Germ, 'till they had rotted together.

Nor is this the only Ufe of this Place of Opening. The Grain is defigned, not only for Seed, but for Food alfo. Men have Art enough to erect Machines; for reducing it to powder. But the Birds eat it as it is, and it would pafs them whole, without doing them any Good, were it not, that when it is moiftened, it burfts open at the Furrow and yields them Nourifhment.

T'he Meal is compofed of an infinite Number, of round, white, tranfparent Bodies. Thefe inclofe the foung Plant, and by their Figure being eafily put in motion, as foon as affected by the Heat and Moifture of the Earth, they infinuate into the Veffels of the Plant, and give it jncreafe, till it is in a Condition to feed on the Juices of the Earth. The fame Procefs of Nature is obfervable, when Grains of Corn grow out of Time, on being thrown carelefly together, in. a moint Place.

$(259$)'

I cannot better conclude this Chapter, than by tracing the Analogy between the Propagation of Animals and that of Vegetables. The Roes of Finhes, the Eggs of Infects, Birds and all other Animals, nearly refemble each other. They are compact Bodies of fuch Forms as beft fuit their Natures. They alt have integuments nobly contived for their preferya? tion, with firm Coverings, to fecure them from outward Injuries. Thofe to be kept in the Bedy have Coverings alfo; but foft and membranous Every kind contains its peculiarSublance, differing from that of every other kind. And a! thefe Characters belong alfo to Seeds of every kind. They have their Cover ings, more of lefs compact, according to their Ne ceffities. Their Forms are convenient. The Subflances they contain are fpecifically different from each other : and their Offepring proceeds from them in the fame manner, as Animals proceed from their Eggs.

But befide the Subitances peculiar to each Seed, there is a peculiar Organization treafured up in each; which is the rudiment of the future Plant, capable of being propagated into fuch a Plant as it fprung from, and no other. So in every one of the Nut-kind, there is a vifible Organization, peculiar to each Spe:cies. And if fuch Organizations appear in every Seed, which is large enough to be viewed clearly, we cannot reafonably doubt of their Exiftence, even id thofe which are fo fmall as to efcape our Sight: There are multitudes of Seeds, which produce large Plants, and yet appear only like Duft, and a vaft number, which we cannot fee, but by the Microfcope: And yet thefe doubtlefs have all their peculia. Forms, and their Organizations as well as the larger.

But from what are thefe Organizations produced ? How does every Plant or Animal, bring forth a frefh one after its kind? A little of this we may underftand, if we trace a Tree and an Animal thro' every Stage, from the Egg, to their utmoft Growth.

See a young Tree punhing out its Leaves and Flowers, till it has extruded an entire Set of Boughs and Branches. One Part regularly oyens after ancthen
from the firf Shoot, till it comes to perfection. Then and not before, it produces Seeds, containing the Rudiments of other Trees like itfelf. The Fibres of its general Organization grow into little Knots, fome to form Leaves, fome the Calix, fome the Petals, fome the Piftil and Utricle, fome again the little feeds, each growing from its own Pedicle. For the Male Parts, other Fibres are formed into Stamina, and fram thefe terminate into Apices: And again from thefe, others terminate into the minute Grains, common!y called the Farina facundans; each Grain growing on its own Pedicle, juft as the Leaves or Fruits of Trees.

Sez an Animal, exactly in the fame manner, unfolding itfelf by degrees, till its Parts are explicated entirely, and it is complete in every Organ. Tnen and not before each Female is capable of producing Eggs, each being a Continuation of the General Organization, and growing upon its own Pedicle. Each Male likewife, when at its fite of Perfection, is capable of producing from itfelf the facundating Matter, neceffary for the Propagation of the fpecies.

Let us again view a full grown Tree or Plant, putting forth its Parts for Fructification. Obferve the Apices on the ftamina, loaden with the globules of the farina fæcundans, the Pulp of each Globule containing an exalted Fluid, and conveying it to one of the Papillx of the Piftil. The Utricle is now filled with green, foft feeds, ready to be impregnated by the Globule, and containing a Fluid, which afterward becomes a hard Covering to each. And within this the little Organizations gradually increafe.

As then a refined Fluid from the feminal Matter of the Male, impregnates the Organization io the Egg of a female Animal, mingles with the fubtle Fluids contained therein and promotes its Growth and Progrefs: fo the refined Part of the pulpy Fluid contained in the Globule, impregnates the Organization in the feed of 2 Plant, mixes with its Juices, and gradually promotes its Growth inio a perfect Plant. And doubtlefs both the impregnating Effluvia of Animals andVesetables, and the innate Juices of the Organization,
have Qualites peculiat to themretves: Heace the /f O\&spring of a Black and a White Parent, is of a Co-1 lour between both. And thas if the Fariba of inne : fort of Flower, impregrate the Egg of atothes, the Cor : lour of the Flower produced thereby is variegatod proportionably.

The Juices inabibed by a ?lant; being compofed of? innumerable various Subitances, after every Part has. attracted its kiadred Particles, the fuperflaous ones are carried off by Perfpiration: Chiefly by the Leaves, which are the Emunaries, that throw off thofe' Joices which bave no kjindred Particles in the Plant. Atccordingly when the wara fun begins in rarefy tbe Fluids, which during the Winter were condenfed and ineftives the new Leaves then begin to put forth, from wair feiveral Organizations. When Winter comes, as no more Fluids afeend in Trees, fo there is no Perfpiration. Confequently moft of them need Leaves no longer, which therefore fall cff. Nor are they fucceeded by others, will the vegetable beginf ifreceive frefh Nourifhment, and bas occafion therefore for excretary Veffels to carry off Superfluities. Juft fo the fuperfluous Juites in Animals, are continually carried off by Perfination: An Obftruction of which is equally pernicious to Animals and Vegetables.

1
But is there any thing in the vegetable Kingdom, analogous to that Arange Animal, the Polypus, which multiplies by being cut in pieces? There is. View, for inftance, a young Willow. This is an organized Body, capable of growing, till it come to its perfect Growth, by means of the vegetative Principle.. The Polypus is ap organized Body, capable of b ing extended cill it come to its perfect growth, and of Feeding and Loco-motion, by its animating Principle. The Willow as it grows: is gradually fending off new Branches, which are its Foetufes, proceeding from the Organizations lodged in every Part. The Polypus in like manner, gradually fends off new. Fotufes, from Organizations placed in every part of it. If the Willow be cut in pieces and planted, each piece will
be explicated into : Tree, and then fend forth new Pcetufes, like its Parent. And if the Polypus be cut in pieces, each piece will be explicated into a Polypus, and then extrude new Fortufes: So that cutting it in pieses, is but anticipating the propagation of thofe Organizatioas in the pieces, which would, iflet alone for a while, themfelves iffuce from the fides of the Pa sent.

Ir we obferve the extreme Tendernefs of this Animal, liable to be wounded, nay torn in piecos, by any: hard Body, which is carried down the Serreams, of moved in the Ponds wherein they dwollt We fee the Providential Reafon, for this Comerivance to propagate them: As perhaps no other Ansual is of fo ten-' der a texture, and fo eafily deftroyed, having meisher" fagacity to ayoid Dangef, nor freagth to bear: the leaft Violence. .

CHAP. II.

1. Offometarticulair PLants: if Plants aid Atimals: 2. Of tbe Carruption of in. General Reftieitions. 1. TT remains, to give a Mert' Accobint of fome'teI markable Productions of the Vegeritble kind.
Papper grows on a Shrub in feveral Parts of the EafIndiest, which is of the-Reptile-kin't; anad for that Reafom is ufually planted at the foot do some larger Tree. It grows: in Cleiters;' which at fffe are green. As the Grains ripen, they grow reddifa atita afeet being expof-, ed a while to the Sun become blacke"'TMo make Wbitt, Pepper, they mointen it inith Sea-Water', and ther expof-: ing it to the Sun, divet the Grains of the outer Bark, which of confequence leares them white.
The Plant which affords Ginger, refembles jur Reed, both in its. Stem and-Leaves. The Root Ppreads itrelf near the Surface of the Ground, in fortro siot unlike a
toan's Hand. When it is ripe they dig it up, and dry if either in the Sun, or in an Oven.

Nutmegs are inclofed in four different Covers: The Firft, thick and Flehy, like that of our Walnuts : The Second is a thin, reddift Coat, of an agreeable Striell; called Mace. The Third is a hard, blackilh Shell. The Fourth is a greenifh Film. In this the Nutmeg is found; which is properly the Kernel of the Fruit.

Sago is procured from a Tree growing in the Molincta Jlapds. They cleave this, and take out- the Pith, which they pound in a Mortar to a kind of Meat. They then put it in a Searfe over a Ciftern, and by poaring Water upon it, fepazare tothe pare Part of the Powder, from the Veinsof Wood. This Flower they make into Pafte, and bake in an earthen Fumace.
Thas Tree which produces Cotton is common in feveral Parts both of the Eaf and $W_{e} \neq A$-Indies. The Fruit is oval, about the Size of a Nut. As it ripens, The Outfide grows black, 'till opening in feveral places by the Heat of the Sun, it difcovers the Cotton, of an admirable Whitenefs.

