This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.
A
S U R V E Y$\dot{\text { ofthe }}$
W I S D O M of G O D
I N
The Creat Io N:
O R, A
COMPENDIUM

$$
\mathrm{OF}
$$

NATURAL PHILOSCPHY:
IN FIVE VOLUMES.
The Thirdedition, Enlarged.
By $70 H N$ WESLEY, A. M.
V O L. II.
Thefe are thy glorious Works, Parent of Good, Almighty! Thine this univerfai Frame, Thus wond'rous fair! Thyfulf how wond'rous then!
Milton.

$$
L \quad O \quad N \quad D \quad O \quad N:
$$

Printed by J. FRY and Co. in Queen-Street: And fold at the Foundry, Upper-Moorfields, and by the Booke fullers in Town and Country. 1777.

$$
\text { RB. } 23.9 .17769 .(2)
$$

C H A P. III.

[Continued.]
12. Of the generation of Fifhes.
13. Of fome particular forts of Fighes.
14. General Reflections.
12.

A^{s}S to the Generation of Fifhes, fome of them are viviparous, others oviparous. The womb and ovaries of moft filhes, are not unlike thofe of birds. The female cafts out innumerable eggs, in the fea, in lakes, in rivers. Great part of thefe are devoured by the males. The reft are hatched by the warmth of the fun, and the young ones immediately fwim away, without any help from the parent.

Sea-Tortoifes lay their eggs on the fea-fhore, and cover them with the fand. It is not uncommon to fee a great number of young Tortoifes rife out of the fand, and without any guide or inftructions, march with a gentle pace toward the water. But the waves ufually throw them back upon the

A 2
fhore,

(4 ケ

Thore, and then the birds deftroy the moft of them. So that out of two or three hundred of them it is feldom that ten efcape.

It feems at firf view, that nature, in this infance, charges herfelf with unnecelfary expence. But a little reflection hews the contrary. We do not complain of the fertility of an hen, which frequently lajs above two hundred eggs in one year: although it may be, that not one chick is hatched out of all thefe. The defign of the author of nature is plain: not barely to preferve the fpecies, but at the fame time, to provide man and other animals with an excellent food. So his intention in the fertility of a Tortoife, is not barely to continue that fpecies, but to accommodate a number of other animals with food convenient for them.

But whence could arife the common opinion concerning the generation of Soles? namely, that they are produced from a kind of Shrimps or Prawns? A French gentleman being determined to try, put a large quantity of Prawns into a tub about three feet wide, filled with fea-water. At the end of twelve or thirtcen days, he faw there eight or ten little Soles, which grew by degrees. He repeated the experiment feveral times, and always found little Soles. Afterwards he put fome Soles and Prawns together, in one tub, and in another Soles alone. In both the Soles fpawned; but there were no little Soles, only in the tub where the Prawns were.

But how can Prawns be of ufe toward producing Soles? Farther obfervations cleared up this. When Shrimps or Prawns are juft taken out of the fea, you may difcern between their feet many little thadders, which are ftrongly faftened to their flomach,
mach, by a kind of glue. If you open thefe bladders gently, you fee a fort of embrio's, which viewed with a microfcope, have all the appearance of Soles.

Now here lies the myftery. Thefe are the eggs or fpawn of Soles, which in order to hatch, ate faftened to the Shrimps or Prawns: like many plants and animals, which do not grow or receive nourifhment, but upon other plants and animals. The Prawns therefore are the fofter-mothers of Soles, during their firft infancy. And this has occafioned many to imagine they were their real mothers.

The coming of certain kinds of filh in fhoals to certain coafts, at a certain time of the year, is of great advantage to mankind. But the reafon of it has been little underflood. Yet obfervation may clear it up. There is a finall infect common in many feas, particularly on the coalt of Normandy, in June, July, and Auguft. They then cover the whole furface of the water as a fcum. And this is the feafon when the Herrings come alfo in fuch prodigious quantities. The fifhermen deftroy much of thefe vermin; yet to thefe alone their filheries are owing. For it is evident the Herrings feed on thefe, by the quantities found in all their flomachs. And doubtlefs, the very reafon of their coming is to feed upon them. Probably the cafe is the fame in all other places, where the Herrings come in the fame plenty.

The numberlefs fwarms of Herrings, Cod and other filh, that come forth yearly from their fhelter, under the ice adjoining to the north pole, divide themfelves into three bodies. One part direct their courfe fouthward, toward the Britifh iflands:

$$
\text { A } 3
$$

anothes
another part weftward, toward Newfoundland; and other places in North-America: and the third part along the coaft of Norway, and then through the Sound into the Battic.

The water, though quite ftill before, curls up in waves wherever they come. They croud together in fuch numbers, that they may be taken up by pailfulls.

A large fhoal of Herrings, reaches (according to the fifhermen's account) an hundred or two hundred fathom deep. They extend alfo to a confiderable circumference. Were they all to be caught, the greateft part would be loff. For it would be impoffible to get hands, tubs, falt, and other neceffaries to cure them. Several hundred thip-loads are fent every year from Bergen alone to foreign parts: befides the quantities that the peafants at home confume, who make them theirdaily provifion.

The fifhers on the weftern ifles of Scotland obferve, that there is a large Herring, double the fize of a common one, which leads all that are in a bay, the fhoal following him wherever he goes. This leader they term the King of Herrings: and when they chance to catch it alive, they drop it carefully into the fea, judging it petty treafon to deftroy a filh of that name.

Mackrels come in the fame numbers at certain times of the year; and for the fame reafon. They are particularly fond of a fea-plant, the narrowleaved, purple Sea-wick, which abounds on the coafts of England; and is in its greateft perfection in the beginning of fummer: though at fometimes later than other, according to the feverity or mildnefs of the winter.

(7)

The chief occafion of their coming is to feed on this plant. And thofe who attend to its growing up, would know when to expect the Mackrel, better than thofe who liften for thunder.

But this is not the fole occafion of their coming. The real truth is this. The fea' near the pole is the native country of all Fifh of Palfage. The ice which continually covers that fea, affords them a fafe retreat. Large, voracious filh, want a free air for perfpiration, and cannot purfue the fmaller fort into their fanctuaries, where they multiply fo prodigioully, that at length for want of fubfiftence, they are forced to quit their retreat. The large finh wait for them at the extremity of the ice. They devour all they can catch, drive them clofe into the coafts, while the birds of prey poar down upon them from all quarters. In confequence of this perfecution their march is always in columns, which are commonly as thick as they are broad. With regard to the Herrings, they quit the ice in the beginning of the year. But the prodigious columns which they form, foon divides into two wings. The right moves weflward, fo as to be near Iceland, in the month of March. The left bends its courfe eafterly, and comes down the north fea to a certain latitude, where it divides into two other wings, the eaftern moft of which coaft along Norway. Hence it fends off one divifion, by the ftrait of the Sound, into the Baltic. another towards the country of Hollein, Bremen. \&c. and thence into the Zuderzce. The weftern wing, which is the largef, falls direetly upon the ifles of Shetland and the Orkneys. And thither the Dutch go, 'to. wait their coming. All that efcape thefe dexterous fifhers, go on toward Scotland, and dividing again into twó columns, one

(8)

paffes to the eaft of that kingdom, and goes round England, detaching numerous divifions to the coafts of Friefland, Holland, Zealand, Flanders, and France, while the other moves to the weftward of Scotland and Ireland. The remains of the whole wellern wing, which have efcaped the nets of the fiihers, and the voracity of other fifh and fowl, having at length rallied in the channel, the colunn is formed anew; and then iffues into the ocean: from which (without fhewing itfelf again on the coaft) it regains, like the remains of the firft weftern wing, which had not travelled fo far, the polar ice, at the approach of winter. And under the protettion of this, the lofs is repaired, which the fpecies had fuffered fince they left it.

Thus does the divine wifdom fupply many thoufands of men with food, as well as numberlefs other animals: and yet prevent any decay of that neceffary provifion, which is continually confumed and as conftantly recruited.

The Tunnies come in equal fhoals at certain feafons, to the coafts of Provence and Languedoc, But it is on another occafion. The fifh called by the French the Emperor, is the great enemy of thefe filh. He is in fummer fo plentiful in thofe leas, that they cannot efcape him but by flying to the flallow waters.

The Pilchards catched on the coaft of Brittany, are flill a ftronger proof, of the natural means that bring fifh in thoals to certain places. The people of Brittany purchafe from Norway, the offals and entrails of all the large fifh caught there. Thefe they cut in pieces, and fraw in valt quantities on the fea along the coafls. This always brings thither fhoals

(9)

Tioals of Pilchards, enough to fupply all the maritime places in the neighbourhood.

The Satmon (bred both in the fea; and in mivers) is another fifh, which comes in thoals at eertain times. But this is on zuother occafion. The female Salmon chiefly ejetts her roe at the mouth of rivers, in flallow water. The male comes prefently after, keeps other fifh from devouring it, and cafts his fyerm upon the roc. They are in great plenty from the middle of April till the middle of July; at which time alfo they come in fhoals into the rivers, partly to refrefh themfelves in frefh water, and partly to rubs or walh off in the ftrong currents, a greenilh vermin called Salmon Lice: infects wifely defigned by the Creator, to drive this rich and valuable fifle into the hands of men.

The Salmon when they are going up the rivers cut of the fea, always fiwim as near the bottom as they can. And on the contrary, when they are going down them into the fea, they always fwimnear the furface. The reafon is, in going up, they fwim againft the current, which always runs fwifteft at the furface. When they are going down on the furface, the current alone is fufficient tocarry them.

At Leixlip, feven miles from Dublin, there is a fine water-fall, or Salmon-leap fo called from the numberlefs Salmon which leap up it, at the feafon of the year for fpawning. When they come to the foot of the fall, you may obferve them frequently to leap up juft above the water, as if to make an obfervation of the diftance. Soon after they leap up again, with an attempt to gain the top, and perhajes rifo gear- it;
but the falling water drives them down again. The fame filh foon fprings up again, and rifes above the fall; yet this is equally unfuccefsful, for dropping with their broadfides on the rapid curvature of the waters, they are thrown back agrain headlong. The only method of fucceeding in their attempt, is to dart their heads into the water, in its firf curvature over the rocks. By this means they firft make a lodgment on the top of the rock for a few moments, and then fcud up the ftream. There feems to be a peculiar inftinet in them, to aim at this very point; for the force of the fream on the top of the precipice, is lefs at the bottom, clofe to the rock than on the furface. 'Tis almoft incredible, the height to which they will leap, they frequently leap near twenty feet. The manner of their doing it is, by bending their tails round, almoft to their heads; it is then by the ftrong re-action of their tails againft the water, that they fpring fo much above it.
13. One particular inftance of the divine care, is obfervable in the Turbot. He is not well able to fwim, efpecially in formy weather, He mult then keep at the bottom, and ftick in the fand. And for that reafon he is provided, with a fkin or membrane which draws over his eyes, to keep the fand out of them.

Whales are as many degrees raifed above other fifhes in their nature, as they are in their fize. They refemble beafts in their internal ftructure, and in fome of their appetites and affections. They have lungs, a midriff, a ftomach, inteftines, liver, fpleen, bladder, and parts of generation like beafts.

(11)

beafts. Their heart alfo refembles that of beafts, driving red and warm blood in circulation through the body.

As thefe animals breathe the air, they cannot bear to be long under water. They are confrained, every two or three minutes, to come up to the furface to take breath, as well as to fpout out through their noftril (for they have but one) the water which they fucked in while gaping for their prey.

The fenfes of thefe animals feem alfo fuperior to thofe of other fifhes. The eyes of other fifhes are covered only with that tranfparent fkin that covers the reft of the head; but in all the caraceous kinds, they are covered by eye-lids, as in man. This keeps that organ in a more perfect fate, by giving it intervals of relaxation. The other fifhes, that are ever ftaring, muft fee, if for no other reafon, more feebly, as their organs of fight are always exerted.

As for hearing, they are furnifhed with the internal inftruments of the ear, although the external orifice no where appears. It is probable, this orifice may open by fome canal into the routh; but this has not as yet been difcovered.

It is likely, that all animals of the kind can hear, as they certainly utter founds to each other. This vocal power would be as needtefs to animals naturally deaf, as glaffes to a man that was blind.

But it is in the circumftances in which they continue their kind, that thefe animals fhew au eminent fuperiority. Other filh depofit their fpawn, and leave the fuccefs to accident: thefe never produce above one young, or two at the molt; and this the female fuckles entirely in the manner of quadrupedes, her breafts being placed as in the human-kind.

In fifhes of the Whale-kind, the tail has a different pofition from what it has in all other fifhes. For whereas in thefe it is erected perpendicular to the horizon, in them it lies parellel thereto; parily to fupply the ufe of the hinder pair of fins, which thefe creatures have not, and partly that they may be able to raife or deprefs their body at pleafure. For it being necelfay they thould frequently come to the top of the water, to take in, or let out the air, they are provided with an organ to facilitate their afcent and defcent as they have occafion. And as for turning their bodies in the water, they perform that as birds do; by ftrongly moving one of their fins, while the other is quiefcent.

The Norway Whale is frequently fixty or feventy foot long. His fhape pretty much refembles that of a cod: he has a large head, and fmall eyes in proportion. On the top of the head are two openings, through which he fpouts out the water (which he takes in, as he breathes) like a large fountain, which makes a violent noife.

His fkin is finooth and not very thick. The colour of his back is dark and marbled. His. belly is white. His throat is very narrow, in proportion to his fize. Under his backbone lies a long bladder, which he dilates or contracts as he pleafes. He rows himfelf with his tail. They copulate after the manner of land animals.

The female brings forth but one or two at a hirth, at which time they are nine or ten foot long. They fuck for fone time: when they are tired with fwimming, fhe carries them between her great fins. Under the fkin lies the blubber or fat. Its ufual thicknefs is about fix inches:
but about the under lip it is found two or three feet thick. Out of this the oil is extrakted. One Whale ordinarily yields forty or fifty, fometimes eighty or ninety hundred weight.

The ufe of blubber feems to be, partly to poife the body and make it equiponderant to the water; partly to keep the water at a diftance from the blood, left it fhould be chilled by its immediate contact; and partly to keep the filh warm, by reflecting the hot fteams of the body, and fo redoubling the heat.

Under the fat is the flefh of a reddifh colour. Their general food, is certain finall infects, which float upon the water, in great heaps, and are no larger than flies. But they likewife eat various forts of fmall fifh, particularly herrings, which they drive together in large fhoals, and then fivallow valt quantities at a time, The Whale commonly goes under the fhoal; then opens his mouth and fucks in all he can. Sometimes he fivallows fo many, that he is ready to burft, a:d fets up a hideous roar.
But he is far more troubled by a flender fifh about four feet long, which tears great pieces of flefh out of him. The Whale then hot only makes a frightful noife, but often leaps a confiderable height. In thefe leaps lie fometimes raifes himfelf perpendicular above the furface of the water, and then plunges himfelf down with fuch violence, that if his head ftrikes againft any of the hidden rocks that are in the fhallows, he fractures his k kull, and comes inflantly floating up dead. So there is no creature in the world fo great or frong as to be exempt from calamities!

The Whalebone-Whale is about feventy feet long, and very bulky, having fcales, and no fins, but only one on each fide, from five to eight feet long.

The Spermaceti Whale is much of the fame dimenfions. The Spermaceti oil lies in a great trunk, four or five feet,deep, and ten or twelve feet long, near the whole length, breadth, and depth of the head. It feems to be no other than the brain. Not but fome other parts of the filh vield an oil; but not fo good as that in the trunk. The care of their young is remarkable: while they carry them under water, they often rife for the benefit of the air. However they are chafed or wounded, as long as they have fenfe, and perceive life in their young, they will not leave them, and if in their flying the young one drops off, the dam comes about, and paffing underneath takes it again.

Whales are gregarious, being fometimes found an hundred in a fwarm, and are great travellers. In autumn the Whalebone Whales go weftward; in Tpring eaftward again. The feveral kinds of Whales do not mix with each other, but each keep by themfelves.
Their wonderful frength lies chiefly in the tail. A boat has been cut down from the top to the bottom by the tail of a Whale, and the clapboards hardly fplintered, though the gunnel on the top was of tough wood. Another has had the flern-poft, three inches thick, cut off fmooth without fo much as fhattering the boat, or drawing the nails of the boards.

It is commonly fuppofed, that all fifhes are mute, as well as void of hearing. But a late author fays, There is one kind of Whale, that when
when they are fruck roar foloud as to le heard two miles. He likewife afferts, that fome of them have hearing, as have frogs, fnakes, and all the lizard kind, though they bave not the ufual outward apparatus of hearing. But they have the auditory paffage, by which found is conveyed, and internal organs, to which the meatus auditores reaches. This is obfervable in all . the Whale kind, and in all fifhes that have lungs. And whereas fome have fuppofed, that water cannot tranfmit found, the contrary of this is now well known. Many experiments have fhewn, that even a man under water may hear :what is fpoken in the openair.

The Hippopotamos, or River-Horfe, is atove feventeen feet long from the fnout, to the infertion of the tail; above fixteen feet in circumference round the body, and above feven feet high: the head is near four feet long, and above nine feet in circumference. The jaws open about two feet wide, and the cutting teeth, of which it hath four in each jaw, are above a foot long.

Its feet refemble thofe of the elephant, and are divided into four parts. The tail is thort, flat, and pointed; the hide is impenetrable to the blow of a fabre; the body is covered over with a few fcattered hairs of a whitifh colour. The figure of the animal is between that of an ox and a hog, and its cry between the bellowing of the one, and the grunting of the other.

It chiefly refides at the bottom of the great rivers and lakes of Africa; the Nile, the Niger, and the Zara; there it leads an indolent life, feldom difpofed for action, except when excited by the calls of hunger. Upon fuch occafions, three
or four of them are often feen at the bottom of a river, forming a kind of line, and feizing upon fuch filh as are forced down by the violence of thefrream. In that element they purfue their prey with great fwiftnefs and perfeverence; they fwim. with much force, and remain at the bottom for thirty or forty minutes without rifing to take breath. They traverfe the bottom of the flream, as if walking upon land. But it often happens, that his filhy food is not fupplied in fufficient abundance; it is then forced to come upon land, where it is an aukward and unweildy franger; it moves but flowly, yet it commits dreadful havock among the plantations of the helplefs na: tives, who fee their poffeffions deflroyed, without daring to refift their invader. Their chief method is, by lighting fires, ftriking drums, and raifing a cry to frighten it back to its favouriteelement. But if they happen to wound it, it then becomes formidable to all that oppofe it: overturning whatever it meets. It poffeffes the fame inoffenfive difpofition in its favourite clement, that it is found to have upon land; it never attacks the mariners in their boats, as they go up or down the flream; but fhould they inad. vertently frike againft it, there is much danger of its fending them, at once, to the bottum, "I have feen, fays a mariner, one of thefe animals open its jaws, and feizing a boat between. his teeth, at once, bite and fink it to the bottom. I have feen it upon another occafion, place itfelf under one of our boats, and rifing under it, overfet it with fix men which were in it; who, however, happily received no other injury." Such is the great frength of this animal; and. from hence, probably, the imagination has been. willing:
willing to match it in combat againft others more fierce and equally formidable. The crocodile and fhark have been faid to engage with it, and yield an eafy vittory; but as the fhark is only. found at fea, and the Hippopotamos never ventures beyond the mouth of frefh water rivers, it is moft probable that thefe engagements never occurred; it fometimes happens, indeed, that the princes of Africa amufe themfelves with combats, on their frefh-water lakes, between this and other formidable animals; but whether the rhinoceros or the crocodile are of this number, we have not been particularly informed. If this animal be attacked at land, and finds itfelf incapable of vengeance from the fwiftnefs of its enemy, it immediately returns to the river, where it plunges in head foremoft, and after a fhort time rifes to the furface, loudly bellowing, either to invite or intimidate the enemy; but though the negroes will venture to attack the fhark, or the crocodile, in their natural element, and there defroy them, they are too well apprized of the force of the Hippopotamos to engage it ; this animal, therefore, continues the uncontroulled mafter of the river; and all others fly from its approach and become an eafy prey.

As the Hippopotamos lives upon fifh and vegetables, fo it is probable the flefh of terreftrial animals may be equally grateful: the natives of Africa allert, that it has otten been found to devour children and other creatures that it was able to furprife upon land; yet it moves but flowly, alnnoft every creature, endued with a common thare of fwiftuefs, is able to efcape it; and this animal, therefore, feldom ventures from the river fide, but when prefled by the neceffities of hunger, or of bringing forth its young.

The

The female always comes upon land to bring forth, and it is fuppofed that the feldom produces above one at a time; upon this occafion, thefe animals are particularly timorous, and dread the approach of a terreftrial enemy; the inflant the parent hears the flightef noife, it dafhes into the fream, and the young one is feen to follow it with equal alacrity.

The young ones are faid to be excellent eating; but the negroes, to whom nothing that has life, comes amifs, find an equal delicacy in the old. Dr. Pocock has feen their flefh fold in the fhambles, like beef; and it is faid, that their breaft, in particular, is as delicate eating as veal. As for the reft, thefe animals are found in great number, and as they produce very faft, their flefh might fupply the countries where they are found, could thofe barbarous regions produce more expert huntfmen. But this creature, which once was in fuch plenty at the mouth of the Nile, is now wholly unknown in Lower Egypt, and is no where to be found in that river, except above the cataracts.

One can hardly tell whether to rank him among land or water animals. He lleeps on land, but paffes all the reft of his time under water. But in one refpect he is different from all other creatures that live partly on land, and partly in the water. All other forts of amphibious animals have the faculty of fwimming; but this has not. He has to feed under water, yet is the moft unwieldy of all creatures, and cannot fwim at all. He comes out of the water in an evening to fleep: and when he goes in again, he walks very deliberately in overhead, and purfues
his courfe along the bottom, as eafy and unconcerned as if it were in the open air. The rivers he moft frequents are very deep, and where they are clear, this affords an aftonifhing fight.

An animal of this fize and make, muft be one of the ftrongeft in the world. It therefore required from nature no fwiftnefs, either to avoid purfuit, or to overtake its prey, as it was defigned to feed chiefly on vegetables. The manner of its feeding is this. When he walks into a river, he feldom looks about till he is near the middle. Here he feeks for the larger water-herbs, particularly for the root of a large water-lilly. People from a boat on the furface frequently lee this. He roots up thefe with his nofe, like a hog, and his mouth and throat being very wide, fwallows them up in vaft morfels half chewed.

But he has frequently occafion to breathe: in order to which, when feeding at his eafe, his cuftom is, every thirty or forty minutes, to rife to the furface of the water. This he does, by a fring from the bottom, made with all his feet at once. Having taken a little frefh air, and looked about him, he drops to the bottomagain.

Of all the inhabitants of the deep, thofe of the Shark Kind are the moft voracious. The fmalleft of this tribe is not lefs dreaded by greater fifh, than many that feem more powerful; nor do any of them feem fearful of attacking animals far above their fize. But the great White Shark joins to the moft amazing rapidity, the ftrongeft appetites for mifchief: as he approaches nearly in fize to the whale, he far furpaffes him in frength and celerity, in the formidable arrangement of his teeth, and his infatiable defire of plunder.

The White Shark is found from twenty to thirty feet long. Some affert, that they have feen them of four thoufand pounds weight. The mouth is enormoully wide; as is the throat, and capable of fwallowing a man with great eafe. But its furniture of teeth is ftill more terrible : of thefe there are fix rows, extremely hard, fharp-pointed, and of a wedge-like figure. It is afferted, there are feventy-two in each jaw, one hundred and fortyfour in the whole. With thefe the jaws both above and below are planted all over, but he has a power of erecting or depreffing them at pleafure. When the Shark is at reft, they lie quite flat in his mouth: but when he prepares to feize his prey, he erects all this dreadful apparatus, and the animal he feizes, dies pierced with an hundred wounds in a moment.

His tkin is rough, hard, and prickly, being that fubftance which covers inftrument-cales, called Shagreen.

No fint can fwim fo faft as he; he outfrips the fwifteft thips, plays round them, darts out before them, and returns to gaze at the paffengers. Such amazing powers, with fuch great appetites for deltruction, would quickly unpcople even the ocean: but providentially the Shark's upper jaw projects fo far above the lower, that he is obliged to turn on one fide (not on his back, as is generally fuppofed) to feize his prey. As this takes fome finall time to perform, the animal purfued often feizes that opportunity to efcape.

Tortoifes are commonly known to exceed eighty years old; and there was one kept in the archbifhop of Canterbury's garden, at Lambeth, that was remembered above an hundred and twenty. It

It was at laft killed by the feverity of a froft, in its winter retreat, which was a heap of fand, at the bottom of the garden.

The young Tortoifes are generally excluded in about twenty-fix days. The little animal no fooner leaves the egg than they feek for their provifion, and their fhell, with which they are covered from the beginning, expands and grows larger with age. As it is compofed of a variety of pieces, they are capable of extenfion at their futures, and the fhell admits of increafe in every direction. It is otherwife with thofe ammals, whofe fhell is compofed all of one piece, that admits of no increafe; which, when the tenant is too big for thehabitation, muft burft the fhell, and get another. But the covering of the Tortoife grows larger in proportion as the interior parts expand; in fome meafure re. fembling the growth of the human fkull, which is compofed of a number of bones, increafing in fize in proportion to the quantity of the brain. All Tortoifes; therefore, as they never change their Thell, muft have it formed in pieces: and though in fome thefe marks have not been attended to, yet doubtlefs they are general to the whole tribe.

It is of different magnitudes, according to its different kinds; fome Turtles being not above fifty pounds weight, and fome above eight hundred.

The great Mediterrancan Turtle is the largeft of the Turtle kind, with which we are acquainted. It is found from five to eight feet long, and from fix to nine hundred pounds weight.

All Tortoifes having fmall and weak feet, are exceeding flow in their motions. They have neither tongue nor teeth, nor any offenfive weapon. How then can they take, how can they
they chew, or in any degree comminute their food? This is well provided for: they break not only fhells, but fometimes even fones with their lips: which by their exceffive hardnefs effectually fupply the want of teeth, But how can they defend themfelves? Abundant provifion is made for this alfo. Their fhells more than cover the whole body, and are of fo firm a texture, that a loaded waggon may go over them, without any injury either to the fhell or the creature within it.

The blood of Tortoifes is colder than any common fpring water; yet is the beating of the heart as vigorous as that of any animal, and the arteries as firm as thofe of any creature.

There is fomething highly remarkable in the change of tadpoles into frogs; but there is fill fomething more remarkable in the Frog-filh. Thefe are found in great numbers in the river Surinam. At firl they are perfect frogs, they are fpotted with brown, yellow, and green; but are paler on the belly, their hinder feet are webbed, like thofe of a goofe, the fore-feet without webs. The firf change the animal undergoes, is by the growing of a tail. After this the forefeet decreaie, and perifh by degrees. The decreafe of the hinder legs follows, and at laft the Frog is changed into a perfect Fifh.

It may not be unacceptable or unprofitable to thofe who fee God even, in his loweft works, to add a fhort account of a few more inhabitants of the waters.

(23)

Flying-Fifh are very rarely a foot long. They have a pretty large, though thin and light head. The mouth is generally open; the body fmall, roundifh, and tapering towards the tail: befides the ufual fins, they have under their necks, three broad and pretty long ones, of a more fubtle fructure, nearly as thin as a fly's wing, but frengthened with rows of bones. On the back part of their neck they have alfo a flying fin, about fix inches long, quite erect. And lower down the back, there is another fhorter but broader. Thefe wings they ufe to efcape the purfuit of creatures too powerful for them. They rife feveral feet above the water, and fly the length of two or three mufket-fhot. Then they drop, becaufe their wings are dry, which ferve them no longer than they are moif.

The Ink-Fifh, as fome call it, has a fill more extraordinary way of efcaping its purfuers. "I have lately, fays the author of the natural hiftory of Norway, procured a dryed one, which is two foot long. The body is almoft round, refembling a fmall bag, and is blunt at both ends. But the head is the moll remarkable part. It has two large eyes, and a mouth like a birds beak. Above this flands eight horns, like a flar. Each horn is octangular, and covered with many fmall, round, balls, fomething larger than a pin's head. On each fide of the body there are two fkinny membranes, with which he can cover himfelf all over. The fore-part of the body is quite filled with a black fluid. When it is purfued, it dif-, charges this which colours the water all around, and renders it invifible. This is a wonderful gift
of nature, for the prefervation of an animal, otherwife utterly helplefs.

The Arborefcent Star-Fifh is another of the curiofities of nature. It is upwards of a foot in diameter, having its mouth in the middle. The figure of the trunk is pentangular, and from the five angles arife as many branches, which fubdivide into feveral others, and thofe again into others, that are lefs, fill the laft are farce thicker than horfe-hairs, and in number above a thoufand. In fwimming he fpreads all thefe branches like a net; and when he perceives any prey within them, draws them in again, and fo takes them with all the dexterity of a fifherman.

Full as furprifing a creature is the Torpedo, a flat fifh, much like a thorn-back. It is common on the coafts of Provence, and is eaten without any ill effect. But upon touching it with the finger, the perfon commonly (though not always) feels an unufual, painful numbnefs, which fuddenly feizes him up to the elbow, and fometimes up to the fhoulder. It refembles, but far exceeds, the pain felt by friking the elbow violently againft an hard body. But it lafts only a few moments, and gradually wears away. If a man touch it even with a flick, he feels a little of it. If he preffes his hand frongly againft it, the numbnefs is the lefs. But it is fo uneafy as to oblige him, very fpeedily to let it go. Many have attempted to account for this; but fhould we not rather honeflly own our ignorance?

The Sea-Nettle, fo called, is another flrange production of nature, common, I fuppofe, in all the
the northern feas. It generally fwims on the top of the water, and is throughout foft, fmooth, and tranfparent. It appears to be a lump of flime or jelly. But it co-heres firmly together, being marked in the middle with a crofs fomewhat like a flower-de-luce.

Thefe creatures are blue, white, or red, and fome of them have many branches underneath. Thefe are ufually fomething larger than the common fort, and are of a dark red. They all abound with a corrofive poifon, which if it drop on any part of the body will caufe a fmart and an inflammation, muchlike that produced by nettles. Hence it has its name. However it is no vegetáble, but evideutly a living creature. For it has fenfation : it grows, moves to and fro, contracts and extends itfelf. It often picks up and devours fmall fifh, and is itfelf devoured by others.

The care of the Creator is obfervable, even in fo inconfiderable a creature as a Limpet, a fmall fhell-filh, which fo faftens itfelf to the rock, that fearce any thing can unloofe its hold.