The Tallow-Tree, which grows plentifully in Cbina, is about the Height of a Cherry-tree. Its Bark. is very fmooth and its Leaves of a deep, fhinning Red. Its Fruit graws in a Pod, like a Chefnut, confilting of three white Grains : Each of which is about the Size, and of the Form of a fmall Nut. In each is a little Swne, furrounded with a white Pulp, in Confiftence, Colour, and even Smell like Tallow. And this it is, of which the Cbinefe in general make their Candles.

The Coce-trae grows ftreight, without any Branches thirty or 40 foot high. Near the top it bears twelve Leaves, each ten foot long, and half a foot broad. Thefe are ufed ip making Mats, covering Hoofes, and for many other Purpofes. Above the Leaves grows'a large Excrefcenfe, in the form of a Cabbage. But the taking it off kills the Tree. Between the Leaves and the Top grow feveral Shoots, as thick as a Man's Armt, which when cat, yield a whice, fweet, agreeable Liquor, ferving as Wine, and equally intoxicating. Yet at the End of four and twenty Hours, it becomes a frong Vit-
negat. As long'as this Liquor diftills, the Tree bears no Fituit: Dut when thefe shoots are fuffered to grow, it puts rerin a large shaci, wherein the Coco-Nuts are to the noware of :cen or welve. In each there is fift abour hair a pint oi ghar, cooling Waser. In a little while this becomes a white, foft Pułp, which afterward condenfes into a Nut. The. Tree yields Fruir thice a Year. Some of the Nuts are as large as a Man's Heads

Ter Wifd pine, as it is called, is a wonderful Inttance of the wife Providence of God. The Leaves of j - are channelled, to catch and convey Water into their Refervoirs. Thefe. Refervoirs are fo made, as to contain much Water. And they cloferat the top when they are full, to hinder its Evaporation. Thefe Plants grow on the Arms of the Trees in the Woords, as adfo on the Bark of their 'Trunks:' Another Conirivance of Nature in this Vegetable is very admirable. The Beed hac many lang and fine Threadk, that it may be carried every where by the Wind, and that by thefe when driven thro' the Boughs it may be held faft, and ftick to the Anms or Trunks of 'Trees. As foon as it fprouts, altho' it be on the nnder Part of a Bough, its Leaves and Stalk rife perpendicular, becsure if it had any other Pofition, the Cifcern made of hollow Leaves could not hold Water, which is neceffary for the Life of the Plant. In fcarcity of Water, this Refervoir is notonly neceffary and fufficient for the Plant itfelf, but likewife ufeful to Men, Birds and Infects. Hither they then come in Troops, and feldom go away without Refrefhment.

Tyese Leaves will hold a Pint and an balf, or a Quart of Rain-water. When we find thefe Pines, fays Captain Dampier, we flick our Knives into the Leaves, juft above the Root; and that lets out the Water, which we catch in our Hats, to our great Relief.

The fame Providential Defign is anfwered by the Watervwith of Jamaica. This, which is 2 kind of Vine, grow's on dry Hids. in the Woods, where no W2ter is to be found. Its Trunk, if cut into pieces, two or threc yards long, and held by either End to the Mouth, affurds a limpid, innocent and refrefhing fap, as clear as

Water:

Water: And that in fo great abundance, as gives new Life to the weary and thirtly Traveller.

But of all Productions of the vegetable kind, there is none more remarkable than the Aloe. It grows exceeding flowily. But the Slownefs of its Growth is afterwards compenfated, by the Bulk to which it arrives, the Velocity with which it fhoots, and the prodigious number of Flowers it produces, which ordinarily amount to feveral Thoufands. It ufually takes up three Months, May, June and July, from the firf budding of the Stem, to the finifhing of the Flowers. There are however Exceptions to this Rule. The Aloe in the Garden of Cardinal Farnefe at Rome, fhot up in the fpace of one Month, to the height of twenty-three feet. Another at Madrid grew ten feet in one Night, and twenty-five more, in. the Eight following.

The Progrefs of the Venetian Aloe, in the Garden of Signior Papatava, was as follows. It began to Thoot its Stem on the 20th of May, which by the igth of June, was rifen 4 Paduan feet and an inch. On the 24 th it had gained ten Inches more, and on the 2gth Eight more, on which day it began to emit Branches. On the Sixth of July it had gained One foot, one inch; on tine 17 th one foot, eight Inches more, on the Seventh of Augutt, one foot and'an half. From that day to the $30 t h$, it grew very flowly, but continued emitting Branches and Flowers. The Trunk was at the bottom a foot thick; the Branches were twenty-three in number. On the top of each was a Knot or Collection of Flowers. On each: of the firt Branches there were an hundred and twelve; on others an hundred and ten, and on others an hundred. They yielded little Smell ; but what was of it was agreeable.

When the Tree has once flowered, it quickly dies, being quite exhautted by fo copious a Birth. They feldom flower'till they are of a confiderable Age, when they are of a large Size and a great Height. As foon as the Flower-Stem begins to thot from the middle of the Plant, it draws all the Nourifhmen:f om th: Leaves, fo that as that advances, thefe de cay. Aid when the Flowers are fully blown, fcarce any of the Leaves, re-
Vol. I.
Y
main
main alive. But whenever this happens, the old Root fends forth a numerous Quantity of offsets for Increafe.

Perinaps: there is fcarce any Plant in the Creation which is of fo general Ufe. The Wood of it is firm, and ferves for Fences, and for the Ufe of the Carpenter. The Leaves make Coverings for Houfes: The Strings and Fibres ferve, in the room of Hemp, Flax and Cotton. Of the Prickles are made Nails and Awls, as alfo Pins and Needles. And from a large Aloe, when righly tapped, may be drawn three or four hundred Gallons of Juice, which by Diftillation grows fweeter and thicker, 'till it becomes Sugar.

It has been before obferved, That as all Animals are from Eggs, fo all Vegetables are from Seeds. But many have fuppored, there is one Sort of Vegetable, which is an Exception to this: Namely, Mu/brooms, the Seeds whereof have been long fought in vain. And it is certain, if you only range in April, Balls of Horfe-dung, as big as one's Fift, in Lines three Poot diftant from each other, and one foot under the ground: covering them all over with mould, and that again with Horfe-dung: In the beginning of Auguft the upper pieces of Dang will begin to grow white; being covered with fine white Threads, woven about the Straws whereof the Dung is compofed. By degrees the Extremities of thefe Threads grow round into a kind of Button ; which inlarging itfelf by little and little at length forms itfelf into a Murhroom. At the Foot of each, when at its full Growth, is an infinity of little ones. The white Threads of the Dung preferve themfelves a long time without rotting if kept dry. And if they are laid again in the ground, they will produce new Muhrooms.
"Are thefe then any thing elfe than the Mouldinefs or Putrefaction of Horfe-dung ${ }^{\text {P }}$ " Yes certainly. Indeed all Mouldinefs, fo called, is a Congeries of very fmall Plants. And thefe in particular, like all other Plants, have their Origin from Seeds. But before thefe Seeds can vegetate there are required, certain Juices, proper to penetrate their Coats, to excite a fermentation in them, and to noarifh the minute Parts thereof.o Hence arifes that vaft Diverfity of Places, wherein different Sorts of this Plant
are produced. Some will only grow on other particular Plants, whofe Trunk or Roots have the Juices proper for them. Nay, there is one Sort which grows only on the Fillets and Bandages of the Patients in the Hofpital at Paris. It is not therefore at all furprizing that Horfedung fhould be a fit Soil for common Mahrooms. It is probable the Seeds of thefe are fpread in numberlefs Places, well-nigh througnoet the whole Earth. And the fame may be faid concerning the Seeds of many Plants, as well as the Eggs of many Infects: More efpecially of thofe which are fo minute, that we can fcarce difcern them even with Glaffes: Seeing the fmaller they are, the more eafily may the leaft Wind convey them hither and thither. So that in truth the Earth is full of an inconceivable number both of Animals and Vegetables, perfectly formed in all their Parts, and defigned as it were in Miniature; only waiting for certain favourable Circumftances to enable them to make their Appearance at large. How rich then mult that Hand be, which hath fown them with fo much Profufion!

Ir may not be improper before concluding this Head; to defcribe one Species of Sea-plants. Coral grows chiefly. in Grottos which open to the South, and whofe Concave Arch is nearly parallel to the Surface of the Earth. It will not grow at all, but where the fea is quiet as a Pond. It vegetates the contrary way to all other Plants; its Root adhering to the top of the Grotto and its Branches flooting downward. The Root takes the exact Form of the folid it grows to, and ccuers it (as far as it goes) like a Plate : And this is a probable Proof, that its Subftance was originally Fluid. Accordingly Corals fometimes Yine the infide of a Shell, which they could not have entered but in a fluid Form. All its Organifm, with regard to Vegetation, feems to confift in its Rind, in the little Tubes whereof the Juice runs to the Extremities of the Branches. And this Juice petrifying both in the Cells, that incompafs the corralline fubltance, and in thofe at the Extremities of the Branches, whofe fubftance is not yet formed, by this means inlarge the Plantto its full Dimenfions, both in Height and Bulk.
is vulgarly believed, That Coral is foft while in the Water. But Experiment proves the contrary.

Ir is obfervable, that all Sea-plants, (except the Alga) are without Roots. Nor have they any longitudinal, capillary fap-veffels, thro' which rooted Plants draw nourihment to every Part. But the whole fubflance of fea-plants is compofed of Veficles, which receive their Nourifhment immediately from the furrounding Water. Confequently they can have no Circulation of the fap, having no. Veffels to convey it from one end of the Plant to the other.

There is one Sea-produgion, if it may be fo termed, that is not commonly underftood. Ambergris is vulgarly fappofed to be the foum of the fea. But it is not: Nor is it the Excrement of the Whalc. It is in reality a kind of Gum, which iffues out of the root of a Tree. That Tree always thoots forth its root toward the fea; And when this Gum is difcharged into it, it is fo tough, that it is not eafily broken from the Root. But when it is feparated from it, either by its own Weight, or the toffring of the fea, it floats upon the Water.
2. The Principle of Corruption in Plants and Animals, is probably the very fame, which during a fate of Circulation, is the Principle of Life: Namely, the Air, which is found in confiderable Quantities, mixt with all forts of Fluids. This has two very different Motions; an Expanfive one, arifing from its natural Elafticity, by which it gives their Fluids an inteftine Motion, and graduaily extends the Parts that contain them: And a Progreffive Motion. It does not appear, that this is effential to it. Rather it is occafioned by the Refiffence of the folid Parts. This reftraining its Expanfion, obliges it to take the Courfe that is more free and open, which is thro' the Veffels of Plants and Animals.

When this Courfe is ftopped, the expanfive Motion remains, and ftill continues to act, 'till it has fo fully overcome the including Bodies, as to bring itfelf to the fame degree of Expanfion with the outward Air. But this it cannot do, without deftroying the Texture and Continuity of thofe folids, which we call Corruption.

This deftructive Quality of the Air is promoted, either by weakening the Tone or Cohefion of the including Parts; As when Fruit is bruifed, which corrupts in that Part much fooner than in the others: Or by increafing the Expanfive Force of the Air, by Heat or fome other co-operating Circumflance.

And certainly there is no Corruption, or Patrefaction, without Air. Hence either Vegetable or Animal Bodies buried deep in the Earth or Water, remain for Ages entire, which when expofed to the Air, quickly moulder away. And hence fuch Vegetables as are moft apt to putrefy, remain unchanged in vacuo.

Yet various Experiments feem to thew, That Air mutt be impregrated by Water, before it can occafion Putrefaction, cither in Animal or Vegetable Subftances. For take a Pound of frefl Flefh, and keep it in a moderate Heat, and it will throughly putrety in a few Days. But if you firit extract the moifture, it will harden like a Stone. And it may then be kept for Ages, without any Putrefaction. Even Blood, if you deprive it of its Watry Part, may be kept for fifty Years. But if you then diffolve it in Water, and place it in a gentle Warmth, it will putrefy immediately.

The Procefs of Putrefaction may be learned from an eafy Experiment. Take the green, juicy Parts of any frefh Vegetable, Throw them together in a large Heap, in a warm Air, and lay a Weight upon. them. The middle Part of the Heap will foon conceive a fmall degree of Heat. It will grow hotter and hotter, 'till it comes to a boiling Heat, and is perfectly putrefied.

In three Days from the firf putting them together, the Heat will equal that of an Human Body in Health. By the fifth Day, the Heat will be fuch as the Hand can hardly bear. By the feventh or Eighth; all the Juices are generally ready to boil. Sometimes the Matter will even 凡ame, (as does moift Hay) 'ill it burns away. But commonly it acquires a cadaverous Tafte and Smell, and turns into one foft, pulpy

Mafs, much refembling human Excrements in the Scent, and putrefied Flefh in the Tafte.

If this be diftilled, there will come from it, 1. An urinous Spirit, perfectly like that obtained from Animals, and Separable by frefh Dillillation into pure Water, and a large Quantity of white, dry, volatile Salt, not to be dittinguifhed from Animal Salts. 2. An oily Salt, which fhoots into Globes; 3. A thick, fetid Oil, both which are entirely like thofe of Animals. 4. The Remainder, being calcined in an open Fire, yields not the leaft Particle of Fixt Salt : Juft as if the Subject had been of the Animal, not the Vegetable Kingdom. And this Procefs holds equally in all kinds of Vegetables, tho' of ever fodifferent Natures : Yea, in Dry Vegetables, fo they be moittened by Water, before they are thrown into Heaps.

By this means the Difference between One Vegetable and another, is entirely taken away. By this procefs, they are all reduced to one common Na ture: So that Wormwood, for example, and Sage, become one and the fame thing. Nay, by this means the Difference between Vegetables and Animals is quite taken away: Putrefied Vegetables being no way diftinguifhable from putrefied Flefh. Thus is there an eafy and reciprocal Tranfition of Animal into Vegetable, and vegetable into Animal.
3. So true it is, that Matter, as Matter, has no concern in the Qualities of Bodies. All depend on the Arrangement of the Particles, whereof each Body confifts. Hence Water, tho' taftelefs, feeds aromatic Mint, and the fame Earth gives nourifhment to Bread and Poifon.

As to this Arrangement, the firfView of aVegetable gives us an idea, of infinitely numerous and various Parts: And fo complex, that many have been difcouraged from profecuting the Refearch. But upon examination the Parts which appear fo numerous, are reduced to a very fmall account. For a careful Maceration in foft Water will fhew, that the Parts really difinct are only Seven. Thefe 1. An outer Bark, 2. an inner Rind, 3. a Blea, 4. a Flefhy Subftance,
5. a Pith. There is between the Flefh and the Blea, 6. A vafcular Series, and 7. Cones of Veffels take their Courfe within the Flefh.

Whatever Part of the Plant we examine, we find thefe, be it a Fibre, the Root or the Stem. We never find more. And tracing thefe, we fee the other Parts of the Plants are only the Productions of them. Thus the Root, its defcending Fibre, and the afcending Stalk, we find are one, not three Subflances. The fame feven Parts are continued from one to the other, and what are fuppofed at its Summit, to be many new and frange Parts, are found to be no more than theTerminations of thefe Seven. The external Parts are alfo feven 1. The Cup, 2. The outer Petals, $3 \cdot$ The inner Petals, 4. The Nectaria, either diftinct, or connected in one Ring, 5. The Filaments. 6. The Receptacle' of Seeds, and 7. The Seed-veffels or Seeds. And thefe are only the Terminations of the Seven conftituent Subftances of the Plant. The outer Bark terminates in the Cup, the inner Rind in the outer Petals; the Blea forms the inner Petals, the valcular Series ends in the Nectaria, and the Flefh in the Filaments: The Cones form the Receptacle, the Pith the Seed and their Capfules. Thefe are univerfal in Plants, tho' their Courfe be lefs plain in fome, and their Terminations lefs diftinet in others.

Every piece therefore cut from a Plant tranfverfely. contains all the Parts of the Plant, ready to grow in length into a stalk upwards, and into a Root downwards, and to feparate at a due height from the root, into the feveral Parts of a Flower.

Thus we fee the Arrangement of the common Particles of Matter into a Vegetable Body, altho' it be a Work worthy of his Hand who formed it, yet is not fo complex a thing as it appears. And this Arrangement being once made in one individual, the Species. is created for ever. For Growth is the Confequence of the arrangement, when it has Heat and Moifture.
4. Upon the whole: If we confider every Part of a Plant, we fhall find none without its Ufe. The Reot draws Nourihment from the Earth: The Fibres
convey the Sap : The larger Veffels contain the Specific Juice of the Plant: Others carry Air for fuch a Refpiration as it needs. The Outer and Inner Bark in Trees, defend them from Hcat and Cold and Drought, and convey that Sap which is required, for the annual' Increafe of the Tree. And in truth every Tree may in fome Seafe be faid to be an annual Plant. For both Leaf, Flower and Fruit proceed from the Coatthat was fuperinduced over the Wood the Laft Year. And this never bears more, but together with the Old Wood ferves as a Block to fuftain the fucceeding Annual Coat. The Leaves ferve, before the Bud unfolds, to defend the Flower and Fruit, which is even then formed; and afterward to preferve them and the Branches, from the Injuries of the Summer Sun. They ferve alfo to hinder the tuo hafty Evaporation of the Moifture about the Root. But their chief Ufe is, to concoct the Sap, for the Nourifhment of the whole Plant : Both that they receive from the Root, and that they take in from the Dew, the Rain and the moift Air. Add to this, that they are as Lungs, which fupply the Plant with the neceffary Quantity of Air; and as Excretory Ducts, which throw off Superfluities by infenfible Perfpiration. And fo neceffary is their Service, that moft Trees, if quite fript of their Leaves, will die. And if in Summer you ftrip a Vinebranch of its Leaves, the Grapes will never come to Maturity. Not that they are hurt by the Sun : Expofe them to this as you pleafe, fo the Leaves remain, and they will ripen well.
5. Another Point worthy our Confideration is, The immenfe Smallnefs of the Seeds of fome Plants. Some are fo extremely minute, as not at all to bedif: covered by the naked Eye. Hence the number of Seeds produced by fome Plants, is beyond Imagination : A Plant of Redmoce, for inftance, and many Sorts of Eern produce above a Million : A convincing Argument of the infinite Underftanding of the Former of them.