The fact has long been known. But the manner of its faftening itfelf, was not underftood till very lately. Its fhell approaches to the figure of a cone; the bafe of which is occupied by a large mufcle, which alone has nearly as much flefh in it, as the whole body of the fifh. This is not covered by the fhell, but ferves the creature equally to move forward or to fix itfelf to the rock. When it is in a fate of refl, which is the common cafe, it applies this mufcle every way round to the furface of fome flone, and thereby holds itfelf fixt to it fo firmly, that it is impoffible to take it off with the hands. Thofe who would remove them are B obliged
obliged to make ufe of a knife for that purpofe. And even then it is not eafy: for on whatfoever fide the blade of the knife attempts to enter, the filh immediately fixes its mufcle with double force. to the fone,

The true caufe of his adhefion is a vifcous juice, a kind of glue, thrown out by this mufcle, which though it is not preceptible to the eye, yet it is eafily perceived by the touch. For if immediately after the removing a Limpet from the flone, the finger be applied to the place, it is faftened very ftrongly to it, by means of the glue left there. But if any wet have come upon the ftone, fince the filh has been removed, no vifcofity can be perceived on it, the whole fubftance of the glue being immediately diffolved. This confideration may lead us to obferve the great care of nature over all her works. How eminently is it maniffted in this little fifh? It was abfolutely neceffary for its prefervation, that it fhould have a power of fixing itfelf to the ftone, or it would have been wafhed away by every wave. And this power is given it, by means of that glue which fixes it fo firmly. But when it is fixed, how fhall it be loofed? This is equally neceffary. For if there be not fome power in the animal itfelf, to diffolve this glue, it mult needs perifh for want of food, when once fixt to a barrerr fpot. Water is the proper diffolvent of this glue. But it cannot be the external water. This is kept at a diftance, by the clofe adhefion of the outer rim of the great circular mufcle. And 'tis needful it fhould: elfe it would always diffolve the glue, as foon as it was difcharged. But the under furface of the body of the animal is covered all over with fmall tubercles, moft of which contain water. When there-
före
fore it would move, it has only to difcharge a fmall quantity of this water, and the cement immediately diffolves and fets it at liberty The other tubercles doubtlefs contain the vicfons matter. So that when the animal would fix itfelf, it needs only to fqueeze one fet of its tubercles, and then it would loofe itfelf with the other.
14. Upon the whole, how natural are the reflections, which a late writer makes on the inhabitants of the waters?

What an abundance of fifh do the waters produce? In thefe I feem to difcern nothing but a head and a tail. They have neither feet nor hands. Nor have they any neck: fo that their head cannot be turned at all, any otherwife than by turning the whole body. Were I to confider their figure only, I fhould think they were deftitute of all that was neceffary for the prefervation of their life. But with thefe few outward organs they are more nimble and dexterous, than if they had feveral hands and feet. And by the ufe they make of their tails and fins, they are carried along like arrows.

But as almoft all fifhes prey upon each other, and cannot fuftain their own lives, any otherwife than by continually deftroying thofe of their own fpecies, how can the inhabitants of the water fubfilt? How can many fpecies efcape utter deftruction? God has guarded againft this, by multiplying them in fo prodigious a manner. More than three hundred thoufand eggs have been counted in the roe of a fingle Salmon. By this means, let them be deftroyed ever fo faft, fill their increafe is equal to their confumption.

(28)

But who can explain how the inhabitants of the fea enjoy their perfect health, in the midft of water fo loaded with falt? And by what art is it, that they preferve even there, a flefh that has not the leaft tafte of it?
Why do thofe which are fittef for the ufe of man, come and offer themfelves on our coafts? While fo many that would be ufelefs, if not pernicious, affect remotenefs from us.

Why do feveral of them, in their ftated feafons, run up into our rivers, and communicate the advantages of the fea, to fuch countries as are far diftant from it? What hand conducts them with fo much care and goodnefs, but thine, O thou preferver of men ?

C H A P. IV.

Of $R E P T I L E S$.

1. Of their motion:
2. Of ferpents:
3. Of their Brain, Stomach, Generation:
4. Venom:
5. Of Jome particular Jorts of Reptiles:
6. Water lizards often change their fkins:
7. Re-production of parts cut off:
8. Of tape-worms:
9. Of worms that feed on ftones.
10. NOT far removed from fifhes are Reptiles, fo named from their creeping, or advancing on the belly. Many fpecies of them have legs and feet, but very fmall in proportion to the body. There is a world of contrivance in their motion. The whole body of the earth-worm for inftance, is a chain of annular mufcles, or rather, one continued fpiral mufcle, the orbicular fibres whereof being contratted, make each ring narrower and longer, by which means it is enabled, like the worm of an augre, to bore its paffage into the earth. Its creeping may be explained by a wire, wound on a cylinder. If this is taken off, and one end extended and held faft, it will bring the other near it. So the worm having fhot out its body, whioh is fpiral, takes hold by its fmall

$$
\text { B } 3 \quad \text { feet, }
$$

feet, and fo brings on the hinder part. Its feet are placed in a four-fold row, the whole length of the worm With thefe, as fo many hooks, it fanens to the earth, or whatever it creeps over, fometimes this, fometimes that part of the body, and ftretches out, or draws after it another.
2. The moft eminent fpecies of Reptiles are Serpents, which we may therefore particularly confider. Their bodies are of a very peculiar make, having a compages of bones articulated together. Here part of the body is applied to the ground, and the other part fhot forward, which being applied to the ground in its turn, brings the other after it. The fpine of their back varioufly writhed, helps their leaping, (as the joints of the feet in other animals.) They make their leaps by means of the mufcles that extend the folds thereof.

The number of joints in the back-bone are nuwerous beyond what any one would imagine. In the generality of quadrupeds they amount to not above thirty or forty. In the ferpent kind they amount to an hundred and forty-five from the head to the vent, and twenty-five more from that to the tail. The number of thefe joints muft give the back-bone a furprifing degree of pliancy : but this is ftill increafed by the manner in which each of thefe joints is locked into the other. In men and beafts the flat furfaces of the bones are laid one upon the ather, and bound tight by finews; but in ferpents the bones play one within the other like ball and focket, fo that they have a full motion upon each other in every direction. Thus if a man were to form a machine compofed of fo many joints as are in the back of a ferpent, he would find it no eafy matter to give it fuch ftrength and
and pliancy at the fame time. The chain of a watch is but a bungling piece of work in comparifon.

Though the number of joints in the back bone, is great, yet that of the ribs is fill greater; for, from the head to the vent, there are two ribs to every joint, which makes their number two hundred and ninety in all. Thefe ribs are furnifhed with mufcles, which being inferted into the head, run along to the end of the tail, and give the animal great frength and agility.

The fkin alfo contributes to its motions, being compofed of a number of fales united to each other by a tranfparent membrane, which grows harder as it grows older, until the animal changes, which is generally done twice a year. This cover then burfts near the head, and the ferpent creeps fromit, by an undulatery motion, in a new k in, much more vivid than the former. If the old flough be then viewed, every fcale will be diftinetly feen like a piece of net-work.

There is much geometrical neatnefs in the difpofal of the ferpents fcales, for affifting the animal's finuous motion. As the edges of the foremof fcales lie over the ends of the following, fo thefe edges, when the fcales are erected, which the animal has a power of doing in a finall degree, catch in the ground, like the nails in the wheels of a chariot, and fo promote and facilitate the animal's progreffive motion. The erecting thefe fcales are by means of a multitude of difinitt mufcles, with which each is fupplied, and one end of which is tacked each to the middle of the foregoing.

Serpents differ very widely as to fize. The Lyboija of Surinam grows to thirty fix feet long. The litle ferpent at the Cape of Good Hope is B_{4}
not
not above three inches, and covers whole fandy defarts with its multitudes! This tribe of animals, like that of fifhes, feems to have no bounds put to their goowth. Their bones are in a great meafure cartilgenous; and they are confequently capable of great extention; the older therefore a ferpent becomes, the larger it grows; and as they live to a great age, they arrive at an enormous fize. Leguat aflures us, that he faw one at Java, that was filty fect long.

Vipers are often kept in boxes for fix or eight months, without any food whatever; and there are little ferpents fometimes fent over to Europe, from Grand Cairo, that live for feveral years in glaffes, and never eat at all, nor eyen fain the glafs with their excrements. Thus the ferpent tribe unite in themfelves two very oppofite qualities; wonderful abflinence, and yet incredible rapacity.

Serpents will fwim a long time, but they cannot flay long under water, without being fuffocated. In winter they retire under ftones, roots of trees, old walls, or any warm, dry fhelter. Here they fleep half dead, though with their eyes open, till the returning fun recalls them to life.
3. Their Brain little differs from that of fifhes: but their Stomach very much. It is like a loofe gut, which runs along, from the jaws quite to the tail. They have likewife folid ribs and vertebre, at fmall diftances, from the neck to the end of the tail. . Hereby they are enabled, to raife themfelves up, to fupport, to writhe themfelves into rings, to fpring forward, and to fuck or fwallow any thing with furprifing force. And their whole fiefh is of fo clofe and firm a texture,
that
that they will live for fome time, everr after they are cut in pieces. There is nothing more harmlefs than the common Snakes: they are as innocent as flies.

There is a great deal of geometrical nicety in the finuous motion of Serpents. For the affifting herein, the annular fcales under their body, are very remarkable, lying crofs the belly, contrary to thofe in the back and the reft of the body. Alfo the edges of the foremoft fcales, lie over the edges of the following fcales from head to tail. So that when each fcale is drawn back, or fet a little upright by its mufcle, the outer edge of it is raifed a little from the body, to lay hold on the earth, and fo promote the ferpent's motion. But there is another admirable piece of mechanifm, that every fcale has a diftinct mufcle, one end of which is fixed to the middle of its fcale, the other to the upper edge of the next fcale. There is nothing peculiar in the generation of Serpents, moff of which are oviparous.
4. Vipers and many other Serpents have fmalf bags near the root of their teeth, which contain. the poifon. When they bite, this is fqueezed out, by the compreffion of thofe bags. If they are taken out of a viper, the liquid they contain mixed with the blood of an animal, caufes death. But if taken in by the mouth, it does no harm, lofing its efficacy by mixing with other liquids.

A Viper has the bigge.t and flatteft head of all the Serpent kind. It is ufually half an ell long and an inch thick, with x fnout not unlike that of an hog. It has fixteen fmall teeth in one row; befide. two large, fharp, hooked, hollow, tranfparent B 5 teeth ${ }_{\rightarrow}$
teeth, placed at each fide of the lower jaw. Thefe convey the poifon into the wound, through a long flit. They are flexible, and then only raifed, when the Viper is going to bite. The roots of them are encompaffed with a little bladder, containing a large drop of a yellow infipid juice. The flit is a little below the point of the teeth, which are not hollow to the top. Hence arife all thofe dreadful fymptoms, which frequently end in death. But they are all prevented or removed, by rubbing oil upon the wound.

Vipers creep but flowly, and never leap or bite, unlefs provoked. They are of a yellowifh colour, fpeckled with longifh brown fpots. The belly is of the colour of well-polifhed fteel. Other Serpents lay eggs; the female Viper only brings forth her young alive, wrapt up in fkins, which break on the third day, and fet them at liberty.

The venom of a Viper is not mortal to a found and robuft body, though attended with painful fwellings, violent vomitings, phrenfies, and convulfions. In eight or ten days, the poifon having run through divers parts of the body, throws itfelf into the fcrotum, and fwelling it extremely, caufes great heat, and much urine very hot and fharp, by which it is difcharged, this being the certain crifis of the difeafe.

But a fickly or fearful perfon, bit by a Viper furely dies, if there be not fpeedy help. Any one bit, in two or three days weighs almoft as much more as he did before. Who can account for this?

It is remarkable, that the youngeft Vipers are provided with poifonous eeth grown to perfection, commenfurate to their bulk; that fo they may

(35)

maxy be able to kill their-prey and feed themfelves, as foon as they are born.

The poifon of a Rattle-Srake is equally fatal and roore fwift in its operation. For it frequently kills within an hour. The Snake is from ten to fifteen feet long. But whenever it moves in order to bite, the tail begins to rattle : and that confiderably loud: fo that a man if he has prefence of mind, may eafily get out of his way. When he bites an hare, he is obferved to lick her all over before he takes her into his mouth: probably, that having moiftered and fmoothed her Ikin, he may the more eafily fwallow her.

It is very remarkable, that he frequently ftays under a tree, on which a bird or fquirrel is hopping about, with his mouth wide open. And the event conflantly is, the creature in a while drops into it. Sir Hans Sloane thinks, he has wounded it firf: and that he then waits under the tree, till the poifon works and the animal drops down into the mouth of its executioner.

But this is not the cafe, as plainly appears, from what many have been witneffes of. A Swallow, purfuing his prey in the air, if he cafts his eye on a Snake beneath him, waiting with his mouth wide open, alters his courfe, and flutters over him in the utmoft confternation, till finking gradually lower and lower, he at laft drops into his mouth.

To the fame purpofe is the famous experiment of Dr. Sprenger, mentioned in the Hamburgh magazine. He let loofe a moufe on the ground, at a little diftance from a common fnake. It made a few turns, and fqueaked a little, and then ran directly, into the mouth of the fnake, which all the while lay ftill, and without motion.

The Rattle-Snake being lefs nimble than others, would find difficulty in getting its prey, were it not for the fingular provifion made, by the rattle in his tail. . When he fees a fquirrel or bird on a tree, he gets to the bottom, and fhakes this inftrument. The creature looking down, fees the terrible eye of the Suake bent full upon it. It trembles, and never attempts to efcape, but keeps his eyc upon the deftroyer, till tired with hopping from bough to bough, it falls down, and is devoured. Indeed the fame power is in the Viper. The field-mice, and other animals, which are its natural food, if they have once feen his eyes, never efcape, but either fland fill or run into his mouth.

But Vipers in general will not eat, after they are under confinement.. The Viper-catchers throw them together into great bins, where they live many months, though they eat nothing. It is only a female Viper, when big with young, that will eat during its confinement. If a moufe be thrown into the bin, at the bottom of which forty or fifty Vipers are crawling, among which one is with young, fhe alone will meddle with it, and fhe not immediately. The reft pafs it by, without any regard, though it be their natural food. But the female, after the has done this feveral times, will at length begin to eye it. Yet fhe paffes by it again, but foon after ftops fhort, and holding her head facing that of the moufe, feems ready to dart at it, which however the never does, but opens her mouth, and brandifhes her tongue. Her eyes having now met thofe of the moufe, The never lofes fight of it more; but they face one another, and the Viper advances with her open mouth, nearer and nearer, till without mak-
ing any leap, fhe takes in the head, and afterward the whole body.

A common Snake will avoid a man; but a Rattle-Snake never turns out of the way. His eye has fomething fo terrible in it, that there is no looking ftedfaftly at him. But he creeps very flow, with his head clofe to the ground, fo that one may eafily get out of his way. His leaping is no more than uncoiling himfelf, fo that a man is in no danger, if he is not within the length of the Snake. Neither can he do any harm, unlefs he firft coil, and then uncoil himfelf; but both thefe are done in a moment.

The noife they make is not owing (as fomeimagine) to little bones lodged in their tails. But their tail is compofed of joints that lap over one another, like a lobfter's, and they make that noife by friking them one upon another. This is loudeft in fair weather; in rainy weather they make no noife at all. It is remarkable, that whenever a fingle Snake rattles, all that are within hearing rattle in like manner.

Of how extremely penetrating a nature is their poifon? A man provoking one of them to bite the edge of his broad-axe, the colour of the fteeled part prefently changed: and at the firfi flroke he made with it in his work, the difcoloured part broke out, leaving a gap in the axe.

A gentleman in Virginia has lately given a particular account, of what he felt after being bit by one of them.
" Hearing, fays he, a bell upon the top of a fleep hill, which I knew to be on one of the cows of the people where I then quartered. I
went right up the hill; but near the top my foot flipped, and brought me down upon my knees. 1 laid my hand on a broad fone to fay myfelf; I fuppofe the Snake lay on the other fide, who bit my hand in an inftant, then flid under the ftone, and founded his rattles. But I foon found him, crufhed his head to pieces with a flone, took him up in my left hand, and ran home, fuching the wound on my right hand, and fpitting out the poifon. This kept it eafy; but my tongue and my lips grew fliff and numb, as if they were froze. When I came home, one prefently ripped a fowl open, and bound it upon my hand. This eafed me a little. I kept my elbow bent and my fingers up, which kept the poifon from my arm. Another bruifed fome turmeric, and bound it round my arm, to keep the poifon in my hand. This kept my arm eafy for fome hours; and my hand, though numb, was not much fuelled, nor even painful: but about midnight it puffed up on a fudden, and grew furious, till I flit my fingers with a razor. I alfo flit the back of my hand, and cupped it, and drew out a quart of nimy fuff, yet my arm fwelled. Then I got it tied fo faft, that it was almoft void of feeling. Yet would it work, writhe, jump, and twine like a Snake, change colours, and be fpotted. And the fpots moved to and fro upon the arm, which grew painful at the bone. All things were applied for two days which could be thought on; but without effect., till the afhes of white aflh-bark made into a plaifter with vinegar, drew out the poifon. We then untied my arm; but within two hours all my right-fide turned black. Yet it did not fwell, nor painme. I bled at the mouth foon after, and continued
tinued bleeding and feverifh four days. The pain raged ftill in my arm, and I was by times delirious for an hour or nov. After nine days the fever went; but my hand and arm were fpotted like a Snake all the fummer. In autumn my arm fwelled, gathered, and burft, fo away went poifon, fpots and all.

But the moff furprifing circumftance was my dreams. In all fickneffes before, thefe were always pleafant. But now all were horrid. Often I was rolling among old logs; fometimes I was a white oak cut in pieces. Frequently my feet would be growing into two hickary trees: fo that it was a terior to me, to think of going to fleep.
5. It is a wonderful provifion which is made for thofe Snakes, who are inhabitants of the waters. A Water-Snake has no air-bladder like fifhes: but to make amends for this want, it has a large membranous air-bag on its back, which it empties or fills with air at pleafure, by an aperture which it can hut fo clofe, that the leaft globule of water cannot enter. By this means it can enlarge or leffen the bulk of its body, and inhabit any depth of water.

As for the Serpent of the Waters, of which an account is gravely given, by the writer of the Natural Hiftory of Norway, which he talks of, as being five or fix hundred yards long, and as rearing his head higher than the main-maft of a man of war, I prefume it is very nearly related to the Craken of the fame author: a fea-monfter, to which a whale is but a fhrimp, larger than twenty men of war put together. And this
our
our writers of magazines and reviews, fwallow without any difficulty! Is it from the juff judgment of God, that men who do not believe the bible, will believe any thing?

The King of all Reptiles which are known with any certainty, is the Crocodile. There are fixtytwo joints in the back-bone, which, though very clofely united, have fufficient play to enable the animal to bend like a bow to the right and the left ; fo that what we hear of efcaping the creature by turning out of the right line, and of the animal's not being able to wheel after its prey, feems to be fabulous. It is likely the Crocodile can turn with great eafe; for the joints of its back are not fiffer than thofe of other animals : and we know by experience, it can wheel about very nimbly for its fize.

It is probable, that the fmell of mufk, which all thefe animals exhale, may render them agreeable to the favages of that part of Africa. They are often known to take the part of this animak which contains the mufk, and wear it as a perfume about their perfons. Travellers are not agreed in what part of the body their mufk-bags are contained; fome fay in the ears; fome, in the parts of generation; but the mof probable opinion is, that this mufky fubftance is amaffed in glands under the legs and arms.

The American Crocodile, or Alligator, is only fifteen or fixteen feet long. But thofe bred in Afric, or the Eaft-Indies, are faid to be between five and twenty and thirty. It may well be faid of him, (which cannot be faid of the whale) that his fcales are his pride: for on his back, as well as on his head, they are impenetrable as fteel. No.

No creature dares withftand him. He is the king of all the children of pride. And as every female Crocodile lays fome hundreds of eggs at once, they would utterly difpeople the waters, were it not that the male devours all he can find of them. And fo diligent is he in his fearch, that fcarce one out of an hundred efcapes him. It is another inflance of divine mercy, that he cannot bite under water. By this circumftance, creatures that are able to dive, generally efcape his ravenous jaws. It is a vulgar error, that he moves the upper jaw: he moves the lower only.

The Chameleon (as well as the Alligator) is of the Lizard Kind. Some in Egypt are twelve inches long; bdt the Arabian feldom exceeds fix. He has four feet, and a long flat tail, whereby he hangs on trees, as well as by his feet. His fnout is long, his back fharp, and grained like fhagreen. He has no ears, neither does he make or receive any found. The tongue is half the length of the animal, round to the tip, which is flat and hollow, fomewhat like an elephant's trunk. And this he darts out, and draws back with furprifing fwiftnefs. The great ufe of this is, to catch flies, (which are its proper food, not the air, as is vulgarly thought) by darting it out upon them. Its colour is not always the fame. One at Paris, when it was in the fhade, and at reft, was of a bluifh grey. In the funfhine this changed to a darker grey, and its lefs illumined parts to various colours. When handled or ftirred, it appeared fpeckled with dark fpots bordering upon green. If it was wrapt up a few minutes in a linen cloth, it was fometimes taken out whitifh. But it did not take the colour of any other cloth
or fubftance that inclofed it. So that its affuming all the colours it comes near, is a groundlefs imagination.

The Chameleon at London was of feveral colours, like a mottled coat. The mof difcernible were, a green, a fandy yellow, and a liver colour. When ftiured or warmed it was fuddenly full of black fpots, as big as a large pin's head. But when it was quiet, they gradually difappeared.

There are four fpecies of Chameleons, 1. The Arabian, about the fize of the green lizard. This is of a whitifh colour, variegated with reddifh and yellowifh fpots. 2. The Egyptian, which is of a middle true, between a whitifh and a fair green. 3. The Mexican. And 4. A kind which has been frequently thewn in Europe, and differs from all the refl. His head is large; but he alters his body at pleafure, inflating it more or lefs: and not only his body, but his legs and tail. This is peculiar to, hin. The body thus puffed up, will remain fo two hours. But it is infenfibly finking all the time. It can continue a long time in either of thefe ftates; but is generally uninflated. It then looks miferably lank and lean : its backbone may be feen perfectly; its ribs counted, and even the tendons of the feet diftinctly feen through the flin.

Its mouth is furnifhed with continued, denticulated bones: but it does not appear what ufe they are of, fince it preys on flies, and fwallows them whole, unlefs for holding a ftick in its mouth crofs-ways: which according to Ælian, he frequently does, to prevent being fwallowed by ferpents.

The fructure and motion of his eyes are furprifing. They appear to be large fpheres, of which

43)

which one half flands out of the head, and is covered with a thick fkin, perforated with a fmall hole at top. Through this is feen a very vivid and bright pupil, furrounded with a yellow iris. This hole is a longitudinal flit, which he opens more or lefs at pleafure. The motion of his eyes is not lefs fingular. It can turn them, fo as to fee either forward, backward, or on either fide, without moving the head at all, which is fixt to the fhoulders. And he can give one eye all thefe motions, while the other is perfectly fill. Each foot has five toes, 'all of one fide, two behind and three before. He moves very flowly on the ground, but on trees more eafily. Its tail is then its fafety, as it twifts it round the branches, when in any danger of falling.

But how can fo flow a creature catch the moft nimble fort of infects? What nature has denied it in agility, is abundantly fupplied by other means. Its flow, and eafy motion renders it but little fufpected at a diftance. And when it comes within a proper fpace of its object, it fretches out its tail, poifes its body, and fixes itfelf, fo as feldom to meet with a difappointment. - When all is ready, it uncoils its long, flender tongue, and darts it fo fwift as fcarce ever to mifs its prey.

The common colour of the Chameleons in Smyrna is green, toward the belly inclining to a yellow. But thofe in the ruins of the caftle are greyifh, like the fones among which they breed. One of them, having been kept in a napkin, appeared whitifh; but it never changed to red or blue, though wrapt in cloth of thofe colours for feveral hours together. On being handled or difturbed, it became ftained with dark fpots, bordering on green. Sometimes from a green all
over, it became full of black fpots; fometimes when it appeared black, green fpots fuddenly appeared. So far is it from being true, that it changed its colour, according to every object near it. Nor could we perceive this change to be any fixed law, it rather feemed fpontaneous. This only was conftant; being placed on green, it bebecame green; being on the earth, it changed to the colour of earth.

Another uncommon creature of the Lizard kind is a Salamander. This is fuppofed to live in fire; but without any ground. It is indeed generally found in the chinks of glafs-houfes, or near furnaces, where the heat is fo great, that no other animal could endure it, without being deflroyed in a few minutes. But fome years ago, the trial was made by feveral gentlemen, whether it could really live in fire. Some charcoal was kindled, and the animal laid upon the burning coals. Immediately it emitted a blackifh liquor, which entirely quenched them. They lighted more coals, and laid it upon them. It quenched them a fecond time in the fame manner. But being prefently laid on a frefh fire, it was in a flort time burnt to afhes.

In many parts of Lower Egypt, there is a kind of Lizard termed Oocaral. It refembles a crocodile, only that is but three or four feet long, and lives wholly on the land. As it is exceeding fond of the milk of ewes and fhe-goats, it makes ufe of a remarkable expedient. It twifts its long tail round the leg of the ewe or goat, and fo fucks her at his leifure.

In mof parts of Italy there are fwarms of Lizards, efpecially of the green kind. In the fpring

Spring hundreds of them are feen, bafking on the roofs, and crawling up and down the walls of houfes. They are very nimble, and have a brigbt fleek fkin, and beautiful eyes, but are entirely harmlefs. The Scorpions are not fo ; they harbour not only in old walls and under ftones, but in every part of the houfe, efpecially the beds; and if touched, immediately fling. The fting of an Apulian fcorpion, has the fame effect with the bite of a tarantula. And it requires the fame method of cure; only by different inftruments, the flute and bagpipe in particular, with the briik beat of a drum. But the common remedy againit the fting of a fcorpion is, to bruife the animal, and bind it on the wound.
6. With regard to Water-Lizards, commonly called Newts, which moft people fuppofe to be venomous, they are harmlefs as Land-Lizards, and arefound in fummer, in moft fhallow ftanding waters. One who kept feveral of them in glafs jars for many months obferves, in refpect of that odd circumftance, cafting their fkins, they do this every fortnight or three weeks. A day or two before the change, the animal appears more fluggifh than ufual, and takes no notice of its food, which at other times it devours greedily. The fkin in fome parts appears loofe, and not of fo lively a colour as before. It begins this work, by loofening with its fore-feet, the fkin about its jaws, pulhing it forward gently and gradually both above and below the head, till it can lip out firft one leg and then the other. Then it thrufts the fkin backward as far as thofe legs can reach. Next it rubs itfelf againf pebbles, gravel, or whatever
whatever elfe it can meet with, till more than half the body is freed from the fkin: which then appears doubled back, covering the hinder part of the body and tail. Then turning its head round to meet its tail, it takes hold of the fkin with its mouth, and fetting his feet thereon, by degrees pulls it off, drawing the hind-legs out, as it did the fore-legs. If you then examine the fkin, it will be found infide outward, but without the leaft hole or breach, the part which covered the hind legs feeming likes gloves turned infide out, though entirely perfect and unbroken. They do not however put off the coverings of their eyes, as mof kinds of fnakes do; for the fkin of the Newt has always two holes, at the places where the eyes have been. When the flin is off, if it be not foon taken away, the creature fwallows it whole.

Many creatures of very different kinds, put off their fkins or fhells at certain periods, and if we may guefs at other fhell-fifh by the frefh water fhrimps, their fhells are put off without any breach but one, lengthways in the middle of the belly part, through which the body, tail, and claws are pulled out, and the fhell left in a manner whole. In the infect tribe, the changes of caterpillars are well known. The fider throws off its fkin as frequently, getting out of it by a rupture underneath, and leaving every claw intire, and even the horny covering of his forceps. Even the mite calts its fkin at feveral fhort periods, and nearly in the fame manner.

[^0]he obferves, this cannot bear any great degree either of heat or cold. But the moft remarkable circumftance relating to it is, that let its tail, legs, or even jaws be cut away, and in a fhort time they are re-produced. The tail, befide a complete apparatus of nerves, mufcles, glands, arteries and veins, has vertebre of real bone. And their legs do not differ from thofe of the moft perfect animals, in the number of bones, whereof they are compofed.
7. Now when the legs and tails of this'animal are taken away, new vertebra, new bones are produced: a phænomenon as wonderful as any hitherto known. This takes place in every known fpecies of Salamanders, at any period of their life, on the earth or in the water; and let the length of the divided part be greater or lefs. Nor do the conftituent parts of the new-tail differ from thofe of the part that was cut, either in number, fructure, or connexion. But a whole year is fcarce fufficient to render the new part equal to that which was cut off. Indeed the regenerating power ceafes during the winter half year.

When the part re-produced is cut off, it is fucceeded by another, which proceeds in the fame manner as the former, and this a fecond. a third, or fourth time : the Salamander fill forming new parts by the fame unalterable laws.

There are in the legs of a Salamandar ninety and nine bones. In the four regenerated legs there is the fame number. The form and internal ftructure of the re-produced, and bones of the natural, are the fame. But the colour of the new bones is fomewhat different, and their fubflance more tender. And all thefe parts are re-
produced in the fame manner and the fame time, whether the creature is fed, or kept fafting.

When their jaws are cut off, the fame thing happens. New bones are rc-produced, new teeth, new cartilages, veins and arteries. From the wonderful reproduction of fo many parts in this, may we not extend our enquiry to other animals of equally complicated ftructure? Let us enquire firft concerning Tad-poles. If the whole of their tails be cut off, they fink to the bottom of the water, and perifh. But if part only, they foon recover it. In one fummer's day the reproduction makes a rapid progrefs in young Tad-poles. And in a fhort time, the new part of the tail and the old together, equal the tail of others born at the fame time. A fecond, third, and fourth reproduction conftantly follows, upon a fecond, third, or fourth fection. Nay, fucceffive regenerations never fail, as long as the Tad-pole keeps its tail.

If no nourifhment is given Tad-poles, they do not grow, nor are the membranes of the infant flate caft off. Yet the tails cut off, will be reproduced nearly in the fame time.

If the head of an Earth-worm be cut off, a new head is reproduced. Nay, if both the head and tail are cut off from the middle part, both of them are reproduced, Nor is this regenerating power foon exhaufted. A fecond reproduction being cut off, is fucceeded by a third, this by a fourth, that by a fifth, and fo on.