And it is remarkable, that fuch Mofles as grow upon Walls, the Roofs of Houfes and other high Places,
have Seeds fo excefively fmall, that when thaken out of their Veffels they appear like Smoke or Vapoar. Thefe therefore may either afcend of themfelves or by an eafy Impulfe of the Wind be raifed to the tops of Walls, Houfes or Rocks. And we need not wondes how the Moffes got thither, or imagine they fprung up fpontaneoully.
6. Concerning Vegetables in general we may farther remark, 1. That becaufe they are intended to be Food for numberlefs Species of Animals, therefore Nature has taken fo extraordinary Care, and made fo abundant Provifion, for their Propagation and Increafe. So that they are propagated and multiplied, not only by the Seed, but alfo by the Root : producingShoots orOffsets in fome; creeping underground in Others. Some likewife are propagated by Slips or Cuttings; and fome by feveral of thefe Ways. Secondly ; for the Security of fuch Species as are produced only by Seed, moft Seeds are endued with a lafting Vitality : So that if by reafon of exceffive Cold, or Drought, or any other Accident, it happens not to fpring up the firft Year, it may continue its Fruitfulnefs, I do not fay, fix or feven only, but even twenty or thirty Years. Nay, after this term, if the Hindrance be removed, it will fpring, and bring forth fruit. Hence it is, that Plants are fometimes loft for a confiderable time, in places wherein they abounded before. And after fome Years appear anew. They are loft, either becaufe of the unfavourable Seafons, becaufe the Land was fallowed; or becaufe plenty of Weeds, or other Plants, prevented their coming up. And as foon as thefe Impediments are removed, they fpring up again. Thirdly, Many Vegetables are armed with Prickles or Thorns, to fecure them from the browzing of Beafts; as alfo to defend others, which grow under their Sheiter, Hereby likewife they are made particularly ufeful to Man, either for quick or dead Fences. Fourthly, Such Vegetables as are weak and not able to fupport themfelves, have a wonderfull Faculty, to ufe the Strength of their Neighbours, embracing and climbing up upon them, and ufing
them as Crutches to their feeble Bodies. Some twitt themfelves about others like a Screw : Some lay faft hold upon them, by their curious Clafpers or Tendrit, which herein are equivalent to Hands. Some ftrike in a kind of Root: Others by the emiffion of a natural Glue, firmly adhere to any thing which has Strength fufficient to fupport them. Clafpers are of a compound Nature, between a Root and a Branch. Sometimes they ferve for Support only; as in the Clafpers of Vines, whofe Branches being long and flender, would otherwife fink withei their own Weight: Sometimes, for a Supply of Nourifhment alfo: As in the Trunk Roots of loy; which mounting very high, and being of a clofe and very compact Nature, the Sap would not be fufficiently fupplied to the upper Sprouts, unlefs thefe affilted the Mother-root. Fifthly, The beft of all Grain, and what affords the moft wholfome and agreeable Nourifhment is Wbeat. And it is moft patient of all Climates, bearing the Extremes both of Heat and Cold. It 'grows, and brings its feed to Maturity, not only in the temperate Countries, but alfo in the Cold Regions of Scotland, Denmark, Norway, and Mufoovy, on the one hand, and on the other, in the fultry Heat of Spain, Egyp:, Barbary, Mauritania and the Eaf-Indies. Nor is it lefs obfervable, that nothing is more fruitful. One Bufhel, when fown in a proper foil, having been found to yield an hundred and fifiy, and in fome Infances, abundantly more.
7. Ir may be of ufe to fubjoin here, Firft a General View of Vegetation, fecondly, fome additional $R \sim$ fections on the Vegetable Kingdom.

And girt. As to Vegetation itfelf, We are fenfible all our reafonings about the wonderful Operations of Nature, are fo full of uncertainty, that as the wife man truly obferves, bardly do we guefs arigbt at the things that are upon earth, and with labour do we find the tbings that are before us. This is abundantly verified in We vegetable Nature. For tho' its Productions are fo obvious to us, yet are we ftrangely in the dark concerning them, becaufe the texture of.their Veffels is fo
fine and intricate, that we can trace but few of them, tho' affifted with the beft Microfcopes. But altho' we can never hope to come to the bottom and firft Principles of things, yet may we every where fee plain fignatures of the Hand of a Divine Architect.

All Vegetables are compofed of volatile Salt, Sulphur, Water and Earth, Principles which Atrongly attract each other : And a large Portion of Air, which ftrongly attracts when fixt, but ftrongly repells when in an elaflic flate. By the Combination, Action and Re-action of thefe few Princples, all the Operation in Vegetables are effected.

The Particles of Air diftend each ductile Part, and invigorate their fap, and meeting with the other mutually attracting Principles, they are by gentle Heat and Motion enabled to affimilate into the Nourifhment of the refpective Parts. Thus Nutrition is gradually advanced, by the nearer and nearer Union of thefe Principles, 'till they arrive at fuch a degree of Confiftency, as to form the feveral Parts of Vegetables. And at length by the flying off of the watry Vehicle, they are compacted into hard Subftances.

But when the watry Particles again foak into and difunite them, then is the Union of the Parts of Ve getables difolved, and they are prepared by Putrefaction, to appear in fome new Form, whereby the Nutritive Fund of Nature can never be exhaufted.

All thefe Principles are in all the Parts of Vegetables. But there is more Oil in the more exalted Parts of them. Thus Seeds abound with Oil, and confequently with Sulphur and Air. And indeed as they contain the Rudiments of future Vegetables, it was neceffary they fhould be ftored with Principles, that would both preferve them from Putrefaction, and alfo be active in promoting Germination and Vegetation.
$A_{N D}$ as Oil is an excellent Prefervative againf Cold, fo it abounds in the Sap of the more Northern Trees. And it is this by which the Ever-greens are enabled to keep their Leaves all the Winter.

Leaves

Leaves not only bring Nourihment from the lower Parts within the Attraction of the growing Fruit, (which like young Animals is furnifhed with proper Infruments to fuck it thence) but alfo carry off the redundant watry Fluid, while they imbibe the Dew and Rain, which contain much Salt and Sulphur. For the Air is full of acid and fulphureous Particles; and the various combinations of thefe, are doubtlefs very ferviceable in promoting theWork of Vegetation. Indeed fo fine a Fluid as the Air, is a more proper Medium, wherein to prepare and combine, the more exalted Principles of Vegetables, than the grofs, watry Fluid of the Sap. And that there is plenty of thefe Particles in the Leaves is evident, from the fulphureous Exudations ofren found on their Edges. To thefe refined aëreal Particles, not only the moft racy, generous Taftes of Fruits, but likewife the mott grateful Odours of Flowers, yea, and their beautiful Colours are probably owing.

In order to fupply tender Shoots with Nourifhment, Nature is careful to furnifh, at fmall diftances, the young Shoots of all fort of Trees, with many Leaves throughout their whole Length, which as fo many jointlycacting Powers, draw plenty of Sap to them.

The like provifion has Nature made, in the Corn, Grafs, and Reed-kind : the leafy Spires, which draw Nourihment to each Joint, being provided long before the Stem fhoots: Thef tender Stems would eafily break, or dry up, fo as to prevent their Growth had not thefe Scabbards been provided, which both fupport, and keep them in a fupple and ductile State.
T_{h} Gfowth of a young Bud to a Shoot, confifts in the gradual Dilatation and Extenfion of every Part, till it is fretched out to its full Length. And the capillary Tubes fill retain their hollownefs, notwithftanding their being extended, as we fee melted GlafsTubes remain hollow, tho' drawn out to the fineft Thread.

1 ias Pith of Trees is always full of Moifture, while the Shoot is growing, by the Expanfion of which, the tender, ductile Shoot is diftended in every Part. But when each Year's Shoot is fully grown, then
the Pith gradually dries up. Meantime Nature carefully pravides for the growth of the fucceeding year, by preferving a tender, ductile Part in the Bud. replete with fucculent Pith. Great Care is likewife taken to keep the Parts between the Bark and Wood always fupple with flimy moifture, from which ductile Matter the wooddy Fibres, Veficles and Buds are formed.
The great Variety of different Subflances in the fame Vegetable proves, that there are peculiar Veffels for conveying different forts of nutriment. In many Vegetables fome of thofe Veffels are plainly feen, full of milky, yellow or red nutriment.

Where a Secretion is defigned to compofe an hard Subftance, viz. the Kernel or Seed of hard-ftone Fruits, it does not immediately grow from the Stone, which would be the fhorteft Way to convey nourifhment to it. But the umbilical Veffel fetches a compafs round the concave of the Stone, and then enters the Kernel near its Cone. By this artifice the Veffel being maich prolonged, the Motion of the Sap is thereby retarded, and a vifcid Nutriment conveyed to the Seed, which turns to hard Subflance.

Let us trace the Vegetation of a Tree, from the Seed to its full Maturity. When the Seed is fown, in a few days it imbibes fo much Moifture; as to fwell with very great force, by which it is enabled both to flirike its roots down, and to force its Stem out of the ground: At it grows up, the firf, fecond, third and fourth. Order of lateral Branches fhoot out, each lower order being longer than thofe immediately above them: Not only as fhooting firf, but becaufe inferted nearer the Root, and fo drawing greater Plenty of Sap. So that a tree is a complicated Engine, which has as many different Powers, as it has Branches. And the whole of each yearly Growth of the Tree, is proportioned to the whole of the Nourifhment they attract.

Bút Leaves alfo are fo neceffary to promote its Growth, that Nature provides fmall, thin Expanfions, which may be called primary Leaves, to draw nourifhment to che buds.and young hoot, before the Leaf is
expanded.

(278)

expapied. There bring nutriment to them in a quantity fufficient for their fmall Demands: A greater quantity of which is afterward provided, in proportion to their noed, by the greater Expanfion of the Leaves. A Aill more beautiful Apparatus we find, in the curious Expanfions of Bloffoms and Flowers, which both protect and compey Nouribhment to the Embryo, Fruit and Seeds. But as foom as the Calix is formed into 2 rmall Frait, containing a minute, feminal Tree, the Bloflom falls off, leaving it to imbibe Nourifment for itfelf, which is brought within the reach of its Suctions by the adjoining Leaves:
8. I Procbrd to make fome additional Rgfurions pon the vegatable Kingdora.

All Plapts produce Seeds: but thoy meeintirals yefit for Propagation, 'ifll they are impregaated, This is performed within the Flower, by the Dut of the Autbere falling upon the moint-Stigmates, where it hurfe and feads forth a very fubsle satter, which is abforbed by the Style, and conveyed down to tho Seed. As foon as this Operation is over, thofe Organs wither and fall. But one Flower doas not ah, ways contain all thefe: Often the male Organs ase on oric, the Female, on another. And that nothing may we wanting, the whole Apparatus of the Antherge and Scigmata is in all Flowers contizved wish wanderfial
 and are of the fape heitght. But where the Pieitit in honger than the Soppott, the Flowers reclime, that tha Duft may fall into the Stigma, and whenimpregnated rife again, that the Seeds may not fall out. In othen Flowers the Pifil is Ihorter, and. there the Flawem preferve an ereal Situation. Nay, when the flowarn ing Seafon comes on, they become area, tho' thry were drooping before. Laftly, whes the male Flowers are placed below the Female, the Leaves are vary. fmall and narrow, that they may not hinder the Duh srom flying supward tike Smotes: And when in the fame Species one Plant is male, and the other female; there the Duft is carried in abundance by the Wind frem the male to. the fetmale. We. canmot alfo wiohout admizacion

[^21]adimiration obferve, that moll Flawers expand themfelves when the Sun Mines, and clofe when either Rain, Clruds or Evening is coming on, left the Genital, Duft fhould be coagulated; or otherwife rendered ufelefs. Yet when the Impregnation is over, they do not clofe, either upon Showers, or the approach of Evening.

For the fcattering of Seed Natare kes provided: numberlefs ways. Various Berries are given for Food; to Animals; but while they eat the Pulp, they fow the Seed. Either they difperfe them at the fane time; or if they fwallow then, they are returned with intereft. The Mifleto always grows an other Trees; becaufe the Thrufh that eats the Seeds of them, cafte. them forth with his Dung. The Junipers alfo which fill our Woods, are fown in the fame manner. The. Crofs-bill that lives on Fir-cones, and the Haw-finch which feeds on Pine-cones, fow many of thofe Seeds, efpecially when they carry the Cone to a Stone ar. Stump, to firip off its caless swine likewife and Moles by throwing up the Earth, prepare it for the reception of Seeds.
The great Parent of all decreed that the whole. Earth Thould be covered with Plants. In order to this. he adapted the Nature of each to the Climate where it grows. So that fome cap bear intenfe Heat, others intenfe Cold. Some love a moderate Warmth. Many, delight in dry, others in moift ground. The Alpiuf? Plants love Mountains whofe tops are covered with eternal Snow. And they blow, and ripen their Seeds. very early, left the Winter fhould overtake and deftroy them. Plants which will grow no where elfe, flourifh in Siberia, and near Hudfon's Bay. Grafs can bear almoft any temperature of the Air: In, which the good Pro: vidence of God appears: This being fo neceffary, all; over the Globe, for the nourimment of Catile.
Thus neither the fcorching Sun nor the pinching Cold hinders any Country from havingits vegetables, Nor is there any Soil which does not bring forth fome. Pond-weed and Water-lillies inhabit the Waters. Some Plants cover the bottom of Rivers and Seas:

Others fill the Marfhes. Some cloathe the Plains: Others grow in the drieft woods, and in places that fcarce ever fee the Sun. Nay, Stones and the Trunks of trees are not void, but covered with Liver-wort.

The Wifdom of the Creator appears no where more, than in the manner of the Growth of Trees. As their Roots defcend deeper than thofe of other Plants, they. do not rob them of Nourifhment. And as their Stems fhoot up fo high, they are eafily preferved from. Cattle. Their leaves falling in Autumn guard many Plants againft the rigor of Winter: And in the Summer afford both Them and us a Defence againft the Heat of the Sun. They likewife imbibe the Water from the Earth, part of which tranfpiring thro' their Leaves, is infenfibly difperfed, and helps to moiften. the Plants that are round about. Laftly, the particular Structure of Trees contributes very much to the Propagation of Infects. Multitudes of thefe lay their Eggs apon their Leaves, where they find both Food and Safety.

Many Plants and Shrubs are armed with Thorns, to keep the Animals from deftroying their Fruits. At the fame Time thefe cover many other Plants, under their Branches, fo that while the adjacent Grounds are robbed of all Plants, fome may be preferved, to continue the Species.

The Mofes which adorn the moft barren Places, preferve the fmaller Plants when they begin to fhoot from Cold and Drought. They alfo hinder the fermenting Earth from forcing the roots of Plants upward in the Spring, as we fee happen annually to Trunks of Trees. Hence few Moffes grow in Southern Climates, not being neceflary there to thefe Ends.

Sea-Matweed will bear no Soil but pure Sand. Sand is often blown by violent Winds, fo as to deluge as it were Meadows and Fields. But where this grows, it fixes the Sand, and gathers it into Hillocks. Thus other Lands are formed, the Ground increafed, and the Sea repelled, by this wonderful Difpofition of Nature.

How careful is Nature to preferve that ufeful Plant Grafs? The more its Leaves are eaten, the more they increafe. For the Author of Nature intended, that Vegetables which have flender Stalks and erect Leaves thould be copious and thick fet, and thus afford Food for fo vaft a Quantity of grazing Animals. But what increafes our wonder is, that altho' Grafs is the principal Food of fuch Animals, yet they touch not the flower and feed-bearing ftems, that fo the feeds may ripen and be fown.

The Caterpillar of the Moth, which feeds upon Grafs to the great Deffruction thereof, feems to be formed in order to keep a due proportion between there and other Plants. For grafs, when left to grow freely, increafes to that degree as to exclude all other Plants, which would confequently be extirpated, untefs the Inieft fometimes prepared a place for them. And hence it is, that more fpecies of Plants appear, when this Caterpillar has been, and laid walie the Pafture the preceding year, than at any other time.

But all Plants, fooner or later, muft fubmit to Death. They fpring up, they grow, they llourif, they bear fruit, and having finifhed their Courfe, return to the Duft again. Almoft all the black Mould which covers the Earth is owing to dead Vegetables. Indeed after the Leaves and Stem are gone, the Roots of Plants remain ; but thefe too at laft rot and change into mould. And the Earth thus prepared, reftores to Plants what it has received from them. For when Seeds are committed to the Earth, they diaw and accommodate to their own Nature the more fubtle Parts of this Mould: So that the talleft Tree is in reality nothing but Mould, wonderfully compounded with Air and Water. And from thefe Plants, when they die, juft the fame kind of mould is formed as gave them birth. By this means Fertility remains continualiy uninteriupted: whereas the Earth could not make good its annugl Confumption, were it not confantly recruited.

In many cafes, the crufaccous Liverewarts, are the firft Foundation of Vegetation. Therefore however deipifeg, they are of the utmoft confequence in the CEconomy of

Nature. When Rocks firt emerge out of the Sea, they are fo polifhed by the force of the Waves, that hardly any Herb is able to fix its habitation upon them. But the minute cruflaceous Liverworts foon begin to cover thefe dry Rocks, tho' they have no Nourihment but the little Mould and imperceptible Particles, which the, Rain and Air bring thither. Thefe Liverworts dying turn into a fine Earth, in which a larger kind of Liverworts Arike their roots. Thefe alfo die and turn to mould: and then the various kind of Moffes find nourifhment. Laftly, thefe dying yield fuch Plenty of mould; that Herbs and Thrubs eafily take root and live upon it.