The fame thing takes place in another kind of worm, little known, which he calls an Aquatic Boat-worm. It is compoled of rings like the earth.
earth-worm, which it fhortens or fengthens at pleafure, and fo moves from place to place. Toward the head it is as large as the largeft goofequill, and its length is about a fpan. It lives in fhallow, clear water, either flagnating or flowing gently, fixing its fore part in the mud, whence it is nourilhed. The back part reaches the top of the water; and being fretched and hollowed, form a kind of boat on the furface. Its fides rife above the water, fo that none gets in. But on the leaft agitation of the water, the infect immediately thuts up his boat, and retires into the mud. When the motion is over, he again thrufts his tail out of the water, and makes his boat afrefh, which remains entire till he is difturbed again. And this he does not fail to make, though the mud is removed, and he left with little water. It feems the organs of reโpiration are placed in this part, as they are in various forts of aquatic animals.

Thefe worms are quicker in their reproduction than earth-worms. They more eafily recover their heads, as well as tails, and this power exerts itfelf throughout the whole year.

The cafe of the Snail may feem fill more flrange. It can firft, reproduce its horns. After they have been cut off, the trunk becomes like a fmall knob, whence fprings a black point, which is the eye. The trunk then increales in length and fize, till it equals the former horn.

If the head be cut off, a new one fucceeds; but in a fingular manner. If a worm's head be cut off, the reproduction is an entire organic body, that is, a part in miniature exaftly fimilar to that which was cut off. But what appears on the trunk of a Snail, is not an entire organic body, containing in

Vol. II.
C
miniature
miniature all the parts of the head which were cut off: but thefe parts grow piece by piece at different intervals, and require time to unite and confolidate into one mafs, refembling the original pattern. For inflance. Sometimes the re-production is like a round, fmall body, containing the primary parts of the two lips, and of the fmall horns, which are united to the mouth, and to the new-formed teeth. This round body is placed on the center of the trunk. The large horns and the fore part of the Snail, which in the entire animal are contiguous to the head, are wanting. Another trunk fhews the larger horn on the right fide, more than a tenth of an inch long, already provided with its eye. Under this, at fome diftance, the firft lineaments of the lip appear. In a a third Snail arife three horns, two of which are of their natural length, while the third is but juft above the fkin. Some fhew nothing but the trunk, without any fign of re-production, although the head was taken off at the fame time with that of the others, from which are come forth fuch a number and variety of organs : on the contrary, in fome Snails, there is no difference between the old and the new head : only there is an afh-coloured line, painting out exactly where the head was cut off.

That Earth-worms feed upon earth, will be put beyond difpute, if any one is at the pains to cxamine the little curled heaps of dung, which are cjected out of their holes. But it is in all probatiility, not pure earth, but fuch as is made of leaves, roots, and plants, when gradually rotted and mouldered away. And what makes this the more probable, is, that they are obferved to drag the leaves of trees into their holes.
8. Both
8. Both the whole Tape-worm, and every part of it feems to be a compleat animal. In every joint there is a mouth for receiving food, and doubtlefs organs for digefting it. Single joints, as well as larger pieces, are frequently voided alive. All thofe pieces are almoft equally turgid with chyle. Now is it not probable, that a fingle worm, fhould in voiding, be broke in fo many pieces: and had it been done fome time before, they would be emaciated ? There feems then to be an analogy, between this jointed worm and knotted grafs ; each joint of which is a complete plant, and propagates itfelf. It is indeed a Zoophyton, a plànt-animal, bred in animal-bodies: fince fo large and frequent detruncations, do not deftroy the life of it.
9. Not only vegetables and animals have their refpective infects, to-which they afford food as well as habitation, but Stones themfelves. Thofe kind of worms, called Lithophagi, are a proof of this. One might think it incredible, that thefe little creatures fhould fubfift by gnawing Stones. And yet nothing is more certain, thefe wormeaten flones being found almoft every where. Thefe are generally lime-ftones. Grit and free-ftone is feldom eaten in this manner. Yet there is an antient wall of free-ftone in the-Benedittine abbey at Caen in Normandy, fo eaten with worms, that one may put one's hands into many of the cavities. The worms are covered with a greenifh fhell, having flat heads, a wide mouth, and four black jaws. And they lay their eggs in thofe cavities, which they gnaw in the fone.

One more reptile we may examine a little more minutely, in which the wifdom of God is not a C 2 little
little difplayed. It is a common Leech. When this is at reft, its upper lip forms a regular femicircle. When he moves, this femicircle becomes two oblique lines, the junction of which makes an angle, which he applies to whatever he would fix himfelf to. The two lips then make a fort of hollow. Both thefe and its mouth are made of fo fupple fibres, that they take the figure of the part they are applied to, and fix perfecily clofe to it.

The wounds it makes are not punctures, but three cuts made like three rays, which uniting in a center make equal angles with each other. 'They appear as if made by a fine lancet. They are indeed made by three rows of fine and tharp teeth. which the microfcope fhews to be placed along the middle of a frong mufcle. When the mouth has feized on any part, the mufcle exerts its action, and frikes in all the teeth at once.

Between the mouth and the flomach there is a fmall fpace, in which are two different arrangements of fibres. The one fet are flat and plain, the others are circular. The former contracting in length, enlarge the capacity of the throat; and the circular ones determine the blood toward the fomach, by contracting it when the blood is received. Hence it paffies into a kind of membranous fack, which ferves the animal both for fomach and inteftines. This takes up the greateft part of its body. On each fide of this long canal there is a number of little bags. Thefe being filled with blood, fwell out the body of the animal to a fize. Here it remains for many months, and ferves the creature for nourifhment. If any thing is excreted, it can be only by infenfible perfpiration, fince the creature has no

(53)

anus, nor any aperture which can fupply the place of one.

Frogs change their fkins every eight days. Toads, as well as Frogs, are harmlefs, defencelefs creatures, and their greateft crime is their uglinefs.

Newly generated Frogs, which fall to the bottom, remain there the whole day; but having lengthened themfelves a little, (for at firf they are doubled up) they mount to the mucus which they had quitted, and feed upon it with great vivacity. The next day they acquire their Tadpole form. In three days more they have little fringes, that ferve as fins beneath the head, and thefe four days after affume a more perfect form. It is then they feed greedily upon the pondweed; and leaving their former food, on this they continue to fubfift, till they arrive a: maturity. When they come to be'ninety-two days old, two fmall feet begin to burgein near the tail; and the head appears to be feparate from the body. The next day the legs are confiderably enlarged; four days after they refufe all vegetable food; their mouth appears furnifhed with teeth; and their hinder legs are completely formed. In two two days more the arms are completely produced, and now the Frog is every way perfect, except that it fill continues to carry the tail. In this odd. fituation the animal, refembling at once both a Frog and a Lizard, is feen frequently rifing to the furface, not to take food, but to breathe. In this ftate it continues for fix or eight hours, and then the tail dropping off, the animal appears in its perfect form.

Thus

Thus the Frog, in lefs than a day, having changed its figure, changes its appetites allo. So extraordinary is this transformation, that the food it fed upon fo greedily but a few days before, is now utterly rejected. It would even flarve, if fupplied with no other. As foon as the animal acquires its perfect ftate, it becomes carnivorous, and lives entirely upon worms and infects. But as the water cannot fupply thefe, it is obliged to quit its native element, and feek for food upon land, where it lives by hunting worms, and taking infects by furprife.
" Concerning the Toad, fays Mr. Arocott, that lived with us fo many years, and was fo great a favourite, the greateft curiofity was its being fo remarkably tame; it had frequented fome fteps before our hall-door, fome years before my acquaintance commenced with it, and had been admired by my father for its fize (being the largeft I ever met with) who conftantly paid it a vifit every evening. I knew it myfelf above thirty years; and by conftantly feeding it, brought it to be fo tame that it always came to the candle and looked up, as if expecting to be taken up and brought upon the table, where I always fed it with infects of all forts. It would follow them, and when within a proper diftance, would fix its eyes, and remain motionlefs for near a quarter of a minute, as if preparing for the ftroke, which was an inftantaneous throwing its tongue at a great diffance upon the infect, which fluck to the tip, by a glutinous matter. The motion is quicker than the eye can follow. I cannot fay how long my father had been acquainted with the Toad before I knew it ; but when I was firf acquainted with it, he ufed to mention it as the old Toad. I
have known it for thirty-fix years. This Toad made its appearance as foon as the warm weather came, and retired to fome dry bank to repofe till fpring. When we new layed the fteps, I had two holes made in the third ftep, on each fide, with an hollow of more than a yard long; in which I imagined it flept, as it came from thence at its firft appearance. It was feldom provoked. Neither that Toad, nor the multitudes I have feen tormented with great cruelty, ever fhewed the leaft defire of revenge. In the heat of the day Toads come to the mouth of their hole; I believe for air. I once from my parlour window obferved a large Toad I had in the bank of a bowling-green, about twelve at noon, in a very hot day, very bufy and active upon the grafs. So uncommon an appearance made me go out to fee what it was; when I found an innumerable fwarm of winged ants had dropped round his hole, which temptation was irrefiftible. Had it not been for a tame raven, I make no doubt but it would have been now living. This bird one day feeing it at the mouth of its hole, pulled it out, and although I refcued it, pulled out one eye, and hurt it fo, that notwithflanding it lived a twelvemonth, it never enjoyed itfelf, and had a difficulty of taking its food, miffing the mark for want of its eye."

All Toads are torpid and unvenemous, and feeking the darkeft retreats, not from the malignity of their nature, but the multitude of their enemies.

$$
\mathrm{C}_{4} \quad \mathrm{CHAP}^{2}
$$

CH AP. V.

Of $I \quad N \quad S \quad E \quad C \quad T \quad S$.

1. Of their Shape and Make.
2. Of their Eyes.
3. Their Heart, Refpiration.
4. Their Generation. particularly the Silk Worm and Silk Spider.
5. Of the common Spder.
6. Of the Tarantula:
7. Of the Coy.
8. Of Microfcope Antmas.
9. Of the Flea.
10. Of the Laue.

11 Of the Death-watch.
12. Of the Eggs of Flies.
13. Of Gnats.
14. Of the Cicadula.
15. Of the Drone-Fly.
16. Of the Fire Fly.
17. Of the Ephemeron.
18. Of Butterflies.
19. Of Catterpillars.
20. Of the Transformaion of Injects.
21. Of Ants.
22. Of the Ant-Eater.
23. Of Bees.
24. Of the Polypus.
25. Of the Transformaion of Animals.

THERE remains only the lowell order of animals, ufually termed Infects, becaufe they have an incifion, as it were, which in a mannet cuts them in two parts. Of there I would freak the more largely, becaufe generally they are little known.

Rather

Rather they are defpifed, and purpofely paffed over, as unworthy of our confideration. And yet it is certain, the wifdom of the great Creator does moft confpicuoufly fhine in them.

1. As to the Shape of their bodies; though it be fomewhat different from that of birds, being for the moft part not fo fharp before, to cut and make way through the air, yet it is better adapted to their manner of life. For confidering they have little need of long flights, and that the flrength and activity of their wings, far furpafs the refiftance they meet with from the air, there was no occafion for their bodies to be fo Charpened. But the nature of their food, the manner of gathering it, and the great neceffity they had of accurate vifion, and large eyes in order thereto, required the largenefs of the head, and its amplitude before the reft of the body is all well-made, and nicely poifed for their flight and other occafions.

The make of their bodies is no lefs admirable: not built throughout with bones, covered over with flefh, and then with fkin, as in moft other animals: but cloathed with a curious mail of a middle nature, ferving both as a $f \mathbf{k i n}$ and bone too; as it were on purpofe to fhew, that the great contriver of nature is not bound up to one way only.

How admirably are the legs and wings fitted for their intended fervice? Not to overload the body nor to retard it, but give it the moft proper and convenient motion. What for example, can be better contrived for this fervice than the wings? Diftended and ftrengthened by the fineft bones, and thefe covered with the fineft and lighteft membranes; and many of them provided with the - fineft articulations, and foldings, in order to be
laid up in their cafes, when they do not ufe them; and yet always ready, to be extended for flight.
2. The fructure of the Eye is in all creatures an admirable piece of mechanifm. But this is peculiarly obfervable in that of an infect. Its hardnefs is an excellent guard againt external injuries; and its outer coat is all over befet with curious, tranfparent inlets, enabling it to fee every way, without any lofs of time, or trouble to move the eyes.

And their feelers, befides their ufe in cleaning the eyes, are a good guard to them in their walk or flight, enabling them by the fenfe of feeling to difcover annoyances, which, by their nearnefs, might efcape the fight.
The eye of a Fly is in truth an affemblage of multitudes, often many thoufands of fmall eyes. Nature has given each Fly two large reticular eyes (that is covered with a kind of net-work.) And as each contains fuch a multitude of fmaller eyes, one would imagine this might fuffice. Yet fome Flies have four reticular eyes; the two fmaller are placed as ufual, the two larger are behind the other, on the upper part of the head.

In different fpecies the reticular eyes are of different colours. Some are brown, fome yellow, green, red, and this in all the different fhades of thofe colours. And fome have the glofs of metals bighly polifhed.

But befide thefe, many fpecies of Flies have a ort of eyes, which are not reticular, but of a perfectly fmooth and even furface, and far fmaller than the reticular. Three of thefe are on the back of the head of valt numbers, which are triangularly placed. Some have more, and fome have
have lefs than three. Gnats have none of them. Their heads are in a manner covered with their reticular eyes, fo as to leave no room or occafion for fmooth ones.

Nor are thefe fmooth eyes peculiar to Flies. Other infects alfo have them: the grals-hopper in particular has two, which are placed near the nofe.
3. The fpecies of infects are almof innumerable. All of thefe fome fuppofe to have no Heart, as they have no fenfible heat, none that can be perceived either by the touch, or by any other experiment. But this is a miftake. Many indeed have not fuch an heart as other animals have : but all have fomething analogous to it, fomething that anfwers the fame purpofe.

Some likewife have thought, that infects have no Refpiration. But later experiments fhew, that there is no fpecies of them which has not lungs, and thofe larger in proportion than other animals. In moft of them they lie on, or near the furface of the body. And hence it is, that if Flies are befmeared with oil, or any other unctuous matter, they die in a hort time, their Refpiration being ftopt, fo that they are properly fufocated.
4. Some alfo hare imagined, That infets were Gencrated out of mere putrifaction, becaufe they obferved wonns come out of putrified flefh, which afterwards turned to flies. But it is certain, if putrifying flefh be fhut up clofe, no worms ate ever gcnerated from it. Hence we learn, that Flies lays their eggs in flefh, which hatch when it putrifies: fo that the animal juft comes to life when its food is ready for it. All infects lay their C 6
eggs, where there is heat enough to hatch them, and proper food as foon as they are hatched. Thofe whofe food is in the water, lay their eggs in the water: thofe to whom flefh is a proper food, in flelh: thofe to whom the fruits or leaves of yegetables are food, are depofited on the proper fruits or leaves. And conftantly the fame kind is found on the fame fruit or plant. Thofe that require more warmth, are lodged by the parent, in or near the body of fome animal. And as for thofe to whom none of thefe methods are proper, the parents make them nefls by perforations in the earth, in wood, in combs: carrying in and fealing up provifions, that ferve both to produce the young, and to feed them when produced.

The eggs of all infects become worms, commonly called Nymphe. They are next changed into Aurelix, fo called, inclofed in a cafe; and thefe dying, a Fly or Butterfly fucceeds.

Some Aurelix fhine like polifhed gold. From the beautiful and refplendent colour, fome authors have called it a Chryfalis, implying a creature made of gold. This brilliant hue, which does not fall fhort of the beft gilding, is formed in the fame manner in which we fee leather obtain a gold colour; though none of that metal ever enters into the tincture. It is only found by a brown varnifh laid upon a white ground; and the light thus gleaming through the tranfparency of the brown, gives a charming golden yellow. Thefe two colours are found one over the other in the Aurelix, and the whole appears gilded, without any real gilding.

(61)

To trace thefe wonderful changes a little, in one kind of infect. A Silk-Worm, from a fmall egg, becomes a worm of the caterpillar kind, and feeds on mulberry-leaves, till it comes to maturity. Then it winds itfelf up-into a filken cafe, about the fize and fhape of a pigeon's egg; and is metamorphofed into an Aurelia, in which flate it has no motion or fign of life : till at length it awakes, breaks through its filken fepulchre, and appears a butterfly.

As foon as the Silk-Worm has frength, he makes his web, a'flight tifue, which is the ground of his admirable work. This is his firft day's employ. On the fecond, he covers himfelf almoft over with filk. The third he is quite hid. The following days he employs in thickening his ball, always working from one fingle end fo fine a thread, that thofe who have examined it, affirm it would reach fix miles.

The Silk-Spider makes a thread, every whit as ftrong, gloffy, and beautiful as the Silk-Worm. It fpins from feven nipples. Thefe, as fo many wire-drawing irons, draw out a vifcous liquor, which gradually dries in the air, and becomes filk.*

Each of thefe nipples contain many fmaller nipples, invifible to the naked eye; through the feveral perforations whereof, numberlefs finer threads are drawn. Before the Spiders begin to fpin, they apply more or fewer of the large nipples to the body whence the web is begun.

[^1]And as they apply them more or lefs frongly, nore or fewer of the fmaller nipples come to touch : and accordingly the whole thread will be compounded of more or fewer fingle threads. One compound thread frequently confifts of fifteen or fixteen fingle ones.

Their threads are of two kinds: one ferves only for the web with which they catch flies. The other is much thicker and ftronger, in which they wrap up their eggs, in order to thelter them from the cold, as well as from devouring infects. Thefe threads they wind loofely round, refembling the balls of filk-worms that have been loofened for the diftaff.

The balls are grey at firf, but turn blackifh when long expofed to the air. From thefe balls a fllk is made, nothing inferior to the common filk. It takes a!l kinds of dyes, and may be made into all kinds of ftuffs. Only there is a difficulty in keeping the fpiders: for they are fo extremely quarrelfome, that if an hundred of them be put together, in a few hours fcarce twenty will be left alive.
5. Amazing wifdom is difplayed in the make of the Common Spider. She has fix teats,each furnifhed with innumerable holes. The tip of each teat is divided into numberlefs little prominences, which ferve to keep the threads apart at their firf exit, till they are hardened by the air. In every teat, threads may come out at above a thoufand holes. But they are formed at a confiderable diftance, each of them having a little fheath, in which it is brought to the hole. In the belly are two little foft bodies, which are the firft fource of the filk. In fhape and tranfparency they refemble glafs beads, and the tip of each goes winding toward

(63)

the teat. From the root of each bead proceeds another branch much thicker, which alfo winds towards the fame part. In thefe beads and their branchesis contained the matter of which the filk is formed, the body of the bead being a kind of refervoir; the two branching canals proceeding from it.

It was before obferved; that the tip of each teat may give paffage to above a thoufand threads. And yet the fize of the teat in thie largeft Spider does not exceed a fmall pin's head. But the fmalleft Spiders no fooner quit their eggs than they begin to fpin. Indeed their threads can fcarce be perceived, but the web formed thereof is as thick and clofe as any. And no wonder, as four or five hundred little Spiders often concur in the fame work. How minute are their teats! When perhaps the whole Spider is lefs than the teat of its parent. Each parent lays four or five hundred eggs, all wrapt up in a bag. And as foon as the young ones have broken through the bag, they begin to fpin.

And even this is not the utmoft which nature does. There are fome kinds of Spiders fo fmall, as not to be difcerned without a microfcope. And yet there are webs found under them! What muft be the finenefs of thefe threads? To one of thefe the fineft hair is as a cart-rope.

There are feveral fpecies of Spiders that fly, and that to a furprifing height. "The laft October, fays an eminent writer, I took notice that the air was very full of webs. I forthwith mounted to the top of the higherl fteeple on the Minfter [in York] and could thence difcern them yet exceeding high above me. Some of the Spiders that fell upon the pinnacles I took, and found them to be of a kind, which feldom or never enter houfes, and
and cannot be fuppofed to have taken their flight from the fleeple.

There are divers animals as well as Spiders, that have fome way of conveyance, utterly unknown to us. Thus the animals on the flanding waters, fo numerous as often to difcolour them, and tinge them red, yellow, or green. That thefe have fome way of conveyance is certain, becaufe not only moft fagnating waters are flocked with them, yea, not only new pits and ponds, but even holes, and gutters on the top of houfes, churches, and fteeples. That they have not legs for travelling fo far, is manifeft ; it is therefore probable, either that they dart out webs, and can make themfelves buoyant, and lighter than the air: or that their bodies are naturally lighter than air, and fo they can fwim from place to place. It is highly propable, the eggs of fuch as are oviparous may be light enough to float therein.

To trace this matter farther: every one muft have obferved threads floating in the air: but few confider what end they ferve. They are the works of Spiders. Their ufual method is, to let down a thread, and then draw it after them. But in the midft of this work they fometimes defift; and turning their tail according to the wind, emit a thread with as great violence, as a jet of water difcharged from a cock. Thus they continue darting it out, which the wind carries forward, till it is many yards long. Soon after, the Spider throws herfelf off from her web, and trufting herfelf to the air, with this long tail, will afcend fwift, and to a great height with it. Thefe lines, which the Spiders attach to them (though unobferved) make thefe air-threads, that waft them along the air, and enable them to prey on many infects, which they could not reach by any other means.

All Spiders that fpin, young as well as old, caft out thefe threads, and fail thereby in the air, And the threads themfelves fhew the ufe thereof, being ufually hung with the fragments of devoured animals.

When the threads are newly fpun, they are always fingle, and are generally feen afcending higher and higher. But when they are feen coming down, they are fometimes compofed of three or four, and either without any Spider or with feveral. 'Tis plain this happens from the threads meeting and intangling in the air, which of courfe brings them down.

It is common to fee a Spider mount to the topmoft branch of a bulh, and from thence dart out feveral threads one after another, trying, as it were, how fhe likes them. When fhe has darted one feveral yards, the will of a fudden draw it up again, and wind it into a link with her fore-feet, but more frequently break it off, and let it go. A Spider will fometimes dart out and break off many threads, before it fpins one that it will truft to. But at length fhe fins one to her liking, and commits herfelf to the air upon it.

The bufinefs of feeding is not all the ufe of thefe threads; but they evidently fport and entertain themfelves by means of them, floating to and fro in the air, and changing their height at pleafure.

Thefe air-threads are not only found in autumn, but even in the depth of winter. The ferene days at Chriftmas bring out many : but they are only fhort and flender, being the work of young Spiders, hatched in autumn, and are thrown out as it feems only in fport. The thicker ones of autumn are the only ones intended to fupport the old Spiders, when there is plenty of fmall flies in the
the air, which make it worth their while to fail among them.
6. A Tarantula is a kiidd of Spider, chiefly found near the city of Tarentum, in Apulia. It is about the fize of an acorn, and has eight eyes and eight feet. Its ikin is hairy: from its mouth rife two trunks, a little crooked and exceeding fharp. Through thefe it conveys its poifon : they feem likewile to be a kind of moveable noftrils, being in continual motion, efpecially when it is feeking its food. It is found in other parts of Italy, but is dangerous only in Apulia. And there it does little hurt in the mountains (which are cooler) but chiefly on the plains. Indeed it is not venomous, but in the heat of fummer, particularly in the dog-days. It is then fo inraged as to fly upon any that comes within its reach.

The bite caufes a pain, like that by the finging of a bee. In a few hours the patient feels a numbnefs, and the part is marked with a fmall livid circle, which foon rifes into a painful tumour. A little after he falls into a deep fadnefs, breathes with much difficulty, his pulfe grows feeble, and his fenfes dull. At length he lofes all fenfe and motion, and dies, unlels fpeedily relieved. An averfion to blue and black, and an affection for white, red, and green, are other unaccountable fymptoms of this diforder.

There is no remedy but one. While he lies fenfelefs and motionlefs, a mufician plays feveral tunes. When he hits on the right; the patient immediately begins to make a faint motion. His fingers firf move in cadence, then his feet: then his legs, and by degrees his whole body, At length he rifes on his feet, and begins to dance, which
which fome will do for fix hours without intermiffion. After this he is put to bed, and when his ftrength is recruited, is called up by the fame tune to a fecond dance.

This is continued for fix or feven days at leaft, till he is fo weak that he can dance no longer. This is the fign of his being cured; for if the poifon afted fill, he would dance till he dropt down dead. When he is thoroughly tired he awakes as out of fleep, without remembering any thing that is palt. And fometimes he is totally cured; but if not, he finds a melancholy gloom, thuns men, feeks water, and if not carefully watched, often leaps inte a river. In fome the diforder returns that time twelvemonth, perhaps for twenty or thirty years. And each time it is removed as at firft. Can even Dr. Mead account for this?

Equally unaccountable are the two relations publifhed fome years fince, by a phyfician of undoubted credit. The firft is: a gentleman was feized with a violent fever, attended with a delirium. On the third day he begged to hear a little concert in his chamber. It was with great difficulty the phyfician confented. From the firf tune, his face affumed a ferene air, his eyes were no longer wild, and the convulfions cealed. He was free from the fever during the concert; but when that was ended, it returned. The remedy was repeated, and both the delirium and fever always ceafed during the concerts. In ten days, mulic wrought an entire cure, and he relapfed no more.

The other cafe is that of a dancing-mafter, who through fatigue, fell into a violent fever. On the fourth or fifth day he was feized with a lethargy, which after fome time changed into a furious

68)

a furious delirium. He threatened all that were prefent, and obflinately refufed all the medicines that were offered him. One of them faying, that perhaps mufic might a little compofe his imagination, a friend of his took up his violin, and began to play on it. The patient ftarted up in his bed, like' one agreeably furprifed, and fhewed by his head (his arms being held) the pleafure he felt. Thofe who held his arms, finding the effects of the violin, loofened their hold, and let him move them, according to the tunes. In about a quarter of an hour, he fell into a deep fleep. When he awoke he was out of all danger

We have many other odd accounts of the power of mufic; and it mult not be denied, but that on fome particular occafions, mufical founds may have a very powerful effect. I have feen all the horfes; and cows in a field, where there were above an hundred, gather round a perfon that was blowing a French horn, and feeming to teftify an aukward kind of fatisfaction. Dogs are well known to be very fenfible of different tones in mufic; and I have fometimes heard them fuftain a very ridiculous part in a concert.

The great old lion which was fone years fince kept at the infirmary in Edinburgh, while he was roaring with the utmoft fiercenefs, no fooner heard a bag-pipe, than all his fiercenefs ceafed. He laid his ear clofe to the front of the den, nibbled his nofe and his teeth againft the end of the pipe, and then rolled upon his back for very glee. I have feen a German flute have the fame effect on an old lion, and a young tyger in the Tower of London.
7. There is found in America a kind of Spider more mifchievous than even the Tarantula, chiefly
chiefly in the valleys of Neyba, and others within the Jurifdiction of Popayon. It is called a Coya. It is much lefs than a bug, and is of a fiery red colour. It is found in the corners of walls and among the herbage. On fqueezing it, if any moifture from it falls on the fkin of either man or beaft, it immediately penetrates the flefh, and caufes large tumours, which are foon followed by death.

The only remedy is, on the firft appearance of a fwelling, to finge the perfon all over the body with a flame of ftraw, or of the long grals growing on thofe plains. This the Indians perform with great dexterity, fome holding him by the feet, others by the hands.

Travellers here are warned by their Indian guides, if they feel any thing crawl on their neck or face, not even to lift their hand, the Coya being fo delicate a texture, that it would immediately burf. But let them tell the Indian what they feel, and he comes and blows it away.

The beafts which feed there, are taught by inftinet, before they touch the herbage with their lips, to blow on it with all their force, in order to clear it of thefe pernicious vermin. And when their fmell informs them, that a Coya's neft is near, they immediately leap and run to fome other part. Yet fometimes a mule, after all his care, has taken in a Coya with his pafture. In this cafe after fwelling to a frightful degree, it expires upon the fpot. Thus does even the irrational creation "groan and travel in pain together," untill it fhall be "delivered into the glorious liberty " of the children of God!"
8. Mention was made of the extreme fmallnefs of fome Spiders. But how much fmaller are thofe Animalcula, difcerned by the Microfcope? Thefe are in almoft all water. Even in that wherein the beft glaffes can difcover no particles of animated matter, after a few grains of pepper, or a fmall fragment of a plant of almoft any kind has been fometime in it, animals full of life are produced and fo numerous as to equal the fluid itfelf in quantity.

A fmall quantity of water taken from any ditch in fummer, is found to abound in juft fuch creatures, only larger. Nay any water, fet in open veffels in the fummer months, will after a few days, yield multitudes of them.

Thefe we know by their future changes are the fly-worms of gnats, and feveral other forts of flies. And we eafily judge, they owe theirorigin to the eggs of the parent fly there depofited. No doubt then but the air abounds with other animfalcula, as minute as the worms in thefe fluids. And thefe are the flying worms of thefe animalcula which after a proper time fpent in that ftate, will become flies like thofe to which they owe their origin.

The waters in which different liquors are infufed afford a proper matter for the worms of different fpecies of flies. And fome of thefe doubtlefs are viviparous, others oviparous. This may occafion the different time taken up for producing infects in different fluids. Thofe proper for the worms of a viviparous fly, will be foonef full of them: whereas a longer time is required to hatch the eggs of the oviparous.

Now every animalcule being an organized body, how delicate muft the parts be that are neceffary
to make it fuch, and to preferve its vital actions? It is hard to conceive, how in fo narrow a compafs, there is an heart, to be the fountain of life, mufcles neceffary for its motion, glands to fecrete its fluids, flomach and bowels to digeft its food, and other innumerable parts, without which an animal cannot fubfift. And every one of thefe mult have fibres, membranes, coats, veins, arteries, nerves, and an infinite number of tubes, whofe fmallnefs exceeds all efforts of imagination. And yet there are parts that muft be infinitely fmaller than thefe, namely the fluids that move through them, the blood, lymph and animal fpirits, whofe fubtility even in large animals, is incredible.

As to fome of the animalcules obferved by Lewenhoeck, he computed, that three or four hundred of them placed clofe together in a line, would only equal the diameter of a grain of fand. Twenty-feven millions then of thefe animals equal in bulk a grain of fand!

But Hartfocker carries the matter ftill farther, If, fays he, according to our prefent fyftem of generation, all animals were formed from the begining of the world, and inclofed one within another, and all of them in the firft animal of each fpecies: how minute muft the animalcula produced now, have been at the beginning ?
9. Even the meaneft and moft contemptible of infects, fhews the wifdom of its creator. Fleas, for inflance, depofit their eggs only on fuch animals, as afford them a proper food. Thefe hatch into worms of a fhining pearl colour, which feed on the fcurff of the cuticle. In a fortnight they are very active, and if difturbed, fuddenly roll themfelves into a ball. Soon after they begin to creep,
creep, with a very fwift motion. When arrived at their full fize, they fpin a thread out of their mouth, wherewith they form themfelves a cafe. After a fortnight's reft here, each of them burfts a perfect Flea, leaving its exuvia: behind. It is milk-white till the fecond day before its eruption : then it changes colour and gets frength, fo that upon its firft delivery, it fprings nimbly away.

Minute animals are found proportionably much fronger and more active than large ones. The fpring of a Flea in its leap vaftly exceeds any thing greater animals are capable of. Mr. De Lifle has computed the velocity of a little creature, which ram three inches in half a fecond. Now fuppofing its fect to be the fifteenth part of a line, it muft then, in order to travel over fuch a fpace in fuch a time, make five hundred fteps in the fpace of three inches: that is, it muft fhift its feet five hundred times in a fecond, or in the ordinary pulfation of an artery. What is the motion of any large animal, in comparifon of his? Or what is the fwiftnefs of a greyhound or a race-horfe, to that of fuch an animalcule?

The body of a Flea appears, by a microfcope, to be all over curioufly adorned with a fuit of polifhed fable armour, neatly jointed, and befet with multitudes of fharp pins. It has fix legs, the joints of which are fo adapted, that it can fold them up one within another; and when it leaps, they all fpring out at once, whereby its whole ftrength is exerted, and the body raifed above two hundred times its own diameter.
10. A Loufe alfo affords to our obfervation, a very delicate frutture of parts. It is divided into

(7.3)

The head, the breaft, and the tail. In the head -appear two fine black eyes, with a horn that has five joints and is furrounded with hairs, fanding before each eye. From the nofe projects in a Sheath the piercer or fucker, which it thrufts into the fkin. This is judged to be feven hundred times finer than an hair. It has no other mouth than this.

The fkin of the breaft is tranfparent, and from the under part of it proceed fix legs, each having five joints; each leg is terminated by two claws, which it ufes as we would a thumb and middle finger.

If one of them when hungry be placed on the back of the hand, it will thruft its fucker into the Ikin, and the blood it fucks may be feen paffing in a fine ftream to the fore-part of the head. Falling into a roundifh cavity there, it paffes on to another receptacle in the middle of the head. Thence it runs to the breaft, and then to a gut which reaches to the hinder part of the body, where in a curve it turns again a little upward. It then flands fill, and feems to undergo a feparation: fome of it becoming clear and watry, while other black particles pafs down to the anus.

Lice are not hermaphrodites; and the males have fings, which the females have not. A female lays in twelve days an handred eggs, which hatch in fix days. Suppofe thefe produce fifty males, and as many females: thefe females coming to their full growth in eighteen days, may each in twelve days lay an hundred eggs more. And thefe in fix days more may produce a young brood of five thoufand. So fwiftly do thefe creazures multiply!

Moft animals are fubject to lice, but each of a different kind, and none of them like the human. Nay, even infects are not free. Beetles, earwigs and fuails are particularly fubject to them. Numberlefs little red lice are often feen about the legs of fpiders. A fort of whitifh lice are common on bees. They are alfo found on ants.

Fifhes, one would think, living in the water, and perpetually moving to and fro, fhould be free from lice. But they have their forts too, which neft under their fcales, the falmon in particular. Befide which, there are frequently found great numbers of long worms, in the fomach and other parts of fifh. And thefe work themfelves fo deeply into their flefh, that they cannot eafily be got out.

Many infects are bred in the noftrils of fheep. One may take out twenty or thirty rough maggots at a time. A rough, whitifh maggot is found allo within the inteftinum rectum of horfes. Others are generated in the backs of cows, which at firft are only a fmall knot, being an egg laid there by fome infeg. Afterward it grows bigger, and contains a maggot, lying in a purulent matter.

In Perfia flender worms, fix or feven yards long, are bred in the legs and other parts of men's bodies. Yea, there have been divers inftances of worms taken out of the tongue, gums, nofe, and other parts, by a perfon of Leicefter, before many witneffes.
11. A very extraordinary kind of infect, is that which is called a Death-Watch, becaufe it makes a noife like the beating of a watch. They are of two kinds. One is a fmall beetle. fomewhat
what more than a quarter of an inch long, of a dark brown, and fpotted, having a large cap on the head, and two feelers Springing from beneath the eyes. - Dr. Derham obferved it to draw back its mouth, and beat with its forehead. He kept two, a male and a female, in a box, for fome months, and could bring one of them to beat when he pleafed, by imitating its beating. And he foon found this ticking to be the way, whereby they wooed one another.

The other kind is a greyifh infet like a Loufe, which beats fome hours together without intermiffion, and that flowly; whereas the former beats only feven or eight frokes at a time, and much quicker. It is very common in fummer in all parts of our houfes, is nimble in running to fhelter, and flyy of beating, if difturbed; but is free to beat, and to anfwer your beating, if you do not Shake the place where it lies. This commonly, if not always, beats either in or near paper. It is at firf a fmall,white egg, like a nit. It hatches in March, and creeps about with its fhell on. It is then fmaller than the egg itfelf, but foon grows to the perfect fize.

That Death-Watches do woo one another, but not always, we may learn from the account of an accurate obferver. "As I was in my ftudy, I happened to hear what is called a Deathwatch. Inclining my head toward a chair, I found it was beating there. The manner of its beating was this. It lifted up itfelf on its hinder legs, and extending its neck, ftruck its face upon the fedge, which was bared upon its outward coat, about the length of half an inch. The impreffion of its ftrokes was vifible: the outward court of the fedge being depreffed, where it had juft been D 2 - beating,
beating, for about the compafs of a filver-pennyI am inclined to think it beats for food. There were feveral places on the fedge, where it had been at work, and where it had probably been fojourning for fome days.
" Pollibly the infeغt may fometimes woo its mate by beating thus: but it was not the cafe now. It had not any other of its kind near it. It feemed therefore to be preparing its food. It

- was about a quarter of an inch long, of a dark dirty colour, having a broad helimet over its head, which he can draw up under it, fo that it is a notable defence againft the falls, to which he is continually expofed, creeping over rotten and decayed places.
" The fecond day after I took it, I opened the box, and fet it in the fun. It was foon very brifk, and crept nimbly to and fro, till fuddenly it fruck out its wings, and was going to take its leave; but on my thading it over, it drew in its wings, and was quiet."

This feems to be the fmallef of the beetle kind. A gentleman defcribes one of a very different fort, in the Philofophical Tranfactions. "On the removal of a large leaden ciftern, I obferved at the bottom of it black beetles. One of the largeft I threw into a cup of fpirits, (it being the way of killing and preparing infects for my purpofe.) In a few minutes it appeared to be quite dead. I then fhut it up in a box about an inch and a half diameter, and throwing it into a drawer, thought no more of it for two months, when opening the box, I found it alive and vigorous, though it had no food all the time, nor any more air than it could find in fo fmall a box, whofe cover fhut very clofe. A few doys before, a friend had fent me three or four cock-roaches.

Thefe

Thefe I had put under a large glafs; I put my beetle among them, and fed them with green ginger, which they ate greedily; but he would neter tafte it, for the five weeks they lived there. The cock-roaches would avoid the beetle, and feem frighted at his approach: but he ufually ftalked along not at all regarding whether they came in his way or not. During the two years and an half that I have kept him, he has neither eat nor drank.
" How then has he been kept alive? Is it by the air? There are particles in this, which fupply a growth to fome fpecies of plants, as fempervive, orpine and houfe-leek: may not the fame or the like particles fupply nourifhment to fome fpecies of animals? In the amazing plan of nature, the animal, vegitable and mineral kingdoms, are not feparated from each other by wide diftances, but near their boundaries, differ from each other, by fuch minute and infenfible degrees, that we cannot find out certainly, where the one begins, or the other ends. As the air therefore nourifhes fome plants, fo it may nourifh fome animals: otherwife a link would feem to be wanting, in the mighty chain of beings. It is certain cameleons and fnakes can live many months without any vifible fuftenance: and probably, not merely by their flow digeftion, but rather by means of particles contained in the air, as this beetle did; yet doubtlefs in its natural ftate, it ufed more fubftantial food. So the plants above-named thrive belt with a little earth, although they flourifh a long time, and fend forth branches and flowers, when they are fufpended in the air.
"Even in the exhaufted receiver, after it had been there half an hour, it feemed perfectly un-
concerned, walking about as brikkly as ever. But on the admiffion of the air, it feemed to be in a furprife for a minute.
" Afteril had kept him half a year longer, he got away, through the carleffnefs of a fervant who took down the glafs."
12. A Female-Fly, within four and twenty hours after her congrefs with the male, begins to depofit her eggs on fome fubftance proper to give nourifhment to the worm that is to be produced. Thefe eggs in general are white and oblong. But there are fome of them which are fingular. To defcribe one fpecies of them may fuffice, the eggs laid on hog's dung.

They are white and oblong; but of a peculiar make. At one end of each of thefe eggs, between that end and the middle, are two little wings, ftanding out on either fide. As foon as the Fly has laid her eggs, fhe thrufts them into the dung. This keeps the coat of the egg foft ; otherwife the embryo could never get out. But if the whole egg were thruft in, the creature would be fuffocated, as foon as it is hatched. Therefore part only is to be emerfed, and part to be left out. And this is admirably provided for by thefe wings. For when the female thrufts in the egg, it eafily enters at the finaller end, which is the part firft protruded from her body: but it ftops at the wings, and fo the upper part remains open to the air.

Some fpecies of Flies faften their eggs to the fides of veffels of water. All thefe eggs have a thin flake running down the two fides diametrically oppofite. So that they look as if they were inclofed in a frame. The ufe of this frame is, to hold
hold the body of the egg more firmly to the fide of the veffel. Thofe eggs which have it not, are depofited by the Female Fly with a vifcous matter about them.

Some Flies lay their eggs in the bodies of caterpillars. Thefe are at great pains to carry thofe catterpillars to the places where it is proper their eggs fhould be hatched. There is one fpecies whofe worm can never fucceed, unlefs it be both bred in the caterpillar, and that caterpillar buried under ground. To this purpofe the parent, when ready to lay her eggs, forms a hole in the ground, and covers it with a little clod. Then the goes in fearch of a proper catterpillar, perhaps one much larger than herfelf, which neverthelefs . The drags to her hole. This fhe uncovers, and goes in to fee if all is right. Then fhe goes and draws the caterpillar in, depofits her eggs in his flefh, and ftops up the hole with feveral pellets of dirt and duft, carefully rammed in between. When the worms are hatched, they feed on the flefh, of the caterpillar till they are full grown. Then they change into Aurelix, and afterward into the form. of the Parent-lly: in which ftate they eafily make their way out of the ground.
12. Some of thefe lay their eggs in the bodies of fmaller Flies. They often fly with one of them in their legs, the head of it being clofe to their bellies. They carry thefe to little holes in the ground. In the firf they lay their eggs. Then they bring others, to be food for their young when hatched. One Fly is not enough ; therefore their parents carry them more every day, crawling backward into the hole, and dragging in the Flies after them. When the worms change into Aurelix, their cafes are made of the exuvix of the Flies they have been feeding on.

The eggs of infects are ufually the occafion of what are termed blights. Thefe feldom happen but on the blowing of lharp eafterly winds. Many infeets attend thofe winds, and lay their eggs on proper plants. Indeed the large worms or caterpillars which attend fome blights, feem to be only hatched by thofe winds. But they probably bring thofe fwarms of infects, whicti occafion the curling of the leaves of trees.
Every infeet feeds on one plant and no other. On this only it lays its eggs. Hence it is, that one kind of tree only is blighted, and the reft efcape. All trees then cannot be blighted at once, unlefs. one wind could bring the eggs of all infeets, with as many different degrees of heat and cold, as arerequired to hatch and preferve each feecies.

And what through we do not always perceiveanimals in blights? By microfcopes we difcover animalcula, a million times lefs than thofe that are perceivable by the naked eye. The gentleft air may waft thele from place to place: fo that it is no wonder if they are brought to us from Great Tartary, even the cold air of which may give them life, and from whence there is not fo much fea as to fuffocate them in its paffage, by the warmth and faltnefs of its vapours.

Trees are preferved from blights, by fprinkling them with tobacco-duft or pepper-duft, which. are death to all infects.

But one kind of blight is caufed, merely by long. continued, dry, eafterly winds. Thefe fop the perfipiration in the tender bloffoms, fo that in fhort time they wither and decay: foon after, the tender leaves are affected; their perfpiring matter becoming thick and glutinous, fo as to be a proper nutriment to the infects, which are then always found upen them. In this cafe the infects
fects are not the caufe, but the effect of the blight.

It is a kind of blight that produces Galls, which are the buds of oaks fwelled out. The caufe is, into the heart of the tender bud, a fly thrufts one or more eggs. This egg foon becomes a worm, and eats itfelf a little cell in the pith of the bud, which would have grown into a branch. The fap, which was to nourifh that branch, being diverted into the remaining parts of the bud, thefe grow large and flourihing, and become a covering for the cell of the infect.

Not only the willow and fome other trees, but plants alfo, nettles, ground-ivy, and others, have fuch cafes produced upon their leaves. The pa-rent-infect, with its ftiff tail, bores the rib of the leaf when tender, and makes way for her egg into the very pith. Probably the lays it there, with fome proper juice, to prevent the vegetation of it. From this wound arifes a fmall excrefcence, which when the egg is hatched grows bigger, and bigger as thei worm increafes, fwelling on each fide the leaf, between the two membranes. This worm turns afterwards to an Aurelia, and then to a fmall green Fly.

The Aleppo-Galls, wherewith we make our ink, are of this number, being only cafes of infects, which knawed their way out, through the little holes we fee in them.

For a fample of the tender balls, fee the balls as round, and fometimes as big as fmall mufket-bullets, growing under oaken leaves, clofe to the ribs of a greenifh yellowifh colour. Their fkin is fmooth, with frequent rifings therein. Inwardly they are very foft and fpungy; and in the very center is a cafe, with a white worm therein, which afterwards becomes

(82)

becomes a fly. As to this gall, there is one thing peculiar. The fly lies all winter within this ball, and does not come to maturity till the following fpring. In the autumn thefe balls fall to the ground with their leaves. Yet the infeet inclofed in them, is fenced againft the winter frofts, partly by other leaves lying upon them, and partly by the thick fpungy wall, afforded by the galls themfelves.
13. There are few infects more prolific than the Gnat. All its changes from the egg to the perfect animal are fulfilled in three weeks or a month: and there are ufually feven generations of them in a year, in each of which the parent lays two or three hundred eggs. Thefe fhe ranges in the form of a boat, and each leg is fhaped like a nine-pin. The thicker ends of thefe are placed downward. They are firmly joined together by their middles, and their narrower parts fland upward.

Viewed with a microfcope, the larger end is obferved to be terminated by a fhort neck, the end of which is bordered by a kind of ridge. The neck of each is funk in the water, on which the boat fwims: for it is necefflary they fhould keep on the furface, fince otherwife the eggs could never be hatched.
The ranging thefe in fo exact order, requires the utmoft care in the parent. Gnats lay their eggs in the morning hours, and that on fuch waters, as will give fupport to their young. Here the parent places herfelf on a fmall ftick, a leaf, or any fuch matter near the water-edge, in fuch a manner, that the laft ring but one of her body, touches the furface of the water. The laft ring of

(83)

of all, where there is the paffage for the eggs, is turned upward, and every egg is thruft out vertically. When it is almoft difengaged, fhe applies it to the fides of the clufter already formed: to which it readily adheres by means of a vifcous matter wherewith they are covered.

The great difficulty is, to place the firft laid eggs in a proper pofition to receive the reft, and to fuftain themfelves and them, in a proper direction. Thefe fhe with great precaution places exactly, by means of her hinder legs. And when a fufficient number of them are arranged, all the reft is eafy : inafmuch as thefe are a firm fupport to all that follow them.

Thefe are circumflances fufficiently extraordinary in this little animal; but it offers fomething fill more curious in the method of its propagation. However fimilar infects of the Gnat kind are in their appearances, yet they differ widely in the manner in which they are brought forth; for fome are oviparous, fome viviparous; fome are males, fome are females, fome are of neither fex, yet fill produce young, without any copulation whatfoever. This is one of the ftrangeft difcoveries in all natural hiftory! A Gnat feparated from the reft of its kind, and inclofed in a glafs veffel, with air fufficient to keep it alive, fhall produce young, which alfo, when feparated from each other, fhall be the parents of a numerous progeny. Thus down for five or fix generations do thefe extraordinary animals propagate in the manner of vegetables, the young burfting from the body of their parents, without any previous impregnation. At the fixth generation, however, their propagation flops; the Gnat no longer produces its like from itfelf, but requires the accefs of the male.

(84)

14. A Cicadula is a fmall infect found in Mayand June, on the ftalks of leaves of plants, in a kind of froth, commonly called Cuckoo-Spit. This froth is not from the plant, but the mouth of the animal; and if it be gently wiped away, will be prefently feen iffuing out of its mouth, till there is as large a quantity of it as before. They are of the thape of a loufe, fome being whitifh, fome yellowifh, and others green. They often change their fkins, while they live in this froth, and only creep a little. But when they leave theplant they hop and fly, having wings which cover the whole body.

The Cochineal is an infect of the fame fpecies with the Gall-infect. It is found adhering tofeveral plants; but only one communicates its raluable qualities to it, the Opantia or PricklePear. This confifts of thick fmallifh leaves, and its fruit, refembling a fig, is full of a crimion juice, to which the infect owes its colour.

When frrf hatched, it is fcarce bigger thana mite, and runs about very fwifily. But it foon lofes its activity, and fixing on the leaft and moft juicy part of the leaf, clings there for life, without moving any more, only for its fubfiftence, which it fucks whin its probocis.

The male has no appearance of belonging to the fame fipecies. They are fmaller than the female, have wings, and like the butterfly, are continually in motion. They are conftantly feen among the females, walking over them, as it were carelefly, and impregnating them. But it is the female only which is gathered for ufe; four times in the year; for fo many are the generations of them.
15. The
15. The moft fingular part of the life of a Drone-Fly, is that it paffes in the form of a worm. It is then diftinguifhed from all other worms by its long tail : at different times this is. indeed of different lengths: but it is always longer than the worm itfelf. It is round, fmooth, and very fmall at the extremity; fometimes no thicker than a horfe-hair. To know the ufe of this tail, we muft firft know the nature of theworm itfelf. It is an aquatic, and never leaves the water tillit changes into its Fly-ftate. Theylie in multitudes in the mud at the bottom of veffels of finking water. Put them into veffels of cleans water, and they will foon fhew the ufe of their tails. Though they live under water, they cannot live without breathing frelh air. This is the: end to which their long tails ferve. For even while they lie buried in the mud, their tails are extended to the top of the water, and being open at the extremity, let air into their bodies. And as foon as they are in a veffel of frefh water, they get to the bottom and thruft up their tail to the furface. They can lengthen them at pleafure: to be affured of this, you need only pour in more water. The worms then lengthen their tails proportionably, in order to breathe from the furface: by adding more and more water you will find they can extend their tails to the length of five inches: an extremely remarkable length for a creature little more than half an inch long. Beyond five inches however they cannot go. And if you make the water of a greater depth, they leave the bottom, and either travel up the fides of the veffel to a proper height; or elfe fwim in the water, at the depth of five inches.
16. No fpecies of Flies is more remarkable, than the larger Fire-Fly of Jamaica. It is above an inch long, and proportionably broad. Moft of its internal parts are luminous; only the thicknefs of the cover hinders its appearing. But on forcing the rings that cover the body a little afunder, light iffues from all the entrails. The head has two fpots juft behind the eyes, which emits ftreams of frong light. But though thefe flow naturally from the infeet, yet it has a power of interrupting them at pleafure. And then thefe fpots are as opaque as the furface of the body.

A perfon may read the fmalleft print by the light of one of thele infects, if. held between the fingers, and moved along the line, with the luminous fpots over the letters. They are feldom feen in the day, but wake with the evening, and move and fhine moft part of the night. They readily fly toward each other. Hence the negroes have learned, to hold one between their fingers, and wave it up and down, which others feeing fly directly toward it, and pitch upon the hand. They are fo torpid by day, it is hard to make them difcover figns of life; and if they do, they prefently relapfe into the fame fate of infenfibility. As long as they remain awake, they emit light: but they are vigorous only in the night.
17. One more infect of the fly kind, we cannot pals by unnoticed: the Ephemeron, or Fly that lives but part of a day. It appears ufually about Midfummer. It is produced about fix in the evening, and dies about eleven. But before it become a fly, it exifts three years as a worm in

(87)

a clay cafe. It never eats from the time of its change to its death, nor has any organs for receiving or digefting food. The bufinefs of its life is fummed up in few words. As foon as it has dropt its clay coat, the poor, little animal being now light and agile, fpends the reft of its fhort, winged ftate, in frifking over the waters. During this the female being impregnated, drops her eiggs upon the water. Thefe fink to the bottom, where they are hatched by the heat of the fun into little worms, which make themfelves cafes in the clay, and feed on the fame, or on what the waters afford, without any need of parental care. Thus they are inhabitants of the water, till the time comes for fhaking off their fhell, and emerging into air.

Of one fort of Ephemeron, Mr. Collinfon writes thus. May 26, 1744, I was firft fhewn this, by the name of May-Fly. It lies all the year, but a few days, at the bottom of the river; then rifes to the furface of the water, and fplitting opens its cafe, up fprings the new animal, with a flender body, four fhining wings, and three long hairs in its tail. It next flies about to find a proper place, where it may wait for its approaching change. This comes in two or three days. I held one on my finger, while it performed this great work. It was furprifing to fee, how eafily its back fplit, and produced the new birth, which leaves head, body, wings, legs, and even its three-haired tail behind, or the cafes of them. After it has refted a little, it flies nimbly to feek its mate. The males keep under the trees, remote from the river. Hither the females reforted, and when impregnated, foon left the males, fought the rivers, and kept continually playing
playing up and down on the water. Every time they darted down, they ejetted a clufter of eggs. Then they fprang up again. Thus they went up and down, till they had exhaufted their fock of eggs and fpent their ftrength, being fo weak that they can rife no more, but fall a prey to the fifh. This is the end of the females. The males neyer refort to the river, but having done their office, drop down and die.

In a life of three or four days, they eat nothing. They have no apparatus for that purpofe; yet they have ftrength to fhed their fkin, and to perform the ends of their life with great vivacity.

But how poor an end, to our apprehenfion, is anfwered by the life of this, and innumerableother animals?
18. The eggs of Butterflies do not increafe in bulk while in the body of the female. As foon as. they are impregnated by the male, they are ready to be laid. But this requires fome time, both becaufe of their number, and the nicety with which fhe arranges them. This indeed is the whole bufinefs of her life: for when they are laid, the dies.

The female does not depofit them at random, but fearches out a fort of plant which the Caterpillars can feed on as foon as they are hatched. Neither does fhe fcatter them irregularly and without order, but difpofes them with perfect fymmetry, and faftens them together by a vifcous liquor difcharged from her own entrails.. And thofe fpecies whofe hinder part is covered with long hairs, gradually throw them all off, and therewith

(89)

therewith make a neft, wherein the eggs are kept fafely, till the time of their hatching.
19. Some Caterpillars are hatched in the fpring, as foon as the leaves they are to be fed on begin to bud. After thirteen days, they change into Aurelix, and having paft three weeks in that ftate, they iffue forth winged, with all the beauty of their parents.

The wings of Butterflies fully diffinguifh them from flies of every other kind. They are four in number; and though two of them be cut off, the animal can fly with the two remaining. They are in their own fubflance tranfparent; but owe their opacity to the beautiful duft with which they are covered, and which has been likened by fome, to the feathers of birds; by others, tothe fcales of fifhes. In fact, if we regard thewing of a Butterlly with a good microfcope, we fhall perceive it fludded over with a variety of little grains of different dimenfions and forms, generally fupported on a footftalk, regularly laid upon the whole furface. Nothing can exceed the beautiful and regular arrangement of thefe little fubftances. Thofe of one rank are a little covered by thofe that follow: they are of many figures: here may be feen a fucceffion of oval ftuds; there a clufter of ftuds, each in the form of an heart: in one place they refemble a hand open; and in another, they are long or triangular; while all are interfperfed with taller ftuds. that grow between the reft, like mufhrooms upona ftalk.

The eyes of Butterflies have not all the fame form; for in fome they are large, in others fmall. In all of them the outward coat has a luftre, in which
which may be difcovered the various colours of the rainbow. When examined clofely, it will be found to have the appearance of a multiplyingglafs; having a great number of fides or facets, in the manner of a brilliant cut diamond. Thefe animals, therefore, fee not only with great clearnefs, but view every object multiplied in a furprifing inanner. Puget adapted the cornea of a fly in fuch a pofition, as to fee objeCts through it by means of a microfcope; and nothing could exceed the frangenefs of its reprefentations: a foldier, who was feen through it, appeared like an army of pigmies; for while it multiplied, it alfo diminifhed the object. It fill, however, remains a doubt, whether the infect fees objects fingly, as with one eye; or whether every facet is itfelf a complete eye, exhibiting its own object diftinct from all the reft. The trunk, which few Butterflies are without, is placed exactly between the eyes; which, when the animal is not feeking its nourifhment, is rolled up like a curl. A Butterfly, when it is feeding, flies round fome flower, and fettles upon it. The trunk is then uncurled, and thruft out, fearching the flower to its very bottom. This fearch being repeated feven or eight times, the Butterfly then paffes to another; and continues to hover over thofe agreeable to its tafte, like a bird over its prey. This trunk confifts of two hollow tubes, nicely joined like the pipes of an organ.

Butterfies as well as moths employ their fhort lives in a variety of enjoyments. Their whole time is fpent either in queft of food, which every flower offers; or in purfuit of the female, whofe approach they often perceive at above two miles diffance. Their fagacity in this particular is aftonilhing ;
aftonifhing; but by what fenfe they are capable of doing this; is not eafy to conceive. It cannot be by fight, fince fuch fmall objects muft be utterly imperceptible at half the diftance: it can fcarcely be by the fenfe of fmelling, fince the animal has no organs for that purpofe. Whatever be their powers of perception, certain it is, that the male, after having fluttered, as if carelefly, about for fome time, is feen to take wing and go forward, fometimes for two miles together, in a direct line to where the female is perched on a flower.

Caterpillars are of no fex, it not being their bufinefs to propagate, till they commence Butterflies. Yet many of them are not fo harmlefs as they feem; for they deftroy their fellows whenever they can. Put twenty Caterpillars of the Oak together in a box, with a fufficient quantity of leaves, their natural food. Yet their numbers will decreafe daily, till only one remains alive. The ftronger feizes the weaker by the throat, and gives him a mortal wound. When he is dead, the murderer begins to eat him up, and leaves only the fkin with the head and feet. But this is not the cafe of all. Many fpecies live peaceably and comfortably together.

Yet even thefe are expofed to dangers of a more terrible kind. The worms of feveral forts of flies, continually prey upon them. Some are upon, fome under the fkin, and both eat up the poor, defencelefs animal alive.

It is furprifing to fee with what induftry thefe little creatures weave the cafes, in which they pafs their Aurelia-ftate. Some are made of filk, mixt with their own hair, with pieces of bark, leaves, wood, or paper.

There

There is one fort that builds in wood, and gives its cafe an hardnefs greater than that of the wood ittelf. This is the Caterpillar of the Willow, which is one of thofe that eat their exuvir. He has fharp teeth, wherewith he cuts the wood into a number of froall fragments. Thefe he unites together into a cafe, by means of a peculiar filk, which is a vifcous juice that hardens as it dries. In order to make this filk enter into the very fubftance of the fragments, he moiftens every one of them, by holding them fucceffively in his mouth for a confiderable time. In this firm cafe he is afterward to be included till hebecomes a Butterfly. But how Thall a creature of this helplefs kind, which has neither legs to dig, nor teeth to gnaw, get out of fo firm and Arong a lodgment as that wherein it is hatched? Nature has provided for this alfo. As foon as it is hatched, it difcharges a liquor which diffolves the vifcous matter that holds the cafe together, fo that the fragments fall in pieces of themfelves. And accordingly, near its mouth, there is always found a bladder of the fize of a fmall pea, full of this liquor.

Some Caterpillars fpin all the way they walk, a thread of filk, which marks their journey. Now what end does this ferve? A little obfervation will fhew. Trace one of them till he chances to fall, and you will fee the ufe of this thread. Being faftened to the leaves and twigs, it fops the creatures fall. Nor is this all. It can alfo by means of this thread, re-afcend to the place from. whence it fell. And when it is fafe got up again, it continues its motion as before.

Another curious artifice is that by which the fame fpecies of Caterpillars make themfelves cafes
of leaves before they change into Aurelix. The niceft hands could not roll thefe up fo regularly, as they do without hands or any thing like them. They perform it thus. The Caterpillar places itfelf on the upper fide of a leaf, fo far from the edge that he can reach it with his head. Turning himfelf round, he then brings the edge of the leaf to the point juf oppofite to it. It next draws lines from the edge of this leaf to that point: and doing this all the way along the leaf, its narrownefs toward the point makes it form a clofe cafe there. It frengthens the firft bending of the leaf, by many parallel threads, and then faftening other threads to the back part of the leaf, draws them as tight as it can. The cafe is then formed. The fame method repeated makes the additional cafes, five or fix over each other. And every one of thefe is fufficiently ftrong, fo as to make the inner ones ufelefs. He then enters his cell, and undergoes his change. Meantime his covering ferves him alfo for food. For fo long as he has need to eat, he may feed upon the walls of his cafle: all of which may be eaten away, except the outer one of all. Probably every Caterpillar makes his cafe thick enough to ferve the neceffary calls of his future hunger.

Many fpecies of Butterflies lay a great number of eggs in the fame place. Thefe all hatch very nearly at the fame time.: And one would naturally fuppofe, that the young brood of all, would be inclined to continue and live together. But it is not fo: the different fpecies have different inclinations. Some keep together from the time they are hatched, till they change into Aureliæ.' Others feparate as foon as able to crawl, and hunt their fortune fingle. And others live in community
community till a certain time, and then each fhifts for itfelf. Thofe that live wholly together, begin by forming a line with their little bodies upon a leaf; their heads all ftanding even, and in this manner they move and eat together. And often there are feveral ranges of this fort, which make fo many phalanxes, and eat into the leaf they fland on, with perfect equality.

Many do this while young, who when they grow large, make one common habitation, furrounded by a web, which is the joint work of all: within which, each has a neft of its own fpinning.

When they have made their common lodging, each takes its courfe over the tree or bufh for food. Thus many hundreds of them form a regular republic. The feparate cell of each, is Ginally the place where it paffes its change into the Aurelia and perfect ftate. But many fecies do not feparate even then; but are found in their Aurelia-ftate all huddled together; numbers of their cafes making one confufed mafs.