That Trees, when dry or cut down, may not remain ufelefs to the world, and lie melancholy Spectacles, Nature haftens on their Deftruction, in 2 fingu'ar manner. Firt the Liverworts begin to frike root in them, afterward the moifture is drawn out of them, whence Putrefaction follows. Then the Mufhroom kind find a fit place to grow on, and corrupt them fill more. A particular fort of Beetle next makes himfelf a way between the Bark and the Wood. Then a fort of Caterpillar and feveral other forts of Beetle bore numberlefs holes thio' the trunk. Laftly, the Woodpeckers come, and while they are feeking for Infects, flatter the tree already corrupted, and exceedingly haften its return to the Earth from whence it came. But how fhall the trunk of a tree, which is immerfed in Water, ever return to Earth? A particular kind of Worm performs this Work, as fea-faring men well know.

Bur Why is fo inconfiderable a Plant as Thiftes, f armed and guarded by Nature? Becaufe it is one of the moft ufeful Plants that grows. Obferve an heap of Clay, on which for many years no Plant has fprung up: Let but the Seeds of a thittle fix there, and other Plants will quickly come thither, and foon cover the ground. For the thiftles by their Leaves attract Moifture from the Air, and by their roots fend it into the Clay, and by that means not only thrive themfelves, but provide a Thelter for other Plants.

I shall add only one Obfervation mare, comceraing the Difference between Natural and Artificial
things. If we examine the fineft Needle by:the Microfcope, the Point of it appears about a Quarter of an inch broad, and in figure neither round, nor flat, but irregular and unequal. And the.Surface, however fmooth and bright it may feem to the naked Eye, is then feen full of raggednefs, holes and fcratches, like an Iren Bar from the Forge. But examine in the fame manner the Sting of a Bee, and is appears to have in every Part a Polin moft amazingly beputifuls, without the leaft Flaw or inequality, and ends in a point toe fine to be:difcerned by any Glafs whatever. And yet this is only the outward Sheath of far more exquifite Infruments.

A small piece of the fineft Lawn, from the diffance and holes between its threads, appears like a latice or hurdle. And the threads themfelves feem coarfer than the yarn wherewith ropes are made for Anchors. Fine Brufiel lace will look as if it were made of a thick, rough, uneven hair line, intwifted or clotted together in a very awkard and unartfull manner. But a Silkworm's Webb on the siceft Examination appears perfectly fmooth and fhining, and as much finer than any fpinfter in the world can make, as the fmelleft twine is than the thickeft Cable. A pod of this Silk winds into nine hundred and fixty yards. And as it is two threads twifed together all the length, fo it really contains one thoufand eight hundred and fixty; and yet weighs but two grains and an half. What an exquifite Finenefs! And yet this is nothing to the filk that iffued from the worm's mouth when newly hatched.

THE fmalleff dot which can be made with a Pen, appears thro' a Glafs a vaft irregular fpot, rough, jagged and uneven about all its Edges. The fineft Witing (fuch as the L.ord's Prayer in the compafs of a filver Penny) feems as fhapelefs and uncouth; as if wrote in Rumic Characters. But the Specks on Moths, Beetles, Flies and other Infects, are molt accurately circular. And all the Lines and Marks about chem are drawn, to the utnoft poflibi. lity of Exacinefs.

OUr fineft miniature 'Paimings. appear before $\boldsymbol{\otimes}$ Microfcope, as mere Dawbings, plaitlered on witha trowel. : Our. frioptheft Polifhings are fhewn to. be mere R.dughnefs, full tof Gaps and Flaws. Thus do the' worke. of

Art firk, upon an accurate Examination. On the contrary, the nearer we examine the Works of Nature, eyen in the leaft and meaneft of her Productions, the more we are convinced, nothing is to be found there, but Bealty and Perfection. View the numberlefs fpecies of Insects, what Exaetnefs and fymmetry fhall we find in all their Organs? What a profufion of Colouring, azure, Green, vermillion ; what Fringe and Embroidery on every Part! How high the finifhing, how inimitable the polifh we every where behold! Yea, view the Anjmnalcula, invifible to the naked Eye, thofe breathing Atoms, fo fmall, they are almoft all Workmanhip: In them $\mathbf{0 0}$ we difcover the fame Multiplicity of Parts, diverfity of Figures and variety of Mocions as in the largoft Animals. How amazingly curious muft the internal Structure of thefe Creatures be. How minute the Bones, Joints, Mufeles and Tendons! How exquifitely delicate the Veins, Arreries, Nerves! What multitudes of Veffids and Circulations muft be contained in this narrow Compafs! And yet all have fufficient room for their feveral Offices, without interfering with each other.

The fame Regularity and Beauty is found in Vegetables. Every \{talk, Bud, Flower and feed, difplays a Figure, a Proportion, an Harmony, beyond the reach of Art. There is not a Weed whofe every Leaf does not fhew a multiplicity of Pores and Veffle, curioufy difpofed for the conveyance of Juices, to fupport and nourifh it, and which is not adorned with innumerable Graces to embelliih it.

But fome may afk, To what purpofe has Nature beftowed fo much Expence on fo infignificant Cseatares ? I anfwer, This very thing proves they are not fo infignifcant, as we fondly fuppofe. This Beaury is given them cither for their own fake, that they themfelves may be delighted with it: Or for Ours, that we may obferve in them the amazing Power and Goodnefs of she Creator. If the former, they are of confequence in the account of their Maker, and therefore deferve our Regard. If the lasoer, then it is certainly our Duty, to take notiocof; and admiresthem.

In Short, the whole Univerfe is a Pifure, in which , use:difplayedutherferfections of the Deiky. It. Shews not

(. 285)

only his Exifence, but his Unity, his Power, his Wifdom, his Independence, his Goodnefs. His Unity appears in the Harmony we cannot but fee in all the Parts: of Nature ; in that one fimple End to which they are di-: rected, and the conformity of all the Means thereto. On. every fide we difcern either fimple Elements or compound Bodies, which have all different Actions and Offices. What the Fire inflames, the Water quenches: what one. Wind freezes, another thaws. But thefe and a thoufand: other Operations, fo feemingly repugnant to each other, do neverthelefs all concur in a wonderful manner, to produce one effect. And all are fo neceffary to the mains Defign, that were the Agency of any one deftroyed, an interruption of the Order and Harmony of the Creation muft immediately enfue.

Suppose, for inflance, the Wind to be taken away, and all Society is in the utmoft Diforder. Navigation is at a fland, and all. our Commerce with foreign Nations deftroyed. On the other haind the Vapours raifed from the Sea, would remain furpended juft where they rofe. Confequently we Thould be deprived of that ufeful Covering the Clouds, which now fcreens us from the fcorching Heat: Yea, and of the fruitful Rains. So our Land would be parched up, the Fruits of the Earth wither, Animals die, thro' Hunger and Thirtt, and all Nature languih and droop. All the Parts of Nature therefore were conflituted for the Affiftance of tach other, and all undeniably prove the Unity of their omnifcient Creator.

His Power appears in the whole Frame of Creation, and his Wifdom in every Part of it. His Independence is pointed out in the inexhauflible Variety of Beafts; Birds, Fifhes and Infects: And his Goodne/s, in taking care of every one of thefe, opening bis band, and filling all tbings living with plenteounnefs.

Every thing is calculated by divine Wifdom, to make us wifer and better. And this is the fubftance of true Philofophy. We cannot know much. In vain does our fhallow Reafon attempt to fathom the Myferies of Nature, and to pry into the fecrets of the Almighty. His Ways are paft finding out. The Eye of a little Worm

(288)

in a fabjeet capable of exhauffing all our boafted fpeculations. But we may love much. And herein we may be affifted by contemplating the Wonders of his Creation. Indeed he feems to have laid the higheft Claim to this tribute of oar Love, by the Care he has taken to manifet his Goodnefs in the moft confipicuous manner, while at the fame time he has concealed from us the moft curious Particular's, with regard to the Effences and Structare of his Works. And to this our Ignorance it is owing, that we fancy fo many things $t 0$ be ufelefs in the Creation. But a deep Senfe of his Goodnefs will fatisfy all our Doubte, and refolve all our Scruples.

The End of the Firf Folume.

$E \quad \mathbf{R} \quad \mathrm{~A} \quad \mathrm{~T}$ A.