One thing more is highly obfervable in them. The regularity of their marches. They are exactly obedient to their chief. When they change their quarters, one marches fingle firf; two others follow, and keep their bodies very nicely in the fame pofition with his. After thefe there follows a large party. 'Thefe regulate their motions by the former: and fo the order is continued through the whole company. When the leader turns to the right or left, the whole body does the fame inftantly. When he ftops, they all immediately ftop, and march again the moment he advances.
20. The outward covering of the body, is in many animals changed feveral times: but in few more frequently than the Caterpillar. Moft of thefe throw it off at leaft once in ten days. Indeed in the whole infect clafs, the moft numerous of all animated beings, there is fcarce one which does not caft its f kin , at leaft once, before it arrives at its full growth. But the Catterpillar changes more than his fkin: even the outward covering of every, the minuteft part of its body. And what they throw off has the appearance of a compleat infect, prefenting us with all the external parts of a living animal. If the Catterpillar be of the hairy kind, the fkin it throws off is hairy, containing the covering of every hair. And even the claws and other parts that are not vifible without a microfcope, are as plain in this as in the living animal. But what is more amazing is, that the folid parts of the head, the fkull and teeth are diftinguifhable therein. The throwing off an old fkull and teeth, to make way for new ones, is an act beyond all comprehenfion! A day or two before, the creature refufes to eat, and walks very flowly, or not at all. He turns from fide to fide, and often raifes his beak, and gently depreffes it again. He frequently raifes his head, and ftrikes it down rudely againf any thing he ftands upon. Frequently the fore-part of the body is raifed from the place, and thruft very brifkly backward and forward, three or four times together. There are likewife diftinet motions within every ring. Thefe are feverally inflated and contracted alternately, by which the kkin is loofened from them; till by this means, and its remaining without food, the body is quite difengaged from its covering.

When

When this time approaches, all the colours of the fkin grow faint, and loofe their beauty, receiving no nourifhment from the body. And as the creature continues fwelling and fhrinking, the fkin, being no longer fupple, cracks along his back. The crack always begins, at the fecond or third ring, from the head. As it opens, the new fkin is feen within. This opening he eafily enlarges, thrufting his body like a wedge, out of the flit, till he lengthens it through four rings. Then he has room to draw out the whole body. Firf, the head is by feveral motions loofened, drawn out of the old fkull, and raifed through the crack : this is then laid foftly on the old Ikin of the part. By the fame motions the tail end is difengaged, drawn out, and laid fmoothly on the old fkin. It takes the animal Several days, to prepare for the laft operation. But when the crack is once made, the whole remaining work is done in lefs than a minute.

The hairs found on the caft fkins of the Hairy Caterpillars feem at firf, like the other part of the exuvix, to be only the covering of the hairs inclofed. But that is not the cafe. They are folid things themfelves, not barely coverings. In truth, the creature when firf hatched has all its fkins perfectly formed, one under another, each furnifhed with its hairs, fo that the old ones fall off with the old fkins. And probably the erecting thefe is one great means of forcing off the rold fkins.

Perhaps the fame fort of mechanifm is ufed even by thofe Caterpillars which do not appear to be hairy. For they really are fo, as the microfcope fhews. When the upper fkin of one juft ready to change, is 』lit longitudinally in the place
place where the crack would be, the fkin may be taken off; and it is eafily feen, how the new one lies below. The hairs are difpofed in the niceft manner, for lying fmooth under the upper ikin. They grow in feparate tufts, which never lie one upon another, but together form one furface.

It is remarkable, that immediately after this change, they appear much larger than they did before. And they really are fo. The very head and fkull are greatly larger than beiore the change. The operation of the Cray-fifh in changing its fhell, may explain this. This alfo is found confiderably larger, when out of the fhell than before. In both cafes, the body had grown fo much, that it was too big for its covering. However, while it remained in it, the parts were compreffed, and forced to lie in that narrow room. But as foon as that covering is off, every part diftends itfelf to its proper fize.

Indeed, fo large a fkull, being a hard fubftance in the Caterpillar, could not have been compreffed into a fmaller. But the fact is, the new fkull never hardens till the change approaches, and then imperfectly. At the fame time it neceffarily takes, from the place it is in, an oblong form. In this fhape it is found a few hours before the old fkin is caft off; not inclofed within it, but extended under the fkin of the firft ring of the body. When the old fkull is thrown off, the new one foon hardens, and takes its proper figure.

We call the creature hatched from the egg of a Butterlly, a Caterpillar. But it is a real Butterfly all that time. A Caterpillar changes its fkin four or five times, and when it throws off one, appears in another of the fame form. But Vol. II. E when
when it throws off the laft, as it is now fo perfect, as to need no farther nourilhment, fo there is no farther need of teeth, or any other parts of a Caterpillar.
' T is plain from hence, that the change of a Caterpillar into an Aurelia, is not the work of a moment, but is carrying on from the very time of its hatching from the egg. But while the Butterfly lies in the body of the Caterpillar, its wings are long and narrow, and wound up into the form of a cord, and the feelers are rolled up on the head. The trunk alfo is twifted up, and laid on the head, but in a very different manner from what it is in the perfect animal, or indeed in the Aurelia.

A Butterfly then in all its parts, is in the $\mathbf{C a}$ terpillar in all its fates. But it is more eafily traced, as it comes nearer the time of being changed into Aurelia. The very eggs hereafter to be laid by the Butterfly, are to be found not only in the Aurelia, but even in the Caterpillar, all arranged in their natural, regular order. In the Caterpillar indeed they are tranfparent: but in the Aurclia, they have their proper colour.

As foon as the limbs of the Butterfly are fit to be expofed to the more open air, they are thrown out from the body of the Caterpillar, furrounded only with thin membranes. And as foon as they arrive at a proper degree of frength and folidity, they break through thefe, and appear in their perfect form.

The animal then creeps a little on, and there refts; the wings being quite folded up. But by degrees they expand, and in lefs than half an hour appear in all their beauty.

In the beginning of May 1737, the Corneltrees, near Monaghan in Ireland, appeared co-
-vered with fmall Caterpillars, employed partly in feeding on the leaves, partly in crawling over the bark of the tree. Each as it crawled left a fine thread flicking to the bark. By the end of May, there was not a leaf on any of the trees, except a few referved for a curious purpofe. But fnftead of the green, a white cloathing covered the whole 'bark, from the ground to the point of the fmalleft twigs, and that fo gloffy, that it fhewed, in the fun, as if it was cafed in burnifhed filver. Then they covered with the fame all the afh, beech, lime, yea the very weeds which grew near them.

But how did they travel from tree to tree? .Many crawled along the ground. But many had a quicker way. They hung by their own threads from the utmoft branches of the tree, fo that a Imall breeze wafted them to the next tree, as fpiders pafs from one bulh to another.

As they made no ufe of the threads left behind them, probably they wrought for no other purpofe, than to rid themfelves of that glatinous matter, out of which it was fpun.

In the beginning of June, they retired to reft. Their manner of executing this, was very ingenious. Some chofe the under fide of the branches, juft where they fpring from the trunk, that they might be defended from the water, which in a Thower, running down the bark of the tree, is parted by the branches, and fent off on each fide. Here they draw their threads acrofs the angle made by the trunk and branch; and croffing thofe with other threads, make a flrong covering. Within this they place themfelves lengthways among the threads, and rolling their bodies ,round, fpin themfelves into little hammocks, in
the mean time fhrinking into half their length Thefe hammocks being fufpended by the tranfverfe threads, do not prefs each ouher. That they may take up the lefs room, they. lie parallel to each other, in the moft convenient order poffible. Others, fill more ingenious, faften their threads to the edge of the leaves which they had faved for that purpofe: and with that flender cordage pulling in the extremities of the leaves, draw themfelves into a kind of purfe, within which they form the fame fort of work, and lay themfelves up as above. They lay themfelves up in great numbers together, both becaufe many were neceffary to the work of providing a common covering, and allo to keep one another warm, while preparing for the great change.
Between the worm thus laid up, and the hammock inclofing it, there is a tough brown fhell, probably formed of forne glutinous matter, tranfuding through its pores. In the end of June, they gnaw through the fhells and hammocks, and come forth a moft beautiful fly. After its refurredion, it needs no food. Thofe that came out in a room, lived as long there as the reft did abroad. After a while feveral of them difcharged a drop of brown liquor, probably containing the egg. But as it was not lodged in a proper receptacle, it produced no worm the next year.

As the Cornel only fupplies this worm with food, fo it is the only nurfe of its egg. There is not an animal or a vegetable, but yields habitation and food to its peculiar infect. The fcheme of life begins in vegetation: and whenever nature produces vegetables, fhe obliges them to pay for their nourifhment, to certain animals which fhe billets
billets upon them. Each of thefe ag in, is to diet and lodge another fet of living creatures. This juft commanity in nature, which fufie:s nothing to fubfift merely for itfelf, is found nio why every where on the earth, but likewile crey where in the waters. By microfcopes we ditcover an infinity of little creatures, feeding on $\mathrm{l}_{\mathrm{i}} \mathrm{e}$ floating vegetables, or on one another. Indecd, as to the fea, we know only what happens near the flores, where we find vegetables of various kinds, which breed and nourifh a like variety of infects. Thefe, with a multitude of others bred in the mud, are the prey of the fmaller kinds of fifh, and they again of a greater. That this fcheme of nature, found every where elfe, dives into the depths of the ocean, we may cather from the wonderful kind of fifhes, wafhed up by the florms now and then from the decp waiers.

Now it is on the Cornel alone, that the worms we have fpoken of can be propagated and fed. The fpecific qualities with which its juices are impregnated, are peculiarly fuitable to this infect. If thefe refide in the effential oil of the plant, this, as well as the other infects, fubfifing on vegetables, have the fkill to extrat, bicer than any chymift can do, the effential oil of ea:h plant, nothing elfe therein, being of a natire fufficiently peculiar, either to affif the propagation, or fupply the nourifhment of the infect.
21. The Ant lays eggs like flies, from which are hatched fmall worms without legs. Thefe are fharp at one end, and blunt at the other: after a fhort time they change into a large, white Aurelia; vulgarly called Ants-Eggs: whereas they are larger than the Ants themfelves. They move thefe E. 3
at their pleafure. When an Ant's neft is difturbed, and the Aurelia fcattered abroad, the Ants are at infinite pains to gather them and make them a neft again. Nay, thofe of one neft wilk often do this for the Aurelia of another.

At the bottom of an Ant's neft, which is built with finall pieces of dry earth, there is always a large quantity of eggs, worms, and Aurelia. The Aurelix are covered only with a thin fkin, and if opened fhew the Ant in its feveral flages toward' perfection.

In every neft, as in every bee-hive, there are three kinds of the infect, males, females, and working Ants, or labourers.. Thefe laft are neither made mor female, nor have any bufinefs, but taking. care of the yours brood. Male Ants have four wings and three lucid points on their head, and their eyes are larger than thofe of the female or labourers. They are not found in the nefts at all, feafons, but only at particular times. It feems th:ey arekilled (like drone bees) as foon as the feafon for impregnating the females is over.

The body of the female is larger and thicker than that of the male, or labourer; and contains a: great number of eggs, placed in regular lines. Shehas alfo the three lucid points on her head, which feem to be three eyes.

The Ant examined by the microfcope appears a very beautiful creature. Its head is adorned with two horns, each having twelve points. Its jaws are indented with feven little teeth, which exactly tally. They open fideways exceeding wide, by which means the Ant is often feen grafping and carrying away bodies of three times its own bulk. It is naturally divided into the head, the breaft ${ }_{2}$ and the belly, each joined to the other by a llender
a flender ligament. From the breaft proceed three legs on each fide. The whole body is cafed over with a fort of armour, fo hard as fcarce to be penetrated by a lancet, and thick fet with flining, whitifh briftles.

They bring out not corn, but their young, every day, and fpread them near their neft, in little heaps, on a kind of dry earth, provided for that purpofe. They carry them back at night. But it is obferved, they never bring them out, unlefs in a day that promifes to be fair. In the prognoftics of this they fhew great fagacity. Where it is dangerous to expofe them in the day times, by reafon of the birds, they vary their rule, bringing them out in the night, and carrying them back in the morning.

They do not eat at all in winter, but fleep Iike moft other infetts. There is a frait hole in every Ants neft, about half an inch deep; after which it goes Iloping into their magazine, which is a different place from that where they eat and reff. Over the hole they lay a flat fone or tile, to fecure them from their great enemy the rain. In a fair day, the hole is open; but when they forefee it will rain, and every night, the cover is drawn over, with great ingenuity as well as labour. Fify of the frongeft of them furround the fone, and draw and fhove in concert. The like pains they take every morning, to thruft it back again.

An Ant never goes into any neft but her own; if fhe did, fhe would be feverely punifhed. And if the returned again after this warning, the others would tear her in pieces. Therefore they never attempt it, but in the laft extremity: fometimes they will rather fuffer themfelves to be taken.

Ants do not bite, as is vulgarly fuppofed. But. red Ants have a fing, which expreffes a corrofive liquor, that raifes a flight inflammation. The black Ants have no fling.

On opening an Ant-hill, a great quantity of eggs is ufually found. They look like the fatterings of fine falt, and are too minute to be feen diflinctly by the naked eye. Through a microfcope they appear like the eggs of fmall birds, and are as clear as the air-bladder of fifhes. They lie in clufters under cover of fome light earth. The Ants feem to brood over them, till every granule is hatched into a worm, not much larger than a mite. In a thort time thefe turn yellowifh and hairy, and grow to near as big as their parent. They then get a whitifh film over them, and are of an oval form. If this cover be opened after fome days, all the lineaments of an Ant may be traced; though the whole is tranfparent, except the eyes, which are two dark fpecks.

The care thefe creatures take of their young is amazing. Whenever a hill is difturbed, all the Ants are found bufy, in confulting the fafety, not of themfelves, but of their offspring. They carry them out of fight as foon as poffible; and will do it over and over, as often as they are difturbed. They carry the eggs and worms together in their bafte; but as foon as the danger is over, they carefully feparate them, and place each by themfelves, under thelter of different kinds, and at various depths, according to the different degrees of warmth which their different ftates require.

In the fummer they every morning bring up the Aurelize near the furface of the earth. And from ten in the morning till about five in the afternoon. they may be found juft under the furface. But if you fearch at eight in the evening, they
they will be found to have carried them all down And if rainy weather be coming on, they lodge them at lealt a foot deep.

Though Ants unite in colonies, in fuch places as are agreeable to theirdifferent natures, yet they often vary their refidence. But the feveral fpecies never intermix, though they will be good neighbours one to another.

Their architecture is adjufted with remarkable art. The whole ftructure is divided into numerous cells, communicating with each other by fmall fubterraneous channels, which are circular and fmooth. They carry on all their works by means of their double faws, and the hooks at the extremity of them.

A colony from the latter end of Auguft, to the beginning of June, confifts of a female, and various companies of workers: and befides thefe in the latter end of June, all July and part of Auguf, of a number of winged Ants.

The labouring Ants, being of no fex, are wholly employed in providing for the young, which the Queen depofites in the cells. In whatever apartment fhe is prefent, univerfal joy is fhewn. They have a particular way of fkipping, leaping, prancing, and flanding on their hind legs. Some walk gently over her, others dance round her, all exprefs their loyalty and affection; of all which you may be convinced in a few moments, by placing the queen and her retinue under a glafs.

The queen lays three different forts of eggr, male and female in fpring, neutral in July and part of Auguft. The conmon Ants then brood over them in little cluflers, and remove them to and fro, for a juft degree of heat. The young difengage themfelves from the membranes that enclofe the eggs, juft as the filk-worms do. The female eggs put on the form of worms, fome time
in February; the male, by the latter end of March, the neutral by September. The firff fummer they grow little, and lefs in winter. In the beginning of April the fecond year, they vifibly increafe every day. By the end of May the male and fermale attain their full growth, and are ready for another change. This long continuance of Ants in the vermicular flate, has nothing like it in any other clafs of infects. The vermicles in a few days infold themfelves in a foft filken covering, and fo commence Aurelias, which are commonly miftaken for Ants eggs. As foon as they tend to life, the workers give them air, by an aperture in the end of the covering. This they gradually enlarge for a day or two, and: then take out their young.

There is a larger and a fmaller fort of winged Ants, the latter male, the former female. Thofefemales, which efcape being devoured by other creatures, become queens, and give birth to new colonies.

In all other infeets the lofs of their wings leffens their beauty, and fhortens their lives. But Ants. gain by that lofs: this being the prelude of their afcending the throne.

The young are fed by the juices of moft forts of fruits, which the labourers extract, and receive into their own ftomach ; where they are prepared, and afterwards transfufed into the tender vernicles.

Perhaps in warm climates, Ants do not pafs the winter in fleep, as they do with us. If fo_{r} they need a fore of food, which in our climate is quite needlefs. Accordingly thofe who have accurately examined their moft numerous fettlements, could never find out any refervoir of corn
or other aliments. And they that liave carefully obferved their excurfions from and return to their colonies, could never obferve that they returned with any wheat corn, or any other vegerable feed: though they would eagerly attack a pot of honey, or a jar of fweet-meats.

But is it not faid, Prov. vi. 8. She provideth her meat in the fummer, and gathereth her food in the harveft?" It is: but this does not neceffarily mean any more, than that fhe collects her food in the proper feafon. Nor is any thing more declared, ch. 30. 35, than that Ants carry food into their repofitories. That they do this againft winter, is not faid: neither is it true in fatt.

In England, Ant-hills are formed with but little apparent regularity. In the fouthern prorinces of Europe, they are conftructed with wonderful continuance. They are generally formed in the neighbourhood of fome large tree and a ftream of water. The one is the proper place for getting food; the other for fupplying the animals with moifture, which they cannot well difpenfe with. The fhape of the Ant-hill is that of a fugar-loaf, about thiee feet high, compofed of various fubftances; leaves, bits of wood, fand, earth, bits of gum, and grains of corn. Thefe are all united into a compact body, perforated with galleries down to the bottom, and winding ways within the fructure. From, this retreat to the water, as well as to the tree, in different directions, there are many paths worn by conflant affiduity, and along thefe the bufy infect pafs and repals continually; fo that from May or the beginning of June they work continually till the bad weather comes on.

The chief employment of working Ants is in finding a fufficiency of food. They live upon various provifions, as well of the vegetable as the animal kind. Small infetts they kill and devour; fweets of all kinds they are particularly fond of. They feldom, however, think of their community till themfelves are firft fatiated. Having found a juicy fruit, they fwallow what they can, and then tearing it in pieces. carry home their load. If they meet with an infect above their nratch, feveral of them will fall upon it at once, and having torn it in pieces, each will carry off a part of the fooil. If they meet with any thing that is too heavy for one to bear, and yet which they are unable to divide, feveral of them endeavour to force it along, fome dragging, others pufhing. If any one of them makes a lucky difcovery, it immediately gives advice to others, and then at once, the whole republic put themfelves in motion. If in thefe fruggles one of them happens to be killed, fome furvivor carries him off to a great diftance, to prevent the obftructions his body might give to the general fpirit of induftry.

In autumn they prepare for the feverity of the winter, and bury their wheat as deep in the earth as they can. It is now found that the grains of corn, and other fubftances with which they furnilh their hill, are only meant as fences to keep off the rigour of the weather. They pafs four or five months without taking any nourifhment, and feem to be dead all that time. It would be to no purpofe therefore for Ants to lay up corn for the winter, fince they lie that time without motion, heaped upon each other, and are fo far from eating, that they are utterly unable to fir. Thus what authors have dignified by the name of a magazine,
a magazine, appears to be no more than a cavity, which ferves for a common retreat, when they return to their lethargic ftate.

But what has been falfely faid of the European Ant, is true of thofe of the tropical climates. They do lay up provifions, and as they probably live the whole year, fubmit to regulations unknown among the Ants in Europe. Thofe of Africa are of three kinds, the red, the green, and the black; the latter are above an inch long, and in every refpect, a moft formidable infect. They build an Aut-hill from fix to twelve feet high; made of vifcous clay, and in a pyramid form. The cells are fo numerous and even, that a honeycomb fcarce exceeds them. The inhabitants of this edifice feem to be under a very ftrict regulation. At the flighteft warning they fally out upon whatever diflurbs them, and if they arrelt their enemy, he is fure to find no mercy. Sheep, hens, and even rats are often deftroyed by thefe mercilefs infects, and their flefh devoured to the bone. No anatomift can frip a fkeleton fo clean as they.

If a frog be put into a box with holes bored therein, and the box laid near a neft of Ants, they will entirely diffect him, and make the fineft fkeleton poffible, leaving even the ligaments unhurt.
21. One of the moft dreadful enemies of the Ants is the Formica-leo or Ant-Eater: it is foft as a fpider, but has in its form fome refemblance of a wood-loufe. Its body is compofed of feveral rings: it has fix legs, four joined to the breaft ; and the other two to a long part, which may be termed the neck. Its head is fmall and flat, and

(110)

it has two remarkable horns, the fixth of an inch long, as thick as a hair, hard, hollow and hooked at the end. At the origin of each of thefe horns, it has a clear and bright black eye.

He is not able to hunt after prey, nor to deftroy large infetts. He can only infnare fuch as come by his habitation, and of thefe, few are fuch as he can manage. All the winged tribe efcape by flight, and thofe that have hard fhells are of no ufe to him. The fmallnefs of the Ant, and its want of wings, make it his deftined prey. The manner wherein he proceeds is this. He ufually encamps under an old wall for fhelter, and always chufes a place where the foil is compofed of a light, dry fand. In this he makes a pit in the thape of a funnel, which he does in the following manner.

If he intends the pit to be but fmall, he thrufts his hinder parts into the fand, and by degrees works himfelf into it. When he is deep enough, he toffes out with his head the loofe fand which is run down, artfully throwing it off, beyond the edges of the pit. Then he lies at the bottom of the fmall hollow, which comes floping down to his body.

But if he is to make a larger pit, he firft traces a larger circle in the fand. Then he buries himfelf in it, and carefully throws off the fand, beyond the circle. Thus he continues running down backward in a fpiral line, and throwing off the fand above him all the way, till he comes to the point of the hollow cone, which he has formed by his paffage. The length of his neck, and the flatnefs of his head, enable him to ufe the whole as a fpade. And his ftrength is fo great that he can throw a quantity of fand, to fix inches
diftance,

(1ri)

diftance. He likewife throws away the remains of the animals he has devoured, that they may not fright other creatures of the fame fpecies.

Where the fand is unmixed, he makes and repairs his pit with great eafe. But it is not fo where other fubftances are mixed with it. If when he has half formed his pit, he comes to a fone not too large, he goes on, leaving that to the laft. When the pit is finifhed, he creeps up backwards to the flone, and getting his back fide under it, takes great pains to get it on a true poife, and then creeps backward with it, to the top of the pit.

We may often fee one thus labouring at a fone four times as big as his own body. And as it ean only move backward, and the poife is hard tokeep, efpecially up a flope of crumbly fand, the flone frequently flips when near the verge, and rolls down to the bottom. In this cafe heattacks. it again, and is not difcouraged by five or fix mifcarriages; but attempts it again, till at length he gets it over the verge of his place. Yet he does not leave it there, left it fhould roll in again, but always removes it to a convenient diftance.

When his pit is finifhed, he buries himfelf at the bottom of it in the fand, leaving no part aabove it, but the tips of his horns, which he extends to the two frides of the pit. Thus he waits for his prey. If an Ant walk on the edge of his pit, it throws down a little of the fand. This gives notice, to tols up the fand from his head on the Ant; of which he throws more and more, till he brings him down to the bottom, between his horns. Thefe he then plunges into the Ant, and having fucked all the blood, throws out the fkin as far as poffible. This done, he mounts up the
the edges of his pit, and if they have fuffered any injury, repairs it carefully. He then immer diately buries himfelf again in the center, to wait for another meal.

This creature has no mouth, but it is through its horns that it receives all its nourihment. And as they are fo neceffary for its life, nature has provided for the reftoring them, in cafe of accidents: fo that if they are cut off, they foon grow again.

When he has lived his ftated time, he leaves his pit, and is only feen drawing traces on the fand. After this he buries himfelf under it, and inclofes himfelf in a cafe. This is made of a fort of filk with grains of fand cemented together by a glutinous humour which he emits. But this would be too harih for his body: fo it ferves only for the outward covering. He fpins within it one of pure, fine, pearl coloured filk, which covers his whole body. When he has lain fome time in this cafe, he throws off his, outer kkin, with the eyes, the horns, and all other exterior parts, and becomes an oblong worm, in which may be traced the form of the future fly. Through its tranfparent fkin may be feen new eyes, new horns, and all other parts of the perfeat animal. This worm makes its way about half out of the cafe, and fo remains, without farther life or motion, till the perfect fly makes its way out of a flit in the back. It much refembles the Dragon-fly. The male then couples with the female and dies.
22. The fagacity of Bees, in making their combs, cannot be too much admired. The labour is diftributed regularly among them. The fame Bees, fometimes carry the wax in their jaws, and moiften it with a liquor which they diffil up:
on it, and fometimes build the walls of their cells. But they that form the cells, never polifh them. Others make the angles exact, and fmooth the furface. The bits of wax which are fcraped off in doing this, others pick up, that none may be loft.

Thofe that polifh, work longer than thofe that build the walls; polifhing not being fo laborious a work as building. They begin the comb at the top of the hive, faftening it to the molt folid part thereof. Hence they continue it from top to bottom, and from fide to fide. The cells are always fix fided : a figure which, befide the advantage it has in common with the fquare, of leaving no vacancies between the cells, has this peculiar to itfelf, that it includes a greater fpace within tho fame furface than anv other figure.

It is a grand queftion, Is there any part of a plant without iron? It is certain honey is not. And if fo delicate an extract from the fineft part of flowers, and that farther elaborated in the bowels of the infect: if this be not without iron, we may defpair of feeing any part fo.

The trunk of a working Bee, is not formed in the manner of a tube by which the fluid is to be fucked up; but like a befom to fweep, or a tongue to lick it away. The animal is furnifhed alfo with teeth, which ferve in making wax. This fubftance is gathered from flowers like honey: it confifts of that duft or farina which contributes to the foundation of plants. Every Bee when it collects this, enters into the cup of the flower, particularly fuch as have the greateft quantities of this yellow farina. As the animal's body is covered over with hair, it rolls itfelf within the flower, and is foon covered over with duft, which

(114)

which it brufhes off with its two hind legs, and kneads it into two little balls.

The habitation of Bees ought to be very clofe; and what their hives want, from the negligenceor unkilfulnefs of man they fupply by their own induftry: fo that it is their principal care, whenfirf hived, to ftop up all the crannies. For this purpofe they make ufe of a refinous gum, whichis more tenacious than wax. When they begin to work with it, it is foft, but it acquires a firmer confiftence every day. The Bees carry it on their hinder legs, and plaifter the infide of their hives therewith. Their teeth are the inftruments by which they model and fafhion their various buildings, and give them fuch fymmetry. Several of them work at a time, at the cells which have two faces. If they are finted in time, they give the new cells but balf the depth which they ought to have; leaving them imperfect, till they have fketched out the cells necelfary for the prefent occafion. The confruction of their combs, cofts them a great deal of labour: they are made by infenfible additions, and not caft at once into a mold as fome are apt to imagine. There feems. no end of their fhaping, finifhing, and turning. them neatly up. The cells for their young are moft carefully formed; thofe defigned for drones, are larger than the reft, and that for the queen Bee, the largeft of all. Honey in not the only food on which they fubfift. The meal of flowers is one of their favourite repafts. This is a diet which they live upon during the fummer, and of which they lay up a large winter provifion. The wax is no more than this meal digefted and wrought into a pafte. When the flowers are not fully blown, and this meal is not offered in fufficient
ficient quantities, the Bees pinch the tops of the' ffamina in which it is contanned, with their teeth; and thus anticipate the progrefs of vegetation. In April and May the Bees are bufy from morning. to evening, in gathering this meal: but when the weather becomes too hot, they work only in the morning. The Bee is furnifhed with a fomach: for its wax, as well as for its honey. In the former their powder is altered; digefted; and concoeted into wax; and is then ejected by the famepaffage by which it was fwallowed. Befide, the wax, thus digefted, there is a large portion of the powder kneaded up for food in every hive, and kept in feparate cells for winter provifion. This is called by the country people Bee-bread; and contributes to the health and ftrength of the Beeduring the winter. We may rob them of their honey, and feed them during the winter with treacle, but no. proper fubfitute has yet been. found for the Bee-bread; without it the animal. becomes confumptive and die:

Honey is extracted from that part of the flowers called the neflaraum. From the mouth it paffes into the firft fomach, or honey-bag, which when filled, appears like an oblong bladder. When a Bee has filled its firft fomach, itreturns back to the hive, where it difgorges the honey into one of the cells. It often happens that the Bee delivers its ffore to fome other at the mouth of the hive, and flies off for a frelh fupply. Some honey-combs are left open for common ufe, many others are ftopped up, till there is a necerfity of opening them. Each of thefe are covered carefully with wax; fo clofe that the cover feems to be made at the very inftant the fluid is depofited within: them.

It was formerly thought that Bees do not colle ε honey in the form we fee it, but lodge it in their fomachs, till its nature is changed. But we now know that they merely collect it. Many flowers afford it ; but befide this, there are two kinds of honey dews. The one does not fall, but is a mild fweet juice, which having circulated in the velfels of plants, is feparated by proper frainers, and exfudes on the leaves, though fometimes it is depolited on the pith, or in the fugar canes.

So the leaves of the holm oak are frequently covered with thoufands of fmall drops, which point out the feveral pores from which they proceeded, and are no other than pure honey. But it is found only on the old leaves, which are ftrong and firm, not on the tender ones, which are newly come forth: although the old are covered by the new ones, andifo theltered from any thing, that could fall from above. Mean time the leaves of the neighbouring trees, have no moifture upon them: whereas, if it falls as a dew, it would neceffarily wet all the leaves without diftinction.
The other kind of honey-dew, fprings from a fmall infect called a Vine-fretter: the excrement of which is the moft delicate honey in nature. They fettle on branches of trees that are a year old; the juice of which, however, harfh at firt, becomes in the bowels of the infect equal in fweetnefs to any honey whatever.

There are two fpecies of thefe flies, the fmaller is green; the other, twice as large, is blackith. Hearing many Bees buzzing in a tuft of holmoak, upon obferving, I found the tuft of leaves and branches covered with drops which the Bees collected. Each of the drops was not round, but of a longifh
a longifh oval. I foon perceived from whence they proceeded. The leaves covered with them, were jull beneath a fwarm of the larger Vine-fretters; which from time to time raifed their bellies, and ejected fmall drops of an amber colour. I catched fome of them on my hand, and found they had the very fame flavour with what had before fallen on the leaves. I afterwards faw the fmaller vine-fretters eject their drops in the fame manner. This is the only honey dew that falls: and this never falls from a greater height than a branch, where a clufter of thefe infects can fix themfelves.

Ants are as fond of this honey as Bees. The large black ants follow the infect which lives on oaks and chefnut-trees: the leffer attend there on the elder. But as ants cannot fuck up fluids like Bees, they wait juft under the vine-fretters, in order to fuck the drop juft as it falls.

The vine-fretters afford moft honey about midfummer, as the trees are then fulleit of juice, the trees neverthelefs, though pierced to the fap in a thoufand places, do not feem to be hurt at all.

The fling of a Bee or Wafp is a curious piece of workmanfhip. It is an hollow tube, within which, as in a fheath, are two fharp bearded fpears. A wafp's fting has eight beards on the fide of each fpear, fomewhat like the beards of filh-hooks. Thefe fpears in the fheath, lie one with its point a little before that of the other. One is firft darted into the flefh, which being fixed, by means of its foremoft beard, the other ftrikes in too, and fo they alternately pierce deeper, the beards taking more and more hold in the flefh: afterward the fheath follows, to convey the poifon into the wound. When the beards are lodged deep in
the flefh, Bees often leave their ftings behind them, if they are difturbed before they have time to withdraw their fpears into their fcabbard.

The Queen-Bee is fomewhat larger, confiderably longer, and of a brighter red than others. Her office is, to direct and lead the fwarm, and to raife a new breed. She brings forth ten, fifteen, or twenty thouland young ones in a year.: fo that the may. literally be faid to be the mother of her people. In an hive of eight or ten thoufand, there is ufually bat one Qreen-Bee.

Drones, or males have no fings, and are larger and darker-coloured than the working Bees. The eggs for them are placed in a larger fort of cells. They are alfo nurles to the young brood.

It is certain Bees forefee rain, though we know not how. Hence no Bee is ever caught in a fudden fhower: unlefs it be far diftant from the hive, or any way hurt or fickly.

Thus much may be feen on the outfide of the hive. But when we look within, how is the :wonder increafed! to fee fo many thoufands an fo bufily at work, and with fuch admirable regularity! Nor is there lefs wonder in obferving the clufters of them, when they take fome reft. Their method then is, to get together and hang one to another in vaft numbers. When thefe clufters are large, they are only fhapelefs heaps; when fmaller they are a fort of feftoon or garland, each end being faftened to the branch, and the middle dropping from it. The manner in which they hang is this. Each with one or both of his forelegs lays hold of one or both of the hinder-legs of the Bee that is next above it.

Through a glafs hive we fee, that as the combs are carried down from the top to the bottom of the hive, each is placed parallel to the former, but not touching it, there being a fpace between for the Bees to walk. Thefe are their public flreets, and by means of thefe they can make ufe of every cell. There are likewife alleys cut from ftreet to freet, through the fubflance of the feveral combs.

All the cells are ufed in common. Some of them contain only honey, and are covered with a lid of wax. Thefe are never touched by any Bee. But other cells are open, and a Bee is often feen fo lodged in one of thefe, that only its hinder part appears. The meaning hereof is, each of thefe open cells contains at the bottom a Bee:worm. Certain Bees duly vifit thefe, plunging their heads into the feveral cells, one after another.

The fruitfulnefs of the female is the lefs ftrange, when we confider the number of the males. In any hive there are, at the feafon, feveral hundreds: in fome two or three thoufand. Thefe are the joint fathers of the numerous offspring, and when they have done their work, are all killed. The wings of the female reach only to the third ring of her body: whereas thofe of all other Bees cover the whole body. But though the is thus eafy to be diftinguifhed, yet few have ever feen a QueenBee : as fhe is always clofe covered in the hive.

Mr . Reaumur, defiring to try how far the accounts given of the homage paid by the others to the Queen-Bee was true, caufed a fwarm of Bees to be fwept down into a glafs-hive. Among thefe there was one female. She was foon diftinguifhed by her fhape, and the fhortnefs of her wings.

For a while fhe walked alone at the bottom of the hive; the reft feeming to regard nothing but their own fafety. The female after going twice or thrice up the fides of the hive, to the top of it, where they were hung, at laft going in among

- the clufter, brought down about a dozen with her. Attended with thefe, The walked along flowly at the bottom of the hive. But the reft continuing at the top, fhe went again and again, till they all came down and formed a circle about her, leaving her a free paffage wherever fhe turned to walk, and feeding her with the honey they had gathered for themfelves.

The hive was large enough for more than their number. However the female feemed to find, it would not be large enough for the family fhe was to produce. So gathering them all about her, fhe went out and flew to a neighbouring tree. All followed her, and formed a clufter about her, in the common way.

The Bees follow their queen wherever the goes. And if fhe be tied by one of the legs to a ftick, all the fwarm will gather in a clufter about her, and by removing the flick may be carried any where.

Nature feems to have informed the common Bees that they are to bring up the offspring of this female, therefore they ferve her in every thing. If by any means fhe is dirted, all the reft try who fhall clean her. And in cold weather they clufter together about her to keep her warm. Nor do they fhew this refpect to one female only. Mr. Reaumer, at feveral times, put feveral females marked with different colours, into the fame fwarm. And all thefe were, for a time, received as well as the proper female.

The fwarm which leaves an old hive, have often three or more females. Thefe have their fe veral followers. And each with her followers, were the number fufficient, would form a diffinet fwarm. As it is not, they all go into the fame hive. But all, except onie, are foon deftroyed. The reafon is, the working Bees of an hive have enough to do to prepare cells, for lodging the eggs of one female, and it would be impoffible for them to prepare twice or thrice that number.

Sometimes in two parts of a fwarm, there are more than two female Bees. In this cafe two, as foon as they are lodged in the hive, all are killed but one. Nature defigns but one feniale for each fwarm. But as many things may deftroy the egg or worm of this fingle female, it was needful, that provifion fhould be made for accidents. So that there are often twenty females which live to maturity with the Bees of one fwarm. But one only is then fpared, whether they go out with the fwarm, or remain within.

As foon as the fwarm is gone out, the firft work of the remaining bees, is to deftroy the young females. Thefe are all immediately killed and carried out of the hive: and it is common, the morning after the going out of a fwarm, to fee fix, eight or more female bees, lying dead at fome diftance from the hive. What determines the bees in favour of one, is her having eggs ready to be hatched. Accordingly, if new made cells be examined, the will be found the very next day, to have laid eggs in many, if not all. Whereas if the bodies of the rejected females be examined, there will be found either no eggs at all, or eggs fo extremely minute, that it muft have been a long time before any could have been laid.

Vol. II.
F
It

It is not at all times, however, that the Bees are thus cruel to the fupernumary females; but only at the time when they are newly eflablifhed in their habitation, and in want of all things. At other times they are as kind to ftrange females as to their own. Mr. Reaumur tried the experiment, by putting a frange female into an hive, where the combs were perfect, and filled with honey. And the bees thewed the fame refpect to her, as to their proper fovereign.

The Bee that comes loaded to any cell, foon difcharges his honey into it. No fooner is he gone, than another comes, and fo on, till the whole cell is filled. But that which lies uppermoft is always of a different appearance from the reft of the honey. It is a kind of cream, which both keeps the honey moif, and prevents its running out by accident.

This cruft or cream was not, as one would think, voided laft, but was gathering from the firf. For the Bee which comes loaded to the ceh, does not at once difcharge his honey, but entering into it as deep as may be, thrufts out his fore-legs, and pierces an hole through the cruft. Keeping this open with his feet, he difgorges the honey in large drops from his mouth. He then clofes the hole, and this is regularly done by every bee that contributes to the common ftore.

But every bee that comes loaded to the hive, does not depofit his honey in the cell. They often difpofe of it by the way. Intead of going to any cell, they often go to thofe that are at work, and call them to feed upon the boney they have brought, that they may not be obliged to intermit their work, on the account of hunger. Thefe feed on the ftore of the friendly Bee, by putting their trunk
into her mouth, exactly in the fame manner as they do into the bottom of flowers.

Some cells in every hive contain honey for immediate confumption, as in cafe of bad weather. And thefe are always open at the top. Others contain their provifion for the winter. Thele ate all clofed down with a flrong lid, not eafily to be removed. Such is the wifdom which the great Author of Nature has imparted to fome of the moft inconfiderable of his creatures.
24. The kind of fea-fhrubs, as they are formerly accounted, ufually termed Corallines, are in reality no other than cafes for various fpecies of Infeets. A French Gentleman was the firf who difcovered this. Obferving a great number of Infects lodged in feveral parts of thefe marine productions, he foon inferred, that thefe were only cales made by thefe creatures for their habitations: and many of them have fince been found to be the covers of marine Polypus: a ftrange kind of animal, fo nearly partaking the nature of fome vegetables, that new, perfect Polypus, perpetually grow like branches from the trunk of the parent. Yea, if a Polypus be cut in pieces, every piece will grow into a perfect Polypus.

A late writer informs us, "At the ifle of Sheppey, I had the opportunity of feeing feveral branched Corallines, alive in fea-water, by the help of a commodious microfcope, and was fully affured, that thefe apparent plants were real animals, in their proper cafes, which were fixt to the fhells of oyfters and other fmall fhell-fifh. And at Brighthelmftone, I faw thofe Corallines in motion, whofe Polypus are contained in cups fupported by a long fem that appears full of rings, F 2
or twifted in form of a fcrew. In the middle of the traniparent ftems or cafes, I could eafily difcern the thread like a tender part of the animals. On feveral parts of thefe Corallines there are little bodies, which through the microfcope appear as fo many bladders. To the ufe of thefe I was quite a ftranger before: but I now difcovered, they are habitations of young Polypes, which are produced here and there on the fides of the parent, as in the frefh-water Polypus: only in the marine ones they are protected by this veficular covering. Thefe veficles appear at a certain feafon of the year, according to the different fpecies of Corallines, and fall off, like the bloffoms of plants, as foon as the Polypus arrive at maturity.

But Corallinès are cafes not of Polypes only, but of various forts of animals: which occafions their being made of various materials, and in great variety of forms. Some are united clofely and compactly together, forming irregular branches, like trees. Others rife in tufts, like the tubular fort of plants, diftinct from one another. Some Maltefe Corallines are of a peculiar kind. The animals inclofed in thefe, refemble the manylegged fiders, ufually known by the name of Scolopendræ. Their outfide coats are formed of an afh-coloured earthy matter, and clofely united to an inner coat, which is tough, horny, tranfparent, and extremely fmooth. The cavity of the tube is quite round, though the animal is of a long figure, like a leech extended. It can turn itfelf in this tube, and move up and down the better to attack and fecure its prey.

It has two remarkable arms. The left much larger than the right. Thefe are doubly feathered. The

The number of its feet on each fide of the body exceeds an hurtdred and fifty.

As barnacles feem to be a medium between birds and fifhes, although they more properly belong to the former, fo is a Polypus, (although it is doubtlefs an animal, between animals and plants.

In a Polypus, life is preferved, after it is cut into feveral pieces, fo that one Animal is by fection immediately divided into two, three, or more compleat animals, each enjoying life and continuing to perform the proper offices of its fpecies.

The common operations both of the animal and vegetable world, are all in themfelves aftonifhing. Nothing but daily experience makes us fee without amazement, an animal bring forth young, or a tree bear leaves and fruit. The fame experience makes it familiar to us, that vegetables are propagated not only from the feed, but from cuttings. So the willow-twig cut off, and only fuck in the ground, prefently takes root, and is as perfect a tree as that whence it is taken. This is common in the vegetable kingdom, and we have a rare example of it in the animal.

The Polypus is an aquatic animal, to be found in ditch-water. It is very flender, and has on the fore part feveral horns, which ferve it for legs and arms. Between thefe is the mouth; it opens into the fomach, which takes up the whole length of the body: indeed the whole body is but one pipe, a fort of gut which opens at both ends.

The common Polypus is about three quarters of an inch long : but there are many fpecies of them: fome of which can extend themfelves to the length of fix or feven inches. Even in the
fame feccies, the number of legs and arms is not always the fame: but they have fellom fewer than fix. Both the body and arms may be inflated all manner of ways, and hence it is, that they put themfelves into fo great a variety of figures.

They do not fwim, but crawl on the ground, or on any body they meet with in the waters. They ufually fix their pofterior end to fomething, and flretch their bodies, and arms into the water. With thefe arms they catch numberlefs infects, which are fwimming up and down. A Polypus, having feized its prey, ufes one or more arms to bring it to his mouth. He can mafter a worm thrice as long as himfelf, which he fwallows whole; and having drawn all that is nutritive from it, then throws out the fkin.
"I have cut a Polypus in two, between feven and eight. in the morning, and before three in the alternoon, each part was a compleat animal, able to eat a worm as long as itfelf. If a Polypus be cut lengthways, beginning at the head, but not quite to the tail, there is a Polypus with two heads, two bodies, and one tail. Some of thefe heads and bodies may foon be cut lengthways again. Thus I have produced a Polypus with feven heads, feven bodies and one tail. I cut off the heads of this new hydra, feven others grew up, and each of thefe cut off became a Polypus.
" I cut a Polypus crofs-ways into two parts; put them together again, and they re-united. I put the pofterior part of one, to the anterior of another, they foon united into one Polypus, which ate the next day, and foon put forth young ones, from each part.
"As the body of a Polypus is but one gut, I have turned it infide out. The infide foon after became
became the outfide, and it fed and multiplied as before. They do not copulate at all; but each Polypus has the faculty of multiplying itfelf: yea, before it is fevered from its parent. I have feen a Polypus while growing out of the fide of its parent, bring forth young ones: nay, and thofe young ones themfelves have alfo brought forth others."

Cut a Polypus acrofs, and the fame day the anterior end lengthens itfelf, creeps and eats. The lower part which has no head, gets one, forms itfelf a mouth, and puts forth arms. It is all one, in whatever part the body is cut; cut it into three or four parts, and each becomes a compleat Polypus.

Cut one lengthways, flitting it quite in two, fo as to form two half pipes. It is not long bef ore the two fides of them clofe, they begin at the pofterior part, and clofe upward, till each half pipe becomes a whole one. All this is done in lefs than an hour, and the Polypus produced from each of thofe halves, differs nothing from the firft, only it has fewer arms. But thefe too are foon fupplied!

But as frange animals as all Polypus are, the Cluftering Polypus are more Atrange than the reft. One fpecies of thefe are of a bell-like form. Their anterior part, in which is their mouth, is hollowed inward, and refernbles the open end of a bell. Their other extremity ends in a point, to which is fixt a falk or pedicle. The Polypus when it is ready to divide, firft draws in its lips into the cavity : it then by degrees grows round, and prefently after divides itfelf into two other round bodies. Thefe in a few moments open, lofe their fpherical form, and put on that of a bell,
or compleat Polypus. This is the manner in which Cluftering Polypi are multiplied. The whole operation is perionmed in three quarters of an hour. The clufter which they form, refts upon a flem, which is fixt to fome other body at its lower extremity, and from it arife other branches: other branches again fhoot out from thefe in different places; from thefe laft other new ones, and fo on. At the extremity of each branch, is a Polypus. The affemblage of all thefe branches with the Polypi at their extremities, form a clufter much refembling a tuft of flowers. The ftem which carries all the clufter, is capable of a remarkable motion, each branch contracts when it is touched : each can contract itfelf alone, though this feldom happens, for in contracting it. commonly touches another, which then immediately contracts with it. When the main fem which bears the whole clufter contracts, all the branches contract together, and the whole becomes entirely clofed. A moment after, the branches and the flem again extend themfelves, and the whole clufter recovers its ordinary figure. A clufter is formed thus: a fingle Polypus detaching from the clufter, fwims about in the water, till it meets with fome proper body, to fix itfelf upon. It then has a pedicle, but which is no longer than the Polypus itfelf; but it becomes eight or nine times as long in four and twenty hours, and is to be the main flem of the new clufter. In a day after it is fixt, it divides itfelf into two, each of which in a few hours divides into two more. Thefe foon after put out branches, and all this is re-iterated feveral times. Thus a principal branch is formed, provided with feveral lateral ones, which afterwards
wards become principal ones, with regard to others that fpring from them.

When a clufter is nearly fript of its Polypi, the branches are no longer able to contract. When but a few Polypi remain, none can contract but thofe to which they are fixed. Hence it appears, that this motion in the ftem and branches of a clufter, is entirely derived from the Poilypi. Indeed at firft fight one would imagine, that the Polypi fixed to the branches of a clufter; fpring from them, in the fame manner as the leaves, the flowers and the fruit of a vegetable fpring fromit. On the contrary the branches compofing. the clufters of Polypi, fpring from the Polypi, which are at their extremities, and thefe Polypi, which at firft appear to be fruits, may rather be. termed the roots of them.

The nature of Corallines, and the mechanifin of their Polypi, (fays Dr. Peyffonel) made me conjecture, that it was the fame with refpect to Sponges; that animals nefted in the inteftices of their fibres, and gave them their origin and growth : but I had not yet feen the infects. Sponges appeared to me only as fkeletons, and I at length difcovered the worms which form them. They are of four fpecies. 1. The tube-like Sponge. 2. The cordlike Sponge. 3. The fingered Sponge. 4. The honey-comb Sponge.

Thefe four kinds only differ in form; they have the fame qualities, and are made by the fame kinds of worm; they are all compofed of hard firm, dirty fibres, fometimes brittle, feparated one from another, having large hollow tubes difperfed through their fubftance : thefe tubes are fmooth within. Thefe fibres, which confift of the twifted
doubles of the Sponge,form as it were a labyrinth filled with worms, which are eafily crufhed: but having carefully torn the Sponges, and their grofs fibres, I difcovered the living worms.

Thefe feecies of Sponge commonly grow upon fandy bottoms. At their origins we perceive a nodule of fand, or other matter, almoft petrified, round which the worms begin to work, and round which they retire, as to their laft refuge, where I had the pleafure of feeing them play, exercile themfelves, and retire, by examining them with the microfoope.

The worms are about one third of a line thick, and two or three lines in length. They are fo tranfparent that one may difcern their vifcera through their fubftance, and the blood may be feen to circulate. They have a fmall black head, furnifhed with two pincers; the other extremity is almof fquare, and much larger than the head. Upon the back may be feen two white freaks, as if they contained the chyle : thefe two canals are parallel to each other from the head to the other extremity, where they come together, In the middle, where the belly and vifcera ought to be placed, a blackifh matter is perceivable, which has a kind of circulation; fometimes it fills all the body of the worm, fometimes it gathers towards the head, or at the other end, and fometimes it follows the motion of the animal. This vermicular motion begins at the pofterior extremity, and ends at the head. They have no particular lodge, they walk indifferently into the tubular labyrinth. Thefe Sponges are attached to fome folid body in the fea. Some kinds are fixed to rocks, others to heaps of fand, or to pieces of petrified matter: and the fea putting in motion the fand, and the little parcels of broken fhells, forces them into the holes of the Sponige.

So far the Doftor. But ftill I doubt, whether the worms form the Sponge, or only lodge therein (though I think, the former more probable.)

The fame doubt I have with regard to what folows, "The Beleminites is a foffile, a kind of fony Ihell, which has hitherto perplexed the naturalifts of all countries. Strait ones are common in Sweden, Livonia and Germany, thofe that are curved are more common in France and England. The Nucleus of it feems to be a ftrait concamerated fhell, which is furrounded by a huge folid fubflance. Now how was this formed? And how is it that fome have a nucleus, others not? Again, how is it that in fome, the cavities containing it, are very fmall, in others not vifible ?

In order to underfland this, we may confider, that many bodies which we always took for vegetable, are really animal. So the feveral coralline fubftances, hitherto reputed marine plants, are now generally believed, to be the fhells of Polypi. Is it not then highly probable, that the teftaceous tribe in gencral are generated like flies, the latter from a maggot, the former from a Polipus? It mult be fo with many: and as corals in general feem to be conftructed by Polipi, are they not the primary ftate of all, or moft of the teftaceous tribe? If fo, it is almoft beyond a conjeture, that the body called a Belemnites, (which on boing put into acids is found to ferment in like manner as corals) is formed likewife by a Polypus, from which the nucleus feems to be the laft ftate. And does not this concamerated body, of which the belemnites is only the habitation, lead us into the connection and manner of generation (perhaps particular to the teftaceous tribe) by reF6 maining
maining within its nidus all its life, whereas the generality quit their nidi as foon as they are able to fhift for themfelves.

The Polypus is an animal of the vermicular kind; the bodies of fome are long and flender, like a fine fibre, extremely tender, and from the head proceed a variety of claws or arms, with which it catches its food, and prepares its habitation. They are of various fhapes and textures; according to the fpecies of the animal that is to proceed from them, and very wonderful it is, how fo finall an animal fhould form fo large a body as the Delemnites! Some animals in the terreftial parts of the creation, naturally affociate together, others feek folitude. The fame difpo fitions we find in the aquatic, then why not among the Polypi? Is not this evidently feen from the variety of coral bodies? It feems in fome as if thoufands acted in concert together; in others each acts for itfelf; of which latter is the Belemnites. The fhape of the Belemnites is generally conic, terminating in a point, and of various colours, according to the juices of the Stratum in which it lay; it has ufually a feam running down the whole length of it. Its interior conftitution feems compoled of feveral crufts, which when broken tranfverfely proceed on rays from the feam to the centre. This feam I take to have been the habitation of the animal in its Polypi ftate, and in which the body was affixed. The animals of the teflaceous tribe in general, as they increafe in age, increafe their fhells in thicknefs, until they have lived their flated time, and that is done by adding a new cruft to, as feveral, if not all the tubuli; the oyfters, and the nautili, witnefs. By length of time thev grow inactiverand dead, the effect
effect of extreme old age fuffering other marine bodies, as worms and oyfters, to affix themfelves to their outer coat. The like appearance we frequently meet with on Belemnita, when the animal within was either waxed eld, or dead.

One might enlarge upon the analogies which may be found, between the origin of thefe minute animals, the origin of plants, and that of thofe other animals, which we are more acquainted with. But we fhail be better able to judge of thofe analogies, when we cume to know more both of plants and animals.

The furprizing facts which the ftudy of natural hiftory lays before us day by day, may convince us, that the nature of plants and animals, is as yet but very imperfectly known : indeed much more imperfectly, than many have been apt to imagine. All we know is very little, in comparifon of what remains unknown. And this confideration, as it thould prompt us, fill more diligently to enquire after truth, fo it fhould make us exceeding cautious how. we judge of the nature of things from fo few principles as we are at prefent mafters of.
25. One circumftance more is worthy our obfervation, with regard not only to infects, but in fome meafure to the whole animal creation, namely the various Transformations they undergo. Thofe kinds of animals which are viviparous, which produce their young alive, undergo the flighteft alteration; yet even thefe have fome. Growth itfelf is the loweft ftep of this ladder: and this is common to all animals. Man himfelf, lordly as he is, at his perfect growth, is not only the moft helplefs
helplefs at his birth, but continues fo longer than any other member of the animal world. However, except that of growth, he undergoes no confiderable alteration in this life.

Quadrupeds undergo a greater change yearly, by the lofs and renovation of their outward covering. This change however is gradual, and almoft infenfible, the latter being of the fame fubftance, and even colour as the former. But there is an exception to this, in thofe which undergo this change twice in the year, as do the bears, hares, and foxes in Greenland and other extremely cold countries: and the ermins, which are frequent in Yorklhire, and feveral other parts of England, their hair changes white at the approach of winter, and in fpring refumes its former colour.

One clafs however of viviparous animals undergo a more fudden alteration, namely, the ferpent kind. Thefe having no hair or fur to lofe gradually, caft their whole covering at once, and are fo dexterous therein, though they have neither feet nor claws, that their whole fkins are frequently found entire, without even the cornea or outward cafe of the eyes, which accompanies the other exuviæ, being broken.

Next to thefe are the oviparous animals. Thefe make their firft appearance in a flate of entire inaction, but being gradually ripened by natural or artificial heat, burft out, fome in their compleat flate, as lizards, fpiders, and fifh in general: and others, as birds, requiring like viviparous animals, the addition of the extrementious parts. Almoft all the fpecies of thefe which we know, need the fame farther change with the viviparous. All birds moult their feathers, and many in cold countries change the colour of them in the winter. Lizards drop their fkins like fnakes; one
kind of them, water newts, every two or three weeks. Spiders, crabs, and all whofe outward covering is eruftaceous, and therefore incapable of diftenfion, caft their fhells once a year, at which time nature provides them with fuch fupplementary juices, by a kind of exudation from their pores, as form a new fhell beneath.

Proceed we to thofe animals, whofeTransformations are more compleat, which being fully poffert of life in one figure, afterwards affume another, or being firft in one, afterwards inhabit a quite different element.

To give an inftance of each, the egg of a frog being laid in the water, produces a lively animal which we call a Tad-pole. He has a thin flimy tail, which fteers him in the water, in which he wholly refides. But after a while, legs and feet burft through the fkin; the tail drops off, he is a perfect quadruped. He leaps upon the earth, and ranges over that ground, on which fome time fince it would have been death to him to be caft.
The Beetle clafs is an inftance of the otherchange and, particularly the cock-chaffer. The female depofites her egg below the furface of the earth, which hatches into a grub, with two or three pair of ftrong forcipes, whereby it is enabled to force its way through the mould where it was lodged, and to cut and tear in pieces for its nourifhment any fmall roots which come in its way. After flaying here two whole years, a fhelly covering forms over its foft body, a pair of fine wings grow on its back, to fecure which from danger, when not ufed, a pair of ftrong cafes are provided. And now forcing his way out of the ground, he becomes a lively inhabitant of the air.

C HAP.

C H A P. VI.

General Obfervations and Reflections.

1. \mathbf{S} to the number of animals, the fpecies of beafts, including alfo ferpents, are not very numerous. Such as are certainly known and clearly defcribed, are not above an hundred and fifty. And yet probably not many that are of any confiderable bignefs, have efcaped the notice of the curious.

The feecies of birds, known and defcribed, are near five hundred, and the fpecies of fifhes, fecluding fhell-fith, as many: but if the fhell-fifh are take ${ }_{2}$ in, above fix times the number. How many of each genus remain undifcovered, we cannot very nearly conjecture. But we may fuppofe, the whole fum of beafts and birds to exceed' by a third part, and filhes by one half, thofe that are known.

The infects, taking in the exfanguious, both terreftrial and aquatic, may for number vie even with plants themfelves. The exanguious alone, by what Dr. Lifter has obferved and delineated, we may conjecture cannot be lefs (if not many more) than three thoufand fpecies. Indeed this computation feems to be much too low: for if there are a thoufand fpecies in this illand and the fea near it; and if the fame proportion hold between the infects native of England, and thofe of the reft
reft of the world (about a tenth:) the fpecies of infects on the whole globe, will amount to ten. thoufand.

Now if the number of creatures even in this lower world, be fo exceeding great : how great, how immenfe muft be the power and wifdom of Him that formed them all! For as it argues far more $\mathbf{~ k}$ kill in an artificer, to be able to frame both clocks and watches and pumps and many other forts of machines, than he could difplay in making but one of thofe forts of engines: fo the Almighty declares more of his wifdom, in forming fuch a multitude of different forts of creatures, and all with admirable and unreproveable art, than if he had created but a few.
2. Again, The fame fuperiority of knowledge would be difplayed, by contriving engines for the fame purpofes after different falhions, as the moving clocks or other engines by fprings inftead of weights: and the infinitely wife Creator, has fhewn by many inftances, that he is not confined to one only inftrument, for the working one effect, but can perform the fame thing by divers means. So though moft flying creatures have feathers, yet hath he enabled feveral to fly without them, as the bat, one fort of lizard, two forts of filhes, and numberlefs forts of infects. In like manner, although the air-bladder in fifhes feems neceffary for fwimming: yet are many fo formed as to fwim without it, as firft, the Cartilaginous kind, which neverthelefs afcend and defcend at pleafure, although by what means we cannot tell, Secondly, The Cetaceous kind: the
air which they receive into their lungs, in fome meafure anfwering the fame end.

Y'et again. Though God has tempered the blood and bodies of moft filhes to their cold element, yet to liew he can preferve a creatureas hot as beafls themfelves in the coldeft water, he has placed a variety of thefe cetaceous fifhes in the northermoft feas. And the copious fat wherewith their bodies is inclofed, by reflecting the internal heat, and keeping off the external cold, keeps them warm even in the neighbourhood of the pole.

Another proof that God can by different means produce the fame effect, is the various ways of extracting the nutritious juice out of the aliment in various creatures.

In Man and Beafts the food firft chewed, is received into the flomach, where it is concotted and reduced into chyle, and fo evacuated into the inteflines, where being mixed with the choler and pancreate juice, it is farther fubtilized, and rendered fo fluid, that its finer parts eafily enter the mouth of the lacteal veins.

In Birds there is no chewing : but in fuch as are not carnivorous, it is immediately fwallowed into the crop, or anti-ftomach (which is obferved in many, efpecially pifcivorous birds) where it is moiftened by fome proper juice, and then transferred to the gizzard, by the working of whofe mufcles, affilted by fmall pebbles, which they fwallow for that purpofe, it is ground fmall, and fo tranfmitted to the inteftines.

In oviparous Reptiles, and all kind of Serpents, there is neither chewing nor comminution in the ftomach, but as they fwallow animals whole, fo they void the fkins unbroken, having extracted the nutritious juices. Here, by the by, we may obferve
obferve the wonderful dilatability of the throats and gullets of ferpents. Two entire adult mice have been taken out of the fomach of an adder, whofe neck was no bigger than one's little finger.

Fifhes, which neither chew, nor grind their meat, do, by means of a corrofive juice in their ftomach, reduce kin, bones, and all into chrle. And yet this juice fhews no acidity to the tafte. But how mild foever it taftes, it corrodes all animal fubftances, as aqu-afortis does iron.
3. Several eminent men have been of opinion, that all brutes are mere machines. This may be agreeable enough to the pride of man; but it is not agreeable to daily obfervation. Do we not continually obferve in the brutes which are round about us, a degree of reafon? Many of their actions cannot be accounted for , without it: as that commonly noted of dogs, that running before their mafters, they will ftop at the parting of the road, till they fee which way their mafters take. And when they have gotten what they fear will be taken from them, they run away and hide it. Nay, what account can be given, why a dog being to leap on a table, which he fees he cannot reach at once, if a ftool or chair ftands near it, firft mounts that, and thence proceeds to the table? If he were mere clock-work, and his motion caufed by a material fpring, that fpring being once fet to work, would carry the machine in a right line, towards the object that put it in motion.

Were it true, that brutes were mere machines, they could have no perception of pleafure or pain. But how contrary is this, to the doleful fignifications
fignifications they give, when beaten or tormented? How contrary to the common fenfe of mankind ? For do we not all naturally pity them, apprehending them to feel pain juft as we do? Whercas no man is troubled to fee a plant torn, or cut, or mangled how you pleafe. And how contrary to fcripture? A righteous man regardeth the life of his beaft: but the tender mercies of the wicked are cruel. Prov. xii. 10. The former claufe is ufually rendered, A good man is mercifill to his beaf. And this is the true rendering, as appears by the oppofite claufe, That the wicked is cruel. Cruelty then may be exercifed toward beafts. But this could not be, were they mere machines.
4. The Natural Inftinct of all creatures, and
the fpecial provifion made for fome of the moft helplefs, do in a particular manner demonftrate the great Creator's care.