PAGE 7, for Plytbagoras, read Pytbagoras, and fo P. 14P. 9, r. Tbales Milefius, without a ,-P. 12, r. illuftratedP. 13, r. Torricellius-P. 14, r. Tycbo-P. 29, for the, after the Cornea, put a. -P. 30, r. fronger on black. r. acutely. r. Vibra-tion-P. 32, for Term r. Form-P. 35, r. Yet this is not by the Teeth properly-P. 40, for disjointed, r. jointed-P. 41, r. Mi-crofcope-ib. r. of the Head firft, in the Note, 1.6-P. 42, r. offi-fied-P. 44, for peculiars r. peculiar-P. 47, r. Nocera-P. 49, 1. 2, dele in-P. 53, r. limpid, r. Collifion-P. 55, r. Exercifes-P. 59, 1. 1, r. prevents-P. 62, for fhort r. foft-P. 63, r. Teetb, the -P. 65 , r. Mefentery-P. 68, r. Effluvia. r. Supplement-ib. r. Gift-P. 69, r. Dexterity-P. 76, r. conftitute-P. 78, r. receding -P. 83, r. Fluids-P. 84, 1. 3, r. fpring. r. Schirrhus's. r. the Animal Spirits-P. 96, r. Microfcope-P. 100, r. Structure-P. 104, r. timorous-P. 108, r. violence-P. 110, r. Materials-P. 112, r. Year 1738, r. were-P. 113, r. Marcgrave-P. 116, dele to and fro-P. 118, r. timorous-P. 119, r. folid-P. 120, r. 11 . Ir-P. 129, r. Thews, r. better. They-P. 132, for fincones r. fir-cones-P. 133, 1. penult, r. lofe-P. 138, 1. 1, r. Microfcope -P. 139, 1. 5, for his r. Him-P. 141, dele 7-P. 151, 1. 5, r. Materials-P. 155, 1. 12, r. is thus-P. 159, 1. 8, r. unneceffary. 1. 9, r. reflection. 1. 24, for and r. At. r. Microfcope-P. 161, r. will know-P. 162, r. fwim. r. Polar-P. 172, 1. 34, r. contain -P. 173, I. 1, r. flatteft-P. 179, 1. antepen, r. Incifion-P. 180, r. before. The-P. 185, r. down a thread-P. 186, r. attachP. 188, 1. 7, r. in it,-P. 189, r. Hartfoeker. r. Pea-colour-P. 192, for their r. your-P. 196, r. is that-P. 199, r. furprizing to fee -ib. r. filk enter into.-P. 200, 1. 7, dek the-P. 203, 1. 10, r. Microfcope,-ib. 1. 16, r. Tufts-P. 204, Notes, r. he foon inferred -P. 206, 1. 31, for their r. its-P. 209, 1. 5, for a, put a .-ib. 1. 10, r. in the Shape-ib. 1. 19, for longer r. larger-P. 218, 1. 17, r. Sorts-ib. 1. 32, r. Cold-P. 219, 1. 15, r. but as they-P. 221, 1. 6, r. include-P. 224, 1. 11, r. artificially-P, 225, r. LuftreP. 228, 1. 32, for thould r. Shall-P. 237, r. Fibres-P. 238, r. fome of the woody Parts-P. 239, for two thick r. too thick-P. 242, r. Microfcope-P. 243, 1. 27, for ferve r. fave-P. 246, r. Autumn-P. 249, 1. 35, for a ? put a, -P. 256, Notes, 1. 5, r. move at eafe-ib. 1. 10, r. in the Fluids-P. 257, r. Kernels-P. 261, r. excretory-P. 267, r. coralline-P. 271, 1. 13, for Thefe r. The-P. 273, 1.21 and 22, for it r. they, and for ite r . theirsP. 274, 1. 11, for within r. with-ib. 1. 39, dele the-P. 275, r. Principles. r. diffolution-P. 276, 1. 28, for Thefe r. the-P. 278, 1.27 and 29, for Stamina r. Stigmata.

$$
t
$$

1
.14
c.

Digitized by GOOgle

Dggricoc by Google

－

[^0]: - The Bones confif of thin Plates, lying one upon another; and thefe again, of Fibres running lengthways, fome to the Extremity of the Bone, fome not io- far. Yet none of them terninate

[^1]: c Theres is a kiad of Down in the Cavity of every Gland, which. probably does the Office of a Filter, and is that whereby a particulat: Humour is feparated from the Blood.
 Itre Stricture of this Down-veffel is different, according to the different Puppofes of Nature. Sometimes the Liquor filtrated thso:" it, falls drop by drop on a Membrane, to which one End of the Veffel is faftened, as where it is defigned only to moiften thie Part. Sometimes many of thefe Down-veffels \{pread over theinner Surface of a Membranous Cell, into which they all pour their Liquor; which is difeharged at a fmall Orifice.

 These Veffels are often of a great Length, tho' they take ap litife room, being wound over one another, fometimes in a fingle. Knot, and fometimes in feveral, inclofed in a common Membrane. And hence is the Diftinction of Glands into Conglobate and Conglonerate.

 A conglobate Gland is a litte, fmooth Body, wrapt op ia a fine, double Skin, with only an Artery and Nerve paffing in, and a. Vein and Excretery Duct going out.

 A conglomirati Gland is an irregular Affemblage of feveras fimple Glands, which are tied together and wrapt up upier ont соmpaon Membrane.

[^2]: f Fat is fecerned from the Arterial Blood by the adipofe Glands, and tranfmitted again from the membranous Cells to the Biood thro' the Veins. It feems to be a Portion of the Blood coagulated by the nitrous Air mixt with it in the Lungs. Artificial Fat is made, py mpixing for fome days Oil of Olives with Spinit of Nitre. Hence divers Animals grow fat in frofty Weather, the Air then abounding with Nitre.

 It is a natural Balfam that, by inveloping the Salts of the Blood, keeps them from corroding the Parts thro' which they pafs. It likewife nourithes the Body. And hence fat Perfons are able to bear much Abrtinence.

 YET too much Fat is a real Difeafe, which hinders he Motion of the Lungs, intangles the mort active Particles of the $\mathrm{B}:$ od, and naturadly creates Dulnefs and Heavinefs.

 You may cure this, by following Three plain Rules: Eat and driak dittle; Sleep ditule; Work much.
 g The Skull is divided into two Plates, one Jidd over the other. Between thefe is a fpongeous Subftance, made of bony Fibres detached from each Plate. Hereby the Skull is made not only lighter, but far lef liable to Fractures.

 The Skull is covered wish a Membrane called the Pericrarium. This has feveral Holes, which give paffage to the Sponal insioruw, the Nerves, Arteries and Veins. But thefe fill them io nicely, that nothing caus pifs into, or out of the Head,but thro'there fels.

 It is round, that it may contain the more; but a litue dareft an ! !ongih, advaccirg ut behind, aril fated on the Sidos, which contributes to the Enlargement of the Signt and Hearing.

[^3]: h The Brain is abundantly bigger in proportion in Man than in other Animals. In other Animals, it is biggeft, cateris paribus, in thofe that have moft Sagacity.

 Thiez are in the Brain multitudes of. Veffels fo extremely fmall, that if a Globule of Blood (a Million of which exceed not a Grain of Sand in bignefs) were divided into 500 Parts, thofe Parts would be too large to pafs thro' them. And thefe Veffels are as large in the Brain of a Sparrow, as in that of an Ox. Nor is there any difference between the Brain of a large Animal and a fmall, but that one contains far more of thefe Veffels than the other. But the Globules of the Fluid paffing thro' them are in all Animals of the fame Size.

 The outer Part of a Turkey's Brain is a very clear and tranfparent oily Matter. Innumerable fine Blood-veffels are fpread thrs, every Part of this. And if a fmall Part is cut, there flows out a a fmall Globule of pellucid fluid.

 Tre Brain is not ablolutely neceffary to Animal Life. Infants have been born, and lived fome time without any. We have an authentic Account from Paris, of a Child that furvived the Birth four days, not only without a Brain, but even an Head: Inftead of which it had a Mais of Flefh, fomewhat like Liver. In 1673 a Child was born alive without any Brain, Cercbellum or Medulla oblungita; The Skull being folid: Nor had it apy Communication

[^4]: m. That Hair may grow, merely as an Exerefcence of the vegetable kind, appears from that memorable Cale recited by Mr. Hock, of a Body whilh, having been buried forty-three Years, was found in a manner wholly converted into Hair. The Woman was buried in a Coffin of Wood, and lay the loweft of three in the fame Grave. The others being removed and this Coffin appearing, it was obferved, that much Hair came thro' the Clefts of it: On removing the Lid, the whole appeared a very furprizing Sight. There was the a hole Figure of the Corpfe, exhibiting the Eyce, Mouth, Ears and every Part. But from the very Crown of the Head, even to the Sole of the Foot, it was covered over with a very thick fet Hair, long and much curled. The People, amazed at this Appearence, went to touch the Corpfe. But the Shape fell away, as it was handled, leaving only a Quantity of mapelefs Hair, but neither Flefh nor Bones, only a fmall Part of the great Toe of the Right Foot.

 Each Hair confifs of leveral fmaller ones, wrapt up in nee consmon Covering. They fend out Branches at the Joints. The Root

[^5]: - The Organs which form the Voice of Man, have not boen accurately obferved by the Antients. As the Trachea bears fome refemblance to a Flute, they confidered the Voice, according to the Sounde of that Inftrument. Mr. Dodart was the firf ,whe fhewd the Glortis to be the chief Organ in producing it, and confidered it both as a String and Wind-Inftrument, far more perfect than any which Art can produce.

 Thi Organs which form the various Voices of other Animals, are likewife worthy of our Asteation. Thofe of each Species have,

[^6]: - It is a wonderful Provifion which Nature makes in one of the moft dreadful Calamities incident to the Solids. When a Bone is bróken, let it only be'replaced,' and prefersed in that Situation; and Nature does the reft, by fupplying the divided Parts with a Callus.

[^7]: a The Structure of the Beaver's Feet is very extraordinary, and demonftrates this Animal to have been defignd to live in the Water as well as on Land. For the Hinder Feet are more proper for Swimming than Walking, being joined together by a Membrame rike thofe of a Goofe. But the Fore-feet are made otherwile : the Toes of thefe are not joined together. Nor would it have been cona venient : Secing on many occafions he ufes thefe like Handso
 b THE Membranous Wiage of a Bat are a prodigious Deviscion from Natures ordinary Wast And fo it is in the Virginian Flying Squirrel: Whofe Skin is extended, in the Natuse of Wings, be: tween ity Fore-lege and Body.

[^8]: - Tre Elk has lege fo fiff and inflexible, that they run on Ice without תipping. And this is the Way they take in Winter, to Save theinfelves from the Wolves.
 d ThI Goat, which generally dwells on Mountains and Rocks, and delights to walk on narrow Ridges, and to take great and feemingly dangerousLeaps, has the Joints of the Lega remarkably Stiff and ftrong. Likewife the Hoof is hollow underneath, and its Edges harp.
 e It is remarikable, that in Man the Head is of oae fingle Form : Whereas in the four-footed Race, it is as various as their Species. It is in fome fquare and large, fuitable to their Food, Abode and flow Motion: in others, it is fmall, flender and fharp, agreeable to their fwifter Motion, or to make way to their Food, or Habitation under the Ground. And as to the Brain contained therein, hows fmall is it in Beafts, in proportion to what it is in Man? Another thing no lefs remarkable is, The Situation of the Brain and the Cerebellum. As God has given to Man a lofty Countenance, and has lodged in his Brain an immortal Soul, to behold and contemplate

[^9]: 8 Ir goes for curpent, that the Jackal difoevers the Liopn's Prey: that each of thefe retains one of them, and paviog haiated himalelf lets his dependent feed on the gifal's of his repaft.

 Bu'r the truth is, there 保e great nimbers of Jatkuts in foume Woods, and when one of thofe foes anstage or other large thefty, which ismot a Beaft of Prey, beffete op his Cry, which is tilee thy of a Hound, and follows it. At he continues his Cry, the other Jackals that are within bearieg follow likewife. And could the Creature outrun thore that began the chafe; there is a tontinual fiob ply; fo that it cannot ekape. "When they have ran it down, they
 thais the Jackalp difperfe, 'iill appther'Cry ipvites tham.

 They hunt generally in the night, and in the parts of the Eaft, where they are moft frequent, there never is, a night but they are theard, in one part or other of the Wiods. The other Beafts of Frey underfand the Sound; and frequently prefit by'it, xIf achicas Tyger or Leopard happens ro be neas, be hars the. Cry, and fanits apon the watch. Thefe large Animals,are.all very fwift, but they are lazy, and never make long purfuits. If the Creature furfued be far off, and run another way, they never trouble themfilves about It. But if it be near, or if it run toward the place where the lien is, he will dart out upon it as it goss by. And the little Aniogst that hunted it down, mult fland by, and be content with what their Mafter leaves.

[^10]: a It is a reharkable Ufe which is made of Pigeont, in the Eaftern Countrids. They are traised up in Turky and Parfia to carry Expreffes: being firft ufed to fhort Flights, afterwards to longer, 'till at length they will return from the fatheft Part of the King; dom. Yea, if they are brought hoodwinked twenty or thirty Miles, nay fixty or an hundred, they will find their way in a very little time, to the place where they were bred. Every Bafhaw tras Thafet of wasfe! Pigeons, Brett at the Seragtio; one of which he difs patches thishewoin ary emergent Ofcafign, with Letters braced or:der her Wings. This proves a more fpeedy Method, as well at

[^11]: b Parrots have their Bills nicely adapted to thefe Services, being hooked, for climbing and scaching what they watht, and the lower

[^12]: 1 Tuz Rattle-Suake being lefs nimble than others, wopld find difficulty in getting its prey, were it not for the fingular Provifion made, by the Rattle is his Tail. When he fees a Squirrel or Bird on a tree, he gets to the bottom, and thakes this Inftrument. The Creature looking down, fees the terrible Eye of the Saske bent full upon it. It trembles, and never attempts to efcape, but keeps its Eye upon the Deftroyer, till tired with hopping from bough to bough, it falls down and is devoured. Indeed the fame Power is in the \mathbf{V}_{i} per, The EieldrMice, and other Animals, which are its natural Food if they have once feen his Eyes, never efcape, but. either ftand ftill, or rup into its mquth.

 But Vipers in general will not eat, after they are under Confinement. The Viper-catchers throw them together into great Bins, whore they live many Months, tho they eat nothing. It is only Female Viper, when big with young, that will eat during its Confinement. If a Maufe be thrown into the Bin, at the hottom of which 40 or 50 Vipers are crawling, anong which ane is with Young, the alone will meddle with it, and the not immediately. 'The reft pafe it by, without any regard, tho' it be their natural Food. But the Female, after Be has done this feveral times, will at length begin to eve it. Yet the paffes by it again, but foon after fops fhort, and holding her Head facing that of the Moufe, feems ready to dart at it, which however the never does, but opens her mouth, and brandifhes her Tongue. Her Eyes having now met thofe of the Moufe, fle never lofes fight of it more; but they face one another, till the Viper advances with her open mouth, nearer and nearer, sill without making any leap, fue tales in the Head, and afterward the whole Body.

[^13]: n It is eafily feen, by the Microfcope, that the elegant Colours - of Moths'and Butterfies, are owing to neat and-weth-made Feathers, ifet in Rows with great Curiofity and ExaCtnefs,

[^14]: - All bonelefs Infects are Hermaphrodites, as are Snails, Leeches, and many Sorts of Worms. But fuch Worms as become Flies are not, being indeed of no Sex.

[^15]: years firce, By a Phyftian of undoubte Ciefit. The flrft is: A Gentiemtan was feiried with a tolem Fever, ateunded with a Dodi-
 Chamber. It was winti great Difficulty the Phyfician oomented. Fhom the flift tutre, his Pace dftertied aifete Air, his Eyes were

[^16]: 3 The Eggs of Infects are ufually the occafion of what ate term: ed Blight. Thefe feidem happen but on the bowng of tharp, eafierly Winds. Many Infects attend thofé Wincis, and lay their Egess on proper Plant3. Indeed the lange Worms or Caicipiilars which attend fome Blights, feem to be oniy butubeci by hofe \bar{K} inds. But they probabiy berg thofe Swarms of infects, whach occathon she curling of the Leaves of Trees.

[^17]: Every Infect feeds on one Plant and no other. On this only it lays its Eggs. Hence it is, that one kind of Tree only is blighted, and the reft efcape. All Trees then cannot be blighted at once, unlefs one Wind could bring the Eggs of all Infects, with as many different Degrees of Heat and Cold, as are required to hatch and preferve each Species.

 An'D what tho' we do not always perceive Animals in Blights? By Microfcopes we difcover Animalcula, a million times lefs than thofe that are perceivable by the naked Eye. The gentleft Air may waft thefe from place to place: So that it is no wonder if they are brought to us from Great Tartary, even the cold Air of which may give them Life, and from whence there is not fo much Sea as to fuffocate them in its Paffage, by the Warmth and Saltnefs of ite Vapours.

 Trees are preferved from Blights, by fprinkling them with To-bacco-duft or Pepper-duft, which are Death to all Infects.

 But one kind of Blight is caufed, merely by long-continued, dry, eafterly Winds. Thefe fop the Perfipiration in the tender Bloffoms, fo that in a thort time they wither and decay: Soon after, the tender Leaves are affeeted; their perspiring Matter becoming thick and glutinous, fo as to be a proper Nutriment to the Infects, which are then always found upon thein. In this Cafe, the Infecti are not the Cauie, but the Effect of the Blight.

 Ir is a kind of Blight that produces Galls, which are the Buds of Oaks fwelled out. The Caufe is, into the Heart of the tender Bud, a Fly thrufts one or more Eggs. This Ege foon becomes a Worm and eats itfelf a litule Cell in the Pith of the Bud, which would have grown into a Branch. The Sap, which was to nouribh that Branch, being diverted into the remaining Parts of the Bud, thefe grow large and flouri ihing, and become a Covering for the Cell of the Infect.

[^18]: t The kind of Sea-hrubs, as they were formerly accounted, ufually termed Corallines, are in reality no other than Cafes for various Species of Infects. A Frentb Gentleman was the firf who difcovered this. Obferving a great number of Infects lodged in feveral Parts of thefe marine Productions, 100 n inferred, That thefe were only Cafes made by thefe Creatures for their Habitations: And many of them have fince been found to be the Covers of Marine

[^19]: u Wasps at their firf coming frequent Pofts, Boards and other dry Wood that is found, but never any that is rotten. This they fcrape and gnaw, and what they gnaw off, they keep clofe together between their Cain and Fore legs, until they have gotten enough far a Burden. They then carry it away in their Mouths, to make their Combs with.

[^20]: c The Seeds of the fevieral Speçies of Fern, were wholly urfo Known to the Antients. But it is now well known, that is the Female Fern, the whole Surface of the Leaf on the Under-fide is covered with a Cangeries of Seeds, fo that they guard one abother, and need no other Covering, And in the Common Make Fern, there are found at the proper Seafon, feveral brown Sposs, placed in a very regular manner. Thefe are a fungous Matter, round which the fmall Seed-veffels are i-ferted.

 The Fruitfulnefs of Plants, in producing Seeds, tranficends ah Itmagipation. An Elm living an hundred Yeart, ordinarly produces.

[^21]: Google