Firf, What an admirable principle is the natural affection of all creatures toward their young! By means of this, with what care do they nurfe them up, thinking no pains too great to be taken for them, no danger too great to be ventured upon, for their guard and fecurity! How will they carefs them with their affectionate notes, put food into their mouths, fuckle them, cherifh and keep them warm, teach them to pick and eat, and gather food for themfelves: and in a word, perform the whole part of fo many nurfes, deputed by the fovereign Lord of the world, to help fuch young and fhiftlefs creatures till they are able to fhift for themfelves.

Other

Other animals, infeets in particular, whofe offfpring is too numerous for the parent's provifion, are fo generated, as to need none of their care. For they arrive immediately at their perfect flate, and fo are able to fhift for themfelves. Yet thus far the parental inftinet, (equal to the moft rational fore-fight) extends, that they do not drop their eggs any where, but in commodious places, fuitable to their fpecies. And fome include in their nefts, fufficient and agreeable food, to ferve their young till they come to maturity.

And for the young themfelves. As the 'parent is not able to carry them about, to cloath them and dandle them, as Man doth: how admirably is it contrived, that they can foon walk about, and begin to fhift for themfelves! How naturally, do they hunt for their teat, fuck, pick and take in their proper food!

Ori the other hand, the young of man; (as their parent's reafon is fufficient, to help, to nurfe, feed and cloath them) are born utterly helplefs, and are more abfolutely than any creature, calt upon their parent's care.

Secondly, What admirable provifion is made for fome of the moft helplefs creatures, at a time when they muft otherwife utterly perifh! The winter is an improper feafon to afford food to infects and many other animals. When the fields, trees, and plants are naked, and the air is chilled with froft; what would become of fuch animals, whofe tender bodies are impatient of cold, and who are nourifhed only by the produce of the fpring or fummer? To prevent their total deftruction, the Wife Preferver of the world has fo ordered, that in the firft place, thofe which are im-
patient of cold, fhould have fuch a peculiar ffructure of body, as during that feafon, not to fuffer any wafte, nor confequently need any recruit. Hence many forts of birds, and almoft all infeets, pafs the whole winter without any food. And moft of them without any refpiration. It feems all motion of the animal juices is extinct. For though cut in pieces they do not awake, nor does any fluid ooze out at the wound. This fleep therefore is little lefs than death, and their waking, than a refurrection: when the returning fun revives them and their food together.

The next provifion is for fuch creatures as can bear the cold, but would want food. This is provided againft in fome, by a long patience of hunger, in others by their wonderful inftin ℓ, in laying up food before hand, againft the approaching winter. By fome of thefe, their little treafuries are at the proper feafon well focked with provifions. Yea, whole fields are here and there befpread with the fruits of the neighbouring trees laid carefully up in the earth, and covered fafe by provident little animals.
5. And what a prodigious act is it of the Creator's indulgence to the poor, fhiftlefs irrationals, that they are already furnifhed with fuch cloathing, as is proper to their place and bufinefs! With hair, with feathers, with fhells, or with firm armeture, all nicely accommodated, as well to the element wherein they live, as to their feveral occafions there. To beafts, hair is a commodious cloathing; which together with the apt texture of their fkin, fits them in all weathers to lie on the ground, and to do their fervice to man. The thick and warm fleeces of others,
are a good defence againft the cold and wet, and alfo a foft bed: yea, and to many a comfortable covering for their tender young.
All the animals near Hudfon's Bay, are cloathed with a clofe, foft, warm fur. But what is ftill more furprizing, and what draws all attentive minds to admire the wifdom and goodnefs of Providence, is, that the very dogs and cats which are brought thither from England, on the approach of winter change their appearance, and acquire a much longer, fofter, and thicker coat of hair than they originally had.

And as hair is a commodious drefs for beafts, fo are feathers for birds. They are not only a good guard againf wet and cold, but nicely placed every where on the body, to give them aneafy paffage through the air, and to waft them through that thin medium. How curious is their texture for lightnefs, and withal clofe and firm for frength! And where it is neceffary they fhould be filled, what a light, medullary fubflance are they filled with? So that even the frongeft parts, far from being a load to the body, rather help to make it light and buoyant. And how curioufly are the vanes of the feathers wrought, with capillary filaments, neatly interwoven together, whereby they are fufficiently clofe and ftrong, both to guard the body againft the injuries of the weather, and to impower the wings, like fo many fails, to make ftrong impulfes on the air in their flight.

No -lefs curious is the cloathing of Reptiles. How well adapted are the rings of fome, and the contortions of the fikin of others, not only to fence the body fufficiently, but to enable them to creep, to perforate the earth, and to perform
all the offices of their ftate, better than any other covering?

Obferve, for inftance, the tegument of the Earth-worms, made in the compleateft manner, for making their paffage through the earth, whereever their occafions lead them. Their body is made throughout of fmall rings, which have a curious apparatus of mufcles, that enable them with great ftrength to dilate, extend, or contract their whole body. Each ring is hikewife armed with ftiff, fharp prickles, which they can open at pleafure, or fhut clofe to their body. Laflly, under their fkin there is a flimy juice, which they emit as occafion requires, to lubricate the body, and facilitate their paffage into the earth. By all thefe means they are enabled, with eafe and fpeed, to work themfelves into the earth, which they could not do, were they covered with hair, feathers, fcales, or fuch cloathing as any of the other creatures.

How wifely likewife are the inhabitants of the waters cloathed! The fhells of fome Filhes, are a ftrong guard to their tender bodies, and confiftent enough with their flow motion: while the fcales and fins of others afford them an eafy and fwift paffage through the waters.
6. Admirable likewife is the fagacity of bruteanimals, in the conveniency and method of their habitations. Their architectonic fkill herein, exceeds all the fkill of man. With what inimitable art do fome of thefe poor, untaught creatures, lay a parcel of rude ugly fticks or ftraws together! with what curiofity do they line them within, yea, wind and place every hair, feather, or lock of wool, to guard and keep-warm the tender bodies, both
both of themfelves and their young? And with what art do they thatch over and coat their nefts without, to deceive the eye of the fpectators, as well as to guard and fence them againft the injuries of the weather?

Even Infects, thofe little, weak, tender creatures, what artifts are they in building their habitations? How does the bee gather its comb from various flowers, the wafp from folid timber? With what accuracy do other infects perforate the earth, wood, yea, fone itfelf? Farther yet, with what care and neatnefs do mof of them line their houfes within, and feal them up and fence them without? How artificially do others fold up the leaves of trees; others glue light bodies together, and make floating houfes, to tranfport themfelves to and fro, as their various occafions require!
7. Another inflance of the wifdom of him that made and governs the world, we have in the balance of creatures. The whole furface of the terraqueous globe, can afford room and fupport, to no more than a determinate number of all forts of creatures. And if they fhould increafe to double or treble the number, they muft farve or devour one anothet. To keep the balance even, the great author of nature has determined the life of all creatures to fuch a length, and their increafe to fuch a number, proportioned to their ufe in the world. The life indeed of fome hurtful creatures is long; of the lion in particular. But then their increafe is exceeding fmall: and by that means they do not overftock the world. On the bther liand, where the increafe is great, the lives of thofe creatures are generally fhort. And befide this, they are of great ufe to man, either for food, Voz. II.
or on other occafions. This indeed fhould be particularly obferved, as a fignal inftance of disine providence, that ufeful creatures are produced in great plenty: others in fmaller numbers. The prodigious increafe of infects, both in and out of the waters may exemplify the former obfervation. For innumerable creatures feed upon them, and would perifh, were it not for this fupply. And the latter is confirmed by what many have remarked : that creatures of little ufe, or by their voracioufnefs, pernicious, either feldom bring forth, or have but one or two at a birth.
8. How remarkable is the deftruction and reparation of the whole animal creation? The furface of the earth is the inexhauftible fource whence both man and beaft derive their fubfiftance. Whatever lives, lives on what vegetates, and vegetables in their turn, live, on whatever has lived or vegetated: it is impoffible for any thing to live, without deftroying fomething elfe. It is thus only that animals can fubfift themfelves, and propagate their fpecies,

God in creating the firft individual of each fpecies, animal or vegetable, not only gave a form to the duft of the earth, but a principle of life, inclofing in each, a greater or fmaller quantity of organical particles, indeftructible and common to all organized beings. Thefe pafs from body to body, fupporting the life, and miniftring to the nutrition and growth of each. And when any body is reduced to afhes, thefe organical particles, on which death hath no power, furvive and pals into other beings, bringing with them nourifhment and life. Thus every production, every renovation,
renovation, every increafe by generation or nutrition, fuppofe a preceding deftruction, a converfion of fubftance, an acceffion of thefe organical particles, which ever fubfifting in an equal number, render nature always equally full of life.

The total quantity of life in the univerfe is therefore perpetually the fame. And whatever death feems to deftroy, it deftroys no part of that primitive life, which is diffufed through all organized beings. Inftead of injüring nature, it only caufes it to fhine with the greater luftre. If death is permitted to cut down individuals, it is only, in order to make of the univerfe, by the re-production of beings, a theatre ever crouded, a fpectacle ever new. But it is never permitted to deftroy the moft inconfiderable fpecies.

That beings may fucceed each other, it is neceffary that there be a defruction among them. Yet like a provident mother, nature in the midft of her inexhauftible abundance, has prevented any wafte, by the few fpecies of carnivorous animals, and the few individuals of each fpecies; multiplying at the fame time both the fecies and individuals of thofe that feed on herbage. In vegetables the feems to be profufe, both with regard to the number and fertility of the fpecies.
In the fea indeed all the fpecies are carnivorous. But though they are perpetually preying upon, they never deftroy each other, becaule their fruitfulnefs is equal to their depredations.
" Thus thro' fucceffive ages fands
Firm fixt thy providential care!
Pleas'd with the works of thine own hands Thou doft the waftes of Time repair."
9. I add a few more reflections on the world in general. The fame wife Being, who was pleafed to make man, prepared for him alfo an habitation fo advantageounly placed, that the heavens and the reft of the univerfe might ferve it both as an ornament and a covering. He conftructed likewife the air which man was to breathe, and the fire which was to fultain his life. He prepared alfo metals, falts, and all terreftrial elements to renew and maintain throughout all ages, whatever might be on any account neceffary for the inhabitants of the earth.

The fame Divine Ruler is manifeft in all the objefts that compofe the univerfe. It is he that caufed the dry-land to appear, above the furface of the ocean, that guaged the capacity of that amazing refervoir, and proportioned it to the fluid it contains. He colleets the rifing vapours, and caufes them to diffil in gentle fhowers. At his command the fun darts his enlivening rays, and the winds fcatter the noxious effluvia, which if they were collected together might deftroy the human race.

He formed thofe hills and lofty mountains which receive and retain the water within their bowels, in order to diffribute it with oconomy to the inhabitants of the plains, and to give i fuch an impulfe, as might enable it to overcomt the uneveninefs of the lands, and convey it to the remoteft habitations.

He fpread under the plains beds of clay, or compact earths, there to fop the waters, which after a great rain, make their way through innumerable little paffages. Thefe theets of water Irequently remain in a level with the neighbouring
ing rivers, and fill our wells with their redundancy, or as thofe fubfide, flow into them again.
He proportioned the variety of plants in each country, to the exigencies of the inhabitants, and adapted the variety of the foils, to the nature of thofe plants.

He endued numerous animals with mild difpofitions, to make them the domeflics of man : and taught the other animals to govern themelelves, with an averfion to dependence, in order to continue their fpecies without loading man with too many cares.

If we more nearly furvey the animal and vegetable world, we find all animals and plants, have a certain and determined form, which is invariably the fame. So that if a monfter ever appear, it cannot propagate its kind, and introduce a new \{pecies into the univerfe. Great indeed is the variety of organized bodies. But their number is limited. Nor is it poffible to add a new genus either of plants or animals, to thofe of which God bas created the germina, and determined the form.

The fame Almighty power has created a precife number of fimple elements, effentially different from each other, and invariably the fame. By thefe he varies the fcene of the univerfe, and at, the fame prevents its deftruction, by the very immutability of the nature and number of the fe elements. So that the world is for ever changed, and yet eternally the fame.
Yet if we would account for the origin of thefe clements, we are involved in endle!s uncertainty. We can only fay, he who has appointed their different ufes in all ages, has rendered thofe
ufes infallible, by the impoffibility of either destroying or increafing them.

Herein we read the charatters of his power, which is invariably obeyed; of his wifdom, which has abundantly provided for every thing; and of his tender kindnefs toward man, for whom he has provided fervices equally various and infallible. It is an additional proof of his continual care of his creatures, that though every thing be compofed of fimple elements, all placed within our reach, yet no power is able to deftroy the leaft particle of them. Nothing but the fame caufe which was able to give them birth, can annihilate them, or change their nature. In truth, the defign and will of the Creator, is the only phyfical caufe of the general œconomy of the world : the only phyfical caufe of every organized body, every germen that flourifhes in it; the only phyfical caufe of every minute, elementary particle, which enters into the compofition of all.

We mult not then expect ever to have clear and full conception of effects, natures, and caules. For where is the thing which we can fully conceive? We can no more comprehend either what body in general is, or any particular body, fuppofe a mals of clay, or a ball of lead, than what a fpirit, or what God is.

If we turn our eyes to the minuteft parts of animal life, we fhall be loft in aftonifhment! And though every thing is alike eafy to the Almighty, yet to us it is matter of the higheft wonder, that in thofe fpecks of life, we find a greater number of members to be put in motion, more wheels and pullies to be kept going, and a greater variety of machinery, more elegance and workmanfhip (fo to (peak) in the compofition, more beauty and ornament in the finifhing, than are feen in the
enormous bulk of the crocodile, the elephant, or the whale. Yea, they feem to be the effects of an art, as much more exquifite as the movements of a watch are, than thofe of a coach or waggon.

Hence we learn, That an atom to God is as a world, and a world but as an atom: juft as to him, one day is as a thoufand years; and a thoufand years but as one day. Every fpecies likewife of thefe animalculæ may ferve to correct our pride, and Thew how inadequate our notions are, to the real nature of things. How extremely little can we poffibly know, either of the largeft or fmalleft part of the creation? We are furnifhed with organs capable of difcerning, to a certain degree, of great or litule only. All beyond is as far beyond the reach of our conceptions, as if it had never exifted.

Proofs of a wife, a good and powerful being are indeed deducible from every thing around us: but the extremely great and the extremely finall, feem to furnifh us with thofe that are moft convincing. And perhaps, if duly confidered, the fabric of a world, and the fabric of a mite, may be found equally friking and conclufive.

Glafles difcover to us numbeflefs kinds of living creatures, quite indifcernable to the naked eye. And how many thoufand kinds may there be, gradually decreafing in fize, which we cannot fee by any help whatever? Yet to all thefe we muft believe God has not only appointed the moft wife means for prefervation and propagation but has adorned them with beauty equal at leaft to any thing our eyes have feen.

In fhort, the worid around us is the mighty volume wherein God hath declared himfelf. HuG 4 : man
man languages and characters are different in different nations. And thofe of one nation are not underftood by the ref. But the book of nature is written in an univerfal character, which every man may read in his own language. It confifts not of words, but things, which picture out the Divine perfections. The firmament every where expanded, with all its ftarry hofl, declares the immenfity and magnificence, the power, and wifdom of its Creator. Thunder, lightning, forms, earthquakes and volcanos, fhew the terror of his wrath. Seafonable rains, fun-fhine and harveft, denote his bounty and goodnefs, and demonftrates how he opens his hand, and fills all living things with plenteoufnefs. The conftantly ficceeding generations of plants and animals, imply the eternity of their firft caufe, Life fubfiftjng in millions of different forms, fhews the valt diffufion of this animating power, and death the infinite difproportion between him and every living thing.

Even the actions of animals are an eloquent and a pathetic language. Thofe that want the help of man have a thoufand engaging ways, which, like the voice of God fpeaking to his heart, command him to preferve and cherih them. In the mean time the motions or looks of thofe which might do him harm, ftrike him with terror, and warn him, either to fly from or arm himfelf againft them. Thus it is, that every part of nature directs us to nature's God.
10. The reader will eafily excufe my concluding this chapter alfo, with an extract from Mr. Harvey.
"In all the animal world, we find no tribe, no individual neglected by its Creator. Even the ignoble
ignoble creatures are mof wifely circumfanced and moft liberally accommodated.

They all generate in that particular feafon, which fupplies them with a fock of provifions, fufficient not only for themfelves, but for their increafing families. The fheep yean, when there is herbage to fill their udders, and create milk for their lambs. The birds hatch their young, when new-born infects fwarm on every fide. So that the caterer, whether it be the male or female parent, needs only to alight on the ground, or make a little excurfon into the air, and find a feaft ready dreffed for the mouths at home.

Their love to their offspring, while they are helplefs, is invincibly frong : whereas the moment they are able to fhift for themfelves, it vanilhes as though it had never been. The hen ,that marches at the head of her little brood, would fly at a maftiff in their defence. Yet within a few weeks, fhe leaves them to the wide world, and does not even know them any more.

If the God of Ifrael infpired Bezaleel and Aholiah with wifdom and knowledge in all manner of workmanihhip, the God of nature has not been wanting, in his inftructions to the fowls of the air. The fill with which they erect their houfes, and adjuft their apartments is inimitable. The caution with which they hide their abodes from the - fearching eye, or intruding hand, is admirable. No general, though fruitful in expedients, could build fo commodious a lodgment. Give the moft celebrated artificer the lame materials, which thefe weak and unexperienced creatures ufe. Let a Jones or a Demoivre have only fome rude fones or ugly flicks, a few bits of dirt or fcraps of hair, a lock of wool, or a coarfe fprig of mols: and what works could they produce?

We extol the commander, who knows how to take advantage of the ground; who by every circumftance embarraffes the forces of his enemy, and advances the fuccefs of his own. Does not this praife belong to the feathered leaders? Who fix their penfile camp, on the dangerous branches that wave aloft in the air, or dance over the ftream? By this means the vernal gales rock their cradle, and the murmuring waters lull the young, while both concur to terrify their enemies, and keep them at a diffance. Some hide their little houthold from view, amidft the fhelter of intangled furze. Others remove it from difcovery, in the center of a thorny thicket. And by one fratagem or another they are generally as fecure, as if they intrenched themfelves in the earth.

If the Swan has large fweeping wings, and a copious flock of feathers, to fpread over his callow young, the Wren makes up by contrivance what is wanting in her bulk. Small as the is, fhe will, be obliged to nurfe up, a very numerous iffue. Therefore with furprifing judgment fhe defigns, and with wonderful diligence finifhes her neft. It is a neat oval, bottomed and vaulted over with a regular concave: within made foft with down, without thatched with mofs, only a fmall aperture left for her entrance. By this means the enlivening heat of her body is greatly increafed during the time of incubation. And her young. no fooner burft the fhell, than they find themSelves fcreened from the annoyance of the weather, and comfortably repofed, till they gather ftrength in the warmth of a bagnio.

Perhaps we have been accuftomed to look upon Infects, as fo many rude fcraps of creation. But if we examine them with attention, they will
appear
appear fome of the moft polifhed pieces of divine workmanfhip. Many of them are decked with the richeft finery. Their eyes are an affemblage of microfcopes: the common Fly, for inftance, who furrounded with enemies, has neither flrength to refift, nor a place of retreat to fecure herfelf. For this reafon the has need to be very vigilant, and always upon her guard. But her head is fo fixed that it cannot turn to fee what paffes, either behind or around her. Providence therefore has given her, not barely a retinue, but more than a legion of eyes. Infomuch that a fingle fly is fuppofed to be miftrefs of no lefs than eight thoufand. By the help of this truly amazing apparatus, fhe fees on every fide, with the utmolt eafe and fpeed, though without any motion of the eye, or flexion of the neck.

The Drefs of infects is a vefture of refplendent colours, fet with an arrangement of the brighteft gems. Their wings are the finef expanfion imaginable, compared to which lawn is as coarfe as fackcloth. The cafes, 'which enclofe their wings, glitter with the fineft varnih, are fcouped into ornamental flutings, are fludded with radiant fpots, or pinked with elegant holes. Not one but is endued with weapons to feize their prey, and dexterity to efcape their foe, to difpatch the bufifinels of their ftation, and enjoy the pleafure of their condition.

What if the Elephant is diftinguifhed by his huge Probofcis? The ufe of this is anfwered in thefe his meaner relations, by their curious feelers, remarkable, if not for their enormous - fize, yet for their ready flexion and quick fenfibility. By thefe they explore their way in the darkeft road: by thefe they difcover and avoid, G 6 whatever

(756)

whatever might defile their neat apparel, or endanger their tender lives.

Every one admires the majeftic Horfe. With how rapid career does he bound along the plain? Yet the Grafs-hopper fprings forward with a bound abundantly more impetuous. The Ant too, in proportion to his fize, excels him both in fwiftenefs and ftrength: and will climb precipices, which the moft courageous courfer dares not attempt to fcale. If the Snail moves more flowly, fhe has however no nced to go the fame way twice over : becaufe whenever the departs, wherever the removes, fhe is always at home.

The Eagle it is true, is privileged with pinions that out-ftrip the wind. Yet netther is that poor outcaft, the groveling Mole, difregarded by divine providence. Becaufe the is to dig her cell in the earth, her paws ferve for a pick-axe and fpade. Her eye is funk deep into its focket, that it may not be hurt by her rugged fituation. And as it needs very little light, fhe has no reafon to complain of her dark abode. So that her fubterranean habitation, which fome might call a dungeon, yields her all the fafety of a fortified caftle, and all the delights of a decorated grot.

Even the Spider, though abhorred by man, is the care of all-fuftaining heaven. She is to fupport herfelf by trepanning the wandering fly. Suitably to her employ, fhe has bags of glutinous moifture. From this fhe fins a clammy thread, and weaves it into a tenacious net. This the fpreads in the moft opportune place. But knowing her appearance would deter him from approaching, fhe then retires out of fight. Yet fhe conftantly keeps within diftance; fo as to receive immediate imtelligence when any thing falls into
her toils, ready to lpring out in the very inftant, And it is obfervable, when winter chills the air, and no more infects rove through it, knowing her labour would be in vain, fhe-leaves her ftand, and difcontinues her work.

I muft not forget the inhabitants of the hive., The Bees fubfift as a regular community. And their indulgent Creator has given them all implements neceffary either for building their combs, or compofing their honey. They have each a portable veffel, in which they bring toome their collected fweets: and they have the moft commodious fore-houfes, wherein they depofit them. They readily diftinguifh every plant, which affords materials for their bufinefs: and are complete practitioners in the arts of feparation and refinement. They are aware that the vernal bloom and fummer fun continue but for a feafon. Therefore they improve to the utmof every fhining hour, and lay up a fock fufficient to fupply the whole ftate, till their flowery harveft returns.

If the mafter of this lower creation is ennobled with the powers of reafon, the meaneft claffes of fenfitive beings, are endued with the faculty of inftinct: a fagacity which is neither derived from obfervation, nor waits the finifhing of experience: which without a tutor teaches them all neceffary fkill, and enables them without a pattern to perform every needful operation. And what is more remarkable, it never mifleads them, either into erroneous principles, or pernicious practices: nor ever fails them in the moft nice and difficult of their undertakings.

Let us ftep into another element, and juft vifit the watry world. There is not one among the innumerable myriads, that fwim the boundlefs ocean,
ocean, but is watched over by the fovereign eye, and fupported by his almighty hand. He has condefcended even to beautify them. He has given the moft exact proportion to their fhape, the gayeft colours to their Kk , and a polifhed furface to their fcales. The eyes of fome are furrounded with a fcarlet circle: the back of others diverfified with crimfon ftains. View them when they glance along the fream, or when they are frefh from their native brine, the filver is not-more, bright, nor the rainbow more glowing than their vivid, gloffy hues.

But as they have neither hands nor feet, how can they help themfelves, or efcape their ene- mies? By the beneficial, as well as ornamental furniture of fins. Thefe when expanded, like mafls above, and ballafts below, poife their floating bodies, and keep them fteadily upright. They are likewife greatly affifted by the flexibility and vigorous aetivity of their tails: with which they fhoot through the paths of the fea, fwifter than a veffel with all its fails." But we are loft in wonder at the exquifite contrivance and delicate formation of their gills : by which they are accommodated, even in that denfe medium, with the benefits of refpiration ! A piece of mechanifm this, indulged to the meaneft of the fry: yet infinitely furpaffing, in the finenefs of its ftructure and operation, whatever is curious in the works of art, or commodious in the palacés of Princes.

PART

 PART the THIRD.

Of PLANTS and FOSSILS.

> CH A P. I. Of $P L A N T S$

1. What we mean by 14. Of Male and $F e-$ Plants. male Plants.
2. Their liquid Parts. 15. Of the Sleep of
3. Their folid Parts. Plants.
4. Of the Bark. 16. Of the Agreement
5. The Wood.
6. The Pith. Animals.
7. The Root and Bran- 17. Of the Generation shes.
of Plants.
8. The Leaves.
9. The Nutrition of 19. Their Seeds. Plants.
10. Water not the Ellmint of Plants.
11. Their Fruits.
12. Of the Perspiration of Plants.
13. The Motion of the 22. Trees inverted will Nutritive Juice.
14. The D_{e} cent and 23. Of the Propagation A/ cent of the Sap. of Several Plants.
15. Of the Increase of 24. Of Grain planted in Grain and Seeds. various Subftances.
16. BY. Plants we mean organized bodies, deftitute of fence and motion, fixed in the earth, and drawing their nourifhment from it by their roots. Touching thee, we may confider, fir A,
firf, the flructure of their parts, and then their nutrition and generation.
17. The Parts of which they are compofed are either Liquid or Solid. The Liquid are ufually divided into Juices and Tears. The Juice is to the Plant, what blood is to an animal, and is various in the various kinds of Plants. Tears are liquors which are emitted from them, whether they fweat out of them naturally : or are drawn out of them, either by art, or by the heat of the fun. Some of thefe remain liquid; others grow by degrees into a firm confiftence.
18. Plants confift of three difimilar, folid Parts, the Root, the Trunk, and the Branches. In each of thefe we may obferve three fimilar parts, the Bark, the Wood, and the Pith.
19. To begin with the Trunk. Here we may firft obferve the Bark; whofe furface confifts of little bladders, which furround the trunk like a ring. Thefe, which are commonly filled with fome kind of juice, being removed, there occur various ranks of woody fibres, curioully wrought in a kind of net-work, one row above another. The intervals alfo between thofe fibres, are all filled with little veffels. The ufe of the Bark feems to be, not only like fkin, to cover the wood and pith, but alfo to concoct the nutritive juice, and forward the growth of the Plant. And as to the nutrition of the Plant, it is probable the juice afcends from the root, through the fibres, and is fuftained by the unevennefs therein, till it is lodged in the veffels. In thefe the new juice being mixed, with that they contained before, is. fermented:
fermented and rarefied to fuch a degree, as is needful for its nourifhment.

It has been a common opinion, that trees only live by the afcent of the fap in the Bark, or between the Bark and the wood. But this evidently. appears to be a vulgar error, from the inflance of a large, old elm, in Magdalen College Grove at Oxford, which was quite difbarked all round, at moft places two feet, at fome four feet fiom the ground. Notwithftanding this, it grew and flourifhed many years, as well as any tree in the grove. What is more, it was likewife without all pith, being hollow within as a drum. Add to this, that the plane and cork-trees, diveft themfelves every year of all their old bark, (as frakes do of their fkins) and acquire a new one. Now during the change from one to the other, it is clear they are not nourifhed by the Bark. Therefore there mult be other veffels, befides thofe of the Bark, capable of conveying the fap. It is probable, the Bark may ordinarily do this; but that when the ordinary conveyance fails, fome of the woody parts, (which were all fap-veifels once) refume their ancient office: fo far, at leaft, as to keep the tree alive, though not to increafe its bulk. Perhaps this is the ufe of the fap-veffels in the wood different from that of thofe in the Bark. Thefe are defigned for the continuation of a tree, thofe in the Bark for its augmentation.

It feems the Bark in fruit-trees is principally defigned for the augmentation of the tree itfelf, while the finer veffels of the woody part, ftrain and prepare the juices for the fruit. A gentleman near Cork, obferving that his peach-tree grew exceedingly, but bore no fruit, cut off the Bark almoft quite round, for the breadth of
two fingers. The next year the tree hardly grew at all, but bore abundance of fruit.

Again. As animals are furnifhed with a Panniculus Adipofus, ufually replete with fat, which invefts and covers all the felhy parts, and fcreens them from external cold : fo plants are incompaffed with a Bark, replete with fatty juices, by means whereof even the winter cold is kept off, and hindered from freezing the juices in the veffels. And thofe fort of trees, whofe Bark abounds with oil, remain green all the year round.
5. In the Wood likewife there are obferved concave fibres, woven as it were of various veficles, and ftretching all the length of the wood, as do the fibres of the bark. Thefe have intervals between them, in which are tranfverfe veficles, reaching to the very pith. There are other fibres, which run obliquely, and are far larger, but not fo numerous as the former. In fome trees there are alfo feveral rows of tubes, which emit a thick milky liquor.
6. The Pith is in the middle of the wood It confifts of varions rows of hollow globules, covered with a fine membrane. In fome trees it contains a peculiar juice, which fometimes hardens, or grows black. In tender fhoots the Pith (which is frequently hexagonal) is not exactly in the middle: but is nearer the bark on the fouth-fide, than on the north-fide of the plant. It is a confant obfervation, that the Pith leffens as the tree grows. Some have imagined it to be the heart of the plant: but this cannot be. For fome trees will flourifh and bear fruit, after the Pith is taken out. Befides this, there is in fome trees a Blea, a white
white and a tender fubfance, between the bark and the wood.
7. The Root has nearly the fame veffels as the trunk. Through it the juice paffes that nourifhes the plant. The roots of fome plants are full of hollow threads, which tranfmit nourifhment to the upper parts. This in other plants infinuates itfelf through the pores that are in the bark of the root. The Branches of a plant agree with the trunk, in all the effential parts of its flructure.

If no moifture come to the roots of trees they cannot grow; but if it comes only to the points of the root, though all the reft remain dry, they grow well. For the root fhoots out yearly a fharp pointed tender part, fomewhat like the fharp bud on the end of a fprig, by which it not only inlarges itfelf in breadth, as the branches do above, but alfo receives its nourifhment. And that tender part moves toward the foft and moift earth. So that to loofen the earth at the points of the roots, much helps the growth of all plants.
8. On the fmalleft part of the branches grow the Leaves; of thefe we may obferve, 1 . The Fibres of the leaf fand not on the ftalk in an even line, but always in an angular or circular pofture; and their valcular fibres or threads, are three, five, or feven. The reafon of this pofition is, for the more erect growth, and for the greater ftrength of the leaf: as alfo for the fecurity of its fap. 2. The accurate pofition of thefe fibres, which often take in the eighth part of a circle, as in mallows; in fome plants a tenth; but
but in mof a twelfuh. 3. The art in folding up the leaves before the eruption, is incomparable both for elegance and fecurity. They take up the leaft room their form will bear; and are fo conveniently couched, as to be capable of recerving prote民tion from other parts, and of giving it to each other.

Leaves confift of fibres continued from the trunk of the tree. They are cloathed with an extremely thin pellicle which is covered with the fineft down. Their fkin or coat is only that of the branches extended, as gold is by beating. In the bud they are folded up, almoft in the manner of a fan, fometines in two, fometimes in feveral plaits. But if they are too thick to plait commodioufly in two, and to be ranged againit each other, or if they are too fmall a number, or their fibres too delicate; inftead of being plated, they are rolled up, and form either a fingle roll, on two rolls, which begin at each extremity of the leaf, and meet in the middle. There are allo fome plants, as fern in paricular, which form three rolls.

The chief ufe of leaves feem to be, r. To catch the dew and rain, and fo convey more nourifhment to the plant, than the root alone could do. 2. To take in air; (of which more hereafter:) and 3. To minifter to a kind of infenfible perfpiration, by which redundancies may be thrown off.
9. The Nutrition of plants feems to be performed thus. As the earth abounds with particles of every fort, thofe which fuit each plant, being diffolved by moifture and agitated by heat, enter the root through its threads or pores, afcend through the woody fires, and being in the veficles.
veficles of the plant mixed with its native júice, and fubtalized by fermentation, infinuate themfelves into all parts of it. Part of this nourifhes the plant and forms the fruit; the refidue tranfpires. But as all particles are not equally fit to enter the pores of every plant, neither can all be fermented into a juice proper to nourifh it : the reafon is plain, why every plant will not flourifh in every foil.

It is remarkable, that trees of very different kinds, draw their whole fuftenance from the moilture they find in the fame piece of ground, and from the ambient air and dew.s. Hence we may infer, that the very contexture of their bodies form the firft feed, are the natural limbecs, where the common water and air, are digefted into fo many different leaves and fruits.

We fee alfo, that an handful of mofs, fometimes above a fpan long, grows out of a fmall oyfter-fhell, without any earth, as do trees out of bare rocks, Hence we eafily learn, that the feeds firft, and then the roots, ftems, and leaves of trees, are the frainers which fecrete and generate their peculiar faps and juices. Thefe are at firft little elfe than pure air and water, till they are concreted in peculiar falts, by more curious ftrainers, and more fubtle boilers than art has ever devifed.
10. The antients generally fuppofed the earth to produce vegetables; many of the moderns afcribe it to water alone. But it is adoubt whether the experiment ever was made with the nicety that is requifite. And it proves nothing, unlefs that water be quite pure from any terreftrial mixture. For if it be not, the plant may owe its whole growth to that terreftrial matter.

Who can find any water, newly taken out of the fpring, which does not exhibit even to the naked eye, great numbers of fmall terreftrial particles, difperfed through every part of it ? Thefe are of two general kinds. Some are of a mineral nature, others of a vegetable. Of the latter fome are fit to nourih one plant, or one part of it, and fome another. All water is much charged with vegetable matter, which is fine, light, and eafily moveable. Spring water contains more of it than river water, river water more than rain water.

To which of thefe waters, or the matter fuftained therein, do vegetables owe their growth ? In order to decide this, the following experiments were made. Several phials of the fame fhape and. fize were filled with equal quantities of water. Over each was tied a piece of parchment, with an hole in it juft large enough for the ftem of the plant, to prevent the water from evaporating, or afcending any way but through the plant. Several plants being exactly weighed, were then placed in thefe phials, and as they imbibed the water, more was added from time to time. Each glafs was marked with a different letter, and all fet in the fame window, from July 20, till October 1. Then they were taken out, the water in each phial weighed, and the plant with the leaves that had fallen off. It then appeared how much each plant had gained, and how much water had been expended upon it.

(167)						
\%					\% 8	
5				¢		
				은		
				3		
\#						
A. Spear-mint fet in fpring-water.			15		2558	1 to 17
B. Spear-mint in rain-water.	28	45	17			1 to 171
C. Spear-mint in Thames-water.	28	54	26		2493	1 to 9
Night-Ihade in fring-water.	49	106	57	3708	to	

The water afcends through the veffels of plants, as through a filtre. And a larger filtre draws more water than a fmaller. Therefore plants that have more or larger veffels, draw more than thofe that have fewer and fmaller.

But the greateft part of the water imbibed by plants, paffes through their pores into the atmofphere. Hence the leaft proportion of water expended is to the increafe of the plant, as 46 or 50 to one. In fome it is 100,200 , nay, in one, 700 times as much as the increafe of the plant.

Nor does this water pafs off alone, but bears with it many particles of the plant. The groffer indeed are not fo eafily borne up into the atmofphere, but are ufually depofited on the furface of the flowers, leaves, or other parts of the plant. Hence our honey-dews, and other gummous exudations.
dations. But the finer eafily afcend into the atmofphere, and are conveyed to our organs of fmell.

Great part of the terreftrial matter mixt with the water, afcends into the plants. After the experiment, there was much more of it in the glaffes which had no plants in them, than in thofe that had. Indeed, this matter, being fo fine and light, attends water in all its motions: fo that filtre it ever fo often, fome will remain.

The plant increafes more or lefs as the water it flands in, contains more or lefs of this matter. So the mint in the glafs C , was of much the fame bulk and weight with thofe in A and B. But flanding in river-water, which contained more terreftrial matter, than the fpring or rain water wherein they flood, it increafed almof double to either of them, yea, and with lefs expence of water.

But all vegetable matter is not proper for the nourihment of every plant. Although fome parts in all may owe their fupply to the fame common matter, yet others require a peculiar fort of matter, and cannot be formed without it. Yea, different ingredients go to the compofition of one and the fame plant. If therefore the foil wherein a plant is fet, contains all, or moft of thofe ingredients, it will grow there, otherwife not. If there be not as many forts of particles, as are requifite for the effential parts it will not grow at all. If they be there, but not enough of them, it will not grow to its natural flature. If the lefs effential particles pe wanting, it will be defective in fmell, tafte, or fome other way. But though fome land may not contain matter proper for fome plants, yet it may for others, All this thews, that plants owe their increafe, not to water only, but to a particular terreftrial matter: elfe there would be no need
of manure, or of tranfplanting them from place to place. The rain falls on all places alike: on this field and that, this garden or orchard and a nother. Vegetables therefore are not formed of water. One plant drew up 2501 grains of this; yet increafed only three grains and a half. The mint in B. took thirty nine grains of water a day, which was much more than the whole weight of the original plant. And yet it gained not one fourth of a grain, in a day and night.

Water then is ouly a vehicle to the terreftrial matter, which forms vegetables. Where this is wanting, the plant does not increafe, though ever fo much water afcend into it. This is only the agent which conveys that matter to them, and diftributes it to their feveral parts for their nourifhment. It is fitted for this office, by the figure of its parts, which are exactly fpherical ; therefore eafily fufceptible of motion, and confequently capable of conveying other matter that is not fo voluble. Befide, the conflituent particles of water are abfolutely folid, and do not yield to the greateft external force: therefore their intervals are always alike. By this quality water is difpofed to receive inatter into it: by the former, to bear it along with it.

It is farther qualified to be a vehicle of this matter, by the finenefs of its particles. We fearce know a fluid in nature, except fire, whofe conflituent parts are fo exceeding fmall. They pafs pores which air itfelf cannot pafs. This enables them to enter the fineft veffels of plants, and to introduce the terreffrial matter to all parts of them; each of which, by means of peculiar organs, affumes the particles fuitable to its own nature, letting the reft pafs on through the common ducts.
11. As to the motion of the nutritive juice, fome Vol. II. H think
think it afcends by the wood, and defcends by the bark. But it is not eafy to Shew, by what particular tubes it cither afcends or defcends. Neither after all our refearches does it appear, what is the principle of this motion? Whether there be any fuch thing as an attractive force in the plant ittelf: or whether it be performed on the mere principles of mechanifm, by the expanfion of the air contained in the juice, which moves and propels the particles of it into every part of the plant.

However, that the Sap in plants does circulate is nade probable by an eafy experiment. On a branch of a plain jeffamine, whofe ftem fpreads into two or three branches, inoculate in Autumn, a bud of the yellow friped jeffamine. When the tree fhoots the next fummer, fome of the leaves will be ftriped with yellow, even on the branches not inoculated. And by degrees, the whole tree will be friped, yea, the very wood of the young branches.

It is probabie the circulation is performed thus. The wood of plants confitts of fine, capillary tubes, which run parallel with each other from the root, and may be looked upon as arteries. On the outlide of thefe, between the wood and the inner bark, are larger tubes, which may do the office of veins. Now the root having imbibed juice from the earth, this is put into motion by the heat. Hereby it is rarefied and caufed to afcend in the form of a fleam or vapour; till meeting the mouths of the arterial velfels, it paffes through them to the top, and to the extreme parts of the tree with a force anfiverable to the heat whereby it is moved. When it amives there, meeting with the cold of the external air, it condenfes into a liquor, and in that form returns by its own weight, to the root of the venal veffels.
12. That
12. That the Sap does circulate, appears farther From hence, that the graft will either corrupt or heal the fock. Nay, it changes the very way of the growing of the root, which it could not do, but by fending down its fap thither. Crab-ftocks grafted with fruit, which the foil does not like, will canker, not only in the graft, but the flock alfo. But graft them again with fruit it does like, and it will quickly heal. Farther : graft twenty young pear-ftocks with one fert of pear, and twenty with another. The roots of one fort will grow all alike, and fo will thofe of the other. Yet ever-greens grafted on treeswhich drop their Jeaves, as the ever-green oak of Virginia upon the common Englifh oak, hold their leaves all the winter. Does not this thew, that the juices circulate in winter, as well as fummer, even in the plants which drop their leaves? Otherwife thofe grafted on them mult foon die.

It feems that the Sap does not rife by the pith: becaufe fome large trees are without that part, and yet continue to put forth branches. Indeed no pith is found in thofe branches of a tree, which exceed two or three years growth. And the pith which is in a branch of this year, is diftributed into thofe boughs which are formed the next feafon.

Many believe, the tree does not receive its nourifhment by the bark; becaufe trees that have lof that part, continue to grow. But they fuppofe a tree has but one bark; whereas every branch has four diftinct coverings. The two outermof of thefe may be taken from a tree without much damage. But if the two others be taken off, it will infallibly kill the tree.

Some affirm, that the Sap neither rifes nor falls in the woody part of the tree, becaufe when a
H_{2} branch
branch is cut, they cannot difcern any Sap iffue out of it. Certainly they cannot; becaufe thofe tubes are not large enough, to receive any thing more grofs than vapour. The root receives chiefly in Autumn its proper juices, which the warmth in fpring raifes into a vapour, that gradually afcends through thofe fine tubes, and by that means caufes vegetation.
13. Some have objected to our Lord's fpeaking of corn increafing an hundred fold, that this is impoffible. So far from it, that a grain of barley, has been known to produce two hundred and for-ty-nine ftalks, containing above eighteen thoufand grains.
A ftill more curious experiment was made with turnip feed, at Sutton-Coldfield, in Warwickfhire. In lefs than three days after it was fown, the turnips were above ground. In three weeks the roots were as big as walnuts : in lefs than five weeks, as large as apples. Auguft 12th, one of them weighed two pounds fourteen ounces. At the fame time was weighed an ounce of the feed, which had been fown, and it was found to contain fourteen thoufand fix hundred fingle grains. This being multiplied by forty-fix (the ounces that the turnip weighed) produces fix hundred and feventy-one thoufand fix hundred, viz. the number of fingle grains required to equal the weight of the turnip. Hence it follows, that (fuppofing the increafe was uniform) the grain when it was fown, weighing but $\frac{1}{4}$ teo th part of an ounce, increafed in the following proportions :

Dogited by Google

173)

In June 1766 Mr . Miller fowed fome grains of common red wheat. On Auguft 8, a plant was taken up and divided into eighteen parts. Each of thefe was placed feparately. Thefe plants having thot out feveral fide fhoots, by the middle of September, they were taken up and divided again. This fecond divifion produced fixty-feven plants. Thefe remained through the winter. Another divifion of them made in the fpring, produced 500 plants, They were then divided no farther.

The whole number of ears, which by the procefs were produced from one grain, was 21109. And from a calculation made, by counting the whole number of grains in one ounce, might be about 576840 .
14. Some plants are male and fome female. Mr. Miller leparated the Male plants of $\mathrm{S}_{\mathrm{p}} \mathrm{i}$ nach from the Female. The feed fwelled as infual, but did not grow when he fowed it. Yet it might have been impreguated another way, as appeared from another experiment. He fet twelve tulips about fix yards from any other, and as foon as they flowered, carefully took out the ftamina. Two days after he faw bees working or other tulips, and coming out loaded with the duff. They flew into the firlt tulips, and left therein duft enough to impregnate them, which accordingly bore good feed. Thus we fee the flarina may be carried by infects, and lodged on flowers; which it is fit to impregnate.

Afterwards he bought and fowed fome Savoy feed, and planted out the plants, but was furprized at the production. For he had fome red cabbage, fome white, fome favoys with red ribs, and fome a mixture of all together in one plant. The gardener affured him, he had carefully faved the feed.

Being afked, where he had fet the plants for feed, he fhewed him, and faid, He planted firf a dozen white cabbages, next a dozen favoys, and then a dozen red cabbages. Is it not plain that here the effluvia of one fort, impregnated the other? For did each grain of the farina impregnate only its own kind, this mongrel fort could never be produced.

An inflance of the fame kind has been obferved with regard to Indian Corn : this is of feveral coJours, as white, red and yellow. If each of thefe be planted by themfelves, they produce their own colvur. But if you plant the blue corn in one row, and the white or yellow in the next, they will interchange colours: fome of the ears in the blue corn rows, are white or yellow, and fome in the white or yellow rows, are blue. That this is caufed by the effluvia of one impregnating the other, is manifeft from hence. Place a clofe, high fence, between the corn of different colours, and there is no change of colour in any of them.
The Holly is defcribed by all naturalifts, as bearing hermaphrodite flowers. But by late obfervations it has appeared, that fome trees bear male, fome female flowers. Yet there is a vaft variety. In Chelfea-garden, fome Hollies bear femate, fome hermaphrodite flowers. But fome trees bear only male flowers; fome only female, fome only hermaphrodite. Others bear both male and female, both male and hermaphrodite, or female and hermaphrodite. And others bear male, femate, and hermaphrodite, all at the fame time.
15. That the leaves of certain plants affume at night a difpofition different from that of the day,
is well known. This has been ufually termed, The Sleep. But to what is this owing? Not to the variation of heat or cold, moifture or drynefs. For however thefe are varied, the fame thing happens with equal regularity. It is light alone that occafions this change, which by the fmallnefs of its particles, is capable of entering bodies, and by its activity, of producing great changes in them. It changes the pofition of the leaves of plants, by a motion it excites among the fibres. The natural pofition of the lobes in thefe leaves is drooping. This is their pofture of repofe. But vegetation is very imperfectly performed, while they remain in it. It is light which alters that pofition, by its quick vibrations.

In the evening, Auguft 7, (in order to make a full experiment) Dr. Hill placed a plant of Abrus, in a room where it had moderate day-light, without the fun Chining upon it. The lobes of the leaves were then fallen perpendicularly from the middle rib, and clofed together by their under fides. Thus they continued all night. Half an hour after day-break, they began to feparate, and a quarter of an hour after fun-rife, were perfectly expanded. Long before fun-fet they began to droop again, and toward evening were clofed as at firit.

Next day the plant was fet, where there was lefs light. The lobes were raifed in the morning, but not fo much. And they drooped earlier at evening.

The third day it was fet in a fouth window, open to the full fun. Early in the morning the leaves had attained their horizontal fituation: by nine o'clock they were raifed above it, and continued fo till evening. Then they fell to the horizontal fituation, and thence gradually to the ufual fate of reft.

The fourth day the plant food in the fame place, but the fun did not appear. The lobes early attained their horizontal fituation, but did not rife beyond it, and in the evening clofed as ufual.

Thefe experiments prove, that the whole change is occafioned by light only. To put this beyond difpute, in the evening of the fixth day, the plant was fet in a book-cafe, on which the morning fun thone, the doors flanding open. The next day was bright. The lobes which had clofed in the evening, began to open early in the morning, and by nine o'clock, they were raifed in the ufual manner. I then fhut the doors of the book-cafe: on opening them an hour after, the lobes, were all clofed as at midnight. On opening the doors, they opened again, and in twenty minutes they were fully expanded. This has fince been many times repeated, and always with the fame fuccefs. We can therefore, by admitting or excluding the light, make the plant put on all its changes. Hence we are certain, that what is called the Sleep of Plants, is caufed by the abfence of light alone, and that their various intermediate ftates are owing to its different degrees.

It has been fuppofed that the daily motions of the Senfitive Plant, were likewife owing to light and darknefs; becaufe it expands itfelf in the morn ing, and clofes again in the evening. From the main branches of this plant fpring feveral fmaller ones, and from thefe others ftill lefs, which fupport the leaves ranged on each fide, in pairs over-againft one another. Several other plants are of the fame form, and all thefe clofe their leaves in the evening, and open them in the morning, which therefore is not peculiar to the Senfitive Plant. But this clofes them at any time of the day, if touched, and foon after opens them again. You
can fearce touch the leaf of a vigorous Senfitive Plant fo lightly, as not to make it clofe. The large rib which runs along its middle, is as an hinge on which the two halves of the leaf move, when they turn upon being touched, till they ftand erect, and by that means meet one another. The flightef touch gives this motion to one leaf; if a little harder, it gives the fame motion to the leaf oppofite. If the touch be fill rougher, the whole arrangement of leaves on the fame rib clofe in the fame manner. If it be fronger fill, the rib itfelf moves upward toward the branch on which it grows. And if the touch be yet more rough, the very branches fhrink up toward the main flem. The motion which has the greateft effect of all others upon it, is the fhaking one. Winds and heavy rain alfo caufe this plant to clofe its leaves; but not gentle fhowers: the contraction being caufed by the agitation of the wind, and the ffrokes given by the large drops.

The natural fhutting and opening of its leaves at night and morning, are not fo fixed, as not to be variable by many circumftances. In Auguft a Senfitive Plant was carried in a pot into a dark cave. The fhaking in the carriage fhut up its leaves, fo that they did not open for four and twenty hours. And when they did open, they clofed no more for three days and nights. Being then brought again into the open air, they recovered their natural motions, fhutting at night and opening in the morning, as varioufly as ever. While in the cave, it was as much affected by the touch, as in the open air.

By this and many experiments it appears, that it is not the light that opens thefe plants,' nor the darknefs which fhuts them. Neither is it owing to the increafe of heat or cold. Indeed, great heat H_{5} will
will affeet them a little, but not in any confiderable degree. Concerning the real caufe, we may form many conjectures: but nothing certain canhe known.

Nearly related to the Sleep of Plants, is that which Linnæus called the Awaking of Flowers. The flowers of moft plants, after they are once opened, continue fo night and day, until they drop off, or die away. Others, which fhut in the nighttime, open in the morning fooner or later, according to their fituation in the fun or fhade, or as they are influenced by the manifeft changes of the atmofphere. There are another clafs of flowers, which make the fubject of thefe obfervations, which obferve a more uniform law in this particular.

Thefe open and fhut conftantly at certain hours, exclufive of any manifeft changes in the atmofphere; and this with fo little variation in point of time, as to render the phænomenon worth ohfervation. Linnæus's obfervation extends to near fifty fpecies which are fubject to this law. We will enumerate fome of thefe, and mention the time when the flowers open and fhut. The: little blue Convolvulus, or Bindweed, opens its flowers between five and fix in the morning. and fhuts them in the afternoon. The flowers of the Day-Lilly open about five in the morning, ing, and fhut at feven or eight in the evening. The leffer Water-Plantain, during its floweringtime, only opens its flowers each day about noon. The flowers of the Prolifcrous Pink, expand about eight in the morning, and clofe again about one' in the afternoon. Purple Spurrey, expands between nine and ten in the morning, and clofes between two and three in the afternoon. This little plant is common among the corn in fandy foils and flowers in June. Common Purflain, opers its flowers about mine or ten in the morning,
morning, and clofes them again in about an hour's time. The white Water-Lilly grows in rivers, ponds and ditches, and the flowers lie upon the furface of the water. At their time of expanfion, which is about feven in the morning, the flalk is erected, and the flower more elevated above the furface. In this fituation it continues till about four in the afternoon, when the flower finks to the furface of the water, and clofes again. Yellow Goats Beard, or Go-to-bed-at-noon (the latter of thefe names was given to this plant long fince, on account of this remarkable property) opens its flowers in general about three or four o'clock, and clofe again about nine or ten in the morning. Thefe flowers will perform their vigilix, if fet in a phial of water, within doors, for feveral mornings fucceffively. Sometimes they are quite clofed, from their utmoft fate of expanfion, in lefs than a quarter of an hour.
16. From what has been faid it plainly appears, that there is a confiderable agreement between plants and animals, as well with regard to their nutrition, as to the fructure of their parts. Some extend this farther, and think there is fomething in plants anfwerable to refpiration in animals. They fuppofe the fpiral fibres to be in the place of lungs, and to ferve this very purpofe : that in each of thefe there is a fpiral lamina, which is extended or contracted, as it is impelled this way or that, by the elaftic air it includes : that thefe fibres afcending ftrait through the trunk, are difperfed through all the branches, and thence into the leaves, where they are woven together in a kind of net-work. By this means the more fubtle parts of the air are flrained through thofe fpiral fibres, to keep the juices of the plant fluid, and
perhaps to fupply them with nitre or æther, to affift their fermentation.

The air enters vegetables various ways, by the trunk, leaves, roots and branches. For the reception as well as expulfion of it, the pores are very large in fome plants. So one fort of walking canes feem full of large pin-holes, refembling the pores of the fkin in the ends of our fingers. In the leaves of the pine, if viewed through a glafs, they make an elegant fhow, flanding as it were, in rank and file, throughout the length of the leaves.
Air veffels are found in the leaves of all plants, and in many are vifible to the naked eye. For on breaking the chief fibres of the leaf, the likenefs of a fine woolly fubftance, or rather of curious, fmall cobwebs may be feen to hang at both the broken ends. Now thefe are the fibres of the air velfels, loofed from their fpiral pofition, and drawn out in length.

The pores in the leaves of plants are almof innumerable. Mr. Lewenhoek found above an hundred and feventy two thoufand, on one fide of a leaf of box. The leaves of Rue are as full of holes as an honey-comb. Thofe of St. John's wort likewife appear full of pin-holes to the naked eye. But the places where thofe holes feem to be, are really covered with a thin and white membrane. Through a microfcope the backfide of the herb Mercury, looks as if rough with filver; and all the ribs are full of white, round tranfparent balls, faftened by flender ftalks, like fo many grapes. A Sage-leaf appears like a rug or fhag, full of tufts of filver thrumbs, and embellifhed with round chryftal beads, faftened by tender foot-ftalks. The prickles of a Nettle are formed for acting juft as the fting of animals.

Every

Every one of them is hollow, and terminates in a fine point, with an opening near its end. At the bottom of each prickle lies a pellucid bag, containing a clear liquor, which upon the leaft touching the prickle, is cjeEted at the little out-let, and if it enters the fkin, caufes pain and inflammation by the pungency of its falts.

The leaves of plants are of great confequence to their life. At thefe the air paffes in, and goes through the whole plant, and out again at the roots. If the leaves have no air, the plant will die, as is eafily proved by the air-pump: whereas if the leaves be left on the outfide of the receiver (parted by a hole cemented with wax) while thefe have air, the plant will thrive and grow, though its roots and flalks are kept in vacuo. The leaves likewife chiefly perform the neceffary work, (but who can explain the manner!) of altering the water received at the roots, into the nature of the juices of the plant. And hence it is, that the life of plants depends fo immediately upon their leaves. The hufbandman often fuffers, for want of this knowledge. A crop of Saint-foin is valuable; and its roots being perennial, will yield an increafe for many years. But it is often deftroyed at firft, by fuffering it to be fed upon by fheep. For if they eat up all the leaves, the root cannot be fupplied with air, and fo the whole perithes. Leaves being fo neceffary to all perennial plants, a reverfionary fock of them is provided. The leaves of thefe plants are always formed in Autumn, though not unfolded till the following fpring. They then open and increafe in proportion to the motion of the fap, and the quantity of nourifhment the plant receives. Thefe leaves alfo, though not yet appearing out of the bud, may fuffice for the extremely fmall

(182)

fmall motion, which the fap of thofe perennial plants, that drop their leaves, has in winter.

But befides thefe Autumnal leaves, there is another fet formed in fpring and expanding till Midfummer. Thefe are of infinite fervice to many fort of trees, particularly to the mulberry, as they fave its life, when the firft fet of leaves have been all eaten up by the filk worms.

The analogy between the parts of plants and thofe of animals may now more fully appear. The parts of plants are 1. The Root, compofed of abforbent veifels, analogous to the lacteals in animals: indeed performing the office of all thofe parts of the abdomen, that minifter to nutrition : 2. The wood, compofed of capillary tubes running parallel from the roots, although the apertures of them are commonly too minute to be feen. Through thefe, which are analogous to arteries, the fap afcends from the root to the top : 3. Thofe larger veffels, which are analogous to veins. Through thefe it defcends from the top to the root. 4. The bark, which communicates with the pith by little frings, paffing between the arteries. 5. The pith, confifting of tranfparent globules, like the bubbles that compofe froth.

The fap enters the plant in the form of pure water, and the nearer the root, the more it retains of that nature. The farther it goes, the more it partakes of the nature of the Plant. In the trunk and branches it remains acid. In the buds it is more concocted. It is farther prepared in the leaves, (as bloud in the lungs) which being expofed to the alternate action of heat by day, and cold by night, are alternately dilated and contracted.

Is not then the motion of the Sap in plants, (like that of the blood in animals) produced chiefly by the action of the air? All plants have the two orders

(183)

orders of veffels, 1. Thofe which convey the mutritious juices, 2. Air-veffels, hollow tubes, within which all the other veffels are contained. Now the leaft heat rarefies the air in thefe air-veffels, thereby dilating them, and fo caufing a perpetual fpring, which promotes the circulation of the juices. For by the expanfion of the air-veffels, the fap-veffels are preffed, and the fap continually propelled. By the fame propulfion it is comminuted more and more, and fo fitted to enter finer and finer veffels: while the thicker part is depofited in the lateral cells of the bark, to defend the plant from cold, and other injuries.

Thus is every plant acted on by heat in the daytime, efpecially in fummer; the fap protruded, then evacuated, and then exhaufted. In the night the air-veffels being contracted by the cold, the fapveffels are relaxed, and difpofed to receive frelh food, for the next day's digeftion. And thus plants do, as it were, eat and drink during the night-feafon.

The veffels themfelves confift of mere earth, cemented by oil and water: which being exhaufted by fire, air, or age, the plant returns to its earth. Thus in plants, burnt by the fierceft fire, the matter of the veffels is left entire: which confequently is neither water, air, falt, nor fulphur, but earth alone. The fap confifts of fome faline parts: others derived from air, rain and putrified plants or animals. Confequently ir plants are contained, falts, oils, water, earth: and probably all metals too. In fact, the afhes of all vegetables yield fomething, which the loadftone attracts.

There is a confiderable difference as to the time when different plants revive after the winter.

(184)

No fooner does the fun begin to warm the earth, than the vernal flowers appear, and the trees, one after another, open their buds, and cloathe themfelves with leaves. But why do many woodplants, as colts-foot, pile-wort, v:olets, and many garden-plants, as fnow drops, alfara-bacca; crocus, flower in the very beginning of fpring, when we cannot by any pains or care, bring them to flower after the fummer folllice? Nay, thefe very plants, which are fo patient of cold in fpring, are in the autumn fo very weak and tender, that they die on the firft touch of froft. Why on the contrary, do thiftles and many other plants, never flower before the fummer folltice?

In the fame manner, trees obferve fixed laws, and a certain order in their leafing. Does the caufe lie in the different depth of their roots? If fo, fhrubs would have leaves before trees of the fame kind. But they have not. We can only fay, the fact we know, but the reafon of it we know not.

The order of the leafing of feveral trees and fhrubs, obferved in Norfolk in 1755, was as follows.

16. Oak, Lime, - - - - 18 .
17. Maple, - - - - 19 .
18. Walnut, plane, black poplar, beech, 21.
19. Afh, Carolina Poplar, - - 22 .

Indeed the leafing of feveral of thefe varies much, as the fpring is earlier or later. But others of them, be the winter ever fo mild, do not put out before their time. This alfo depends on fome fecret properties, which man is not able to explain.
17. As to the Generation of plants, firf the tree produces Buds, which afterwards expand into leaves, flowers, or branches. In the buds entire plants are contained. A fmall ftalk, confifting of woody and fpiral fibres, fprings out of the middle of the plant, wherein the bud inheres. It is inyolved in a thin bark, which may be divided into various leaves, lying one upon another like fcales.
18. Buds are followed by leaves and flowers. In flowers we may confider, 1. The Calix or outer Cup, defigned to be a fecurity to the other parts of the flower. Thofe whofe leaves are firm and ftrong, as tulips, have no calix at all. Carnations, whofe leaves are flrong but flender, have a calix of one piece. Others have it confifting of feveral pieces, and in divers rounds. 2. The Foliation or Petala, the Flower-leaves, which are properly the flower itfelf. In thefe not only the admirable beauty, and luxuriant colours are obfervable, but alfo their curious Folding in the Calix, before they are expanded.

It is remarkable, that many, if not moft vegetables, efpecially thofe of a tender kind, expand their flowers, or down, every day, if it be warm, fun-fhiny weather. But they clofe them as the evening approaches; and fome, at the approach of rain. This is particularly done at the begining of flowering, while the feed is young and tender: as is eafily feen in the down of Dandelion, and eminently in the flower of Pimpernel. Thefe ferve as a weather glafs to the countryman: by the opening or fhutting of thefe, he can tell without any danger of being deceived, whether the weather will be foul the next day.

The flower is as it were the womb, which contains the eggs or feeds of plants, and in due time brings them forth. It's near the bud, and lies hid with it during the winter, till it is brought out by the heat of the fummer. The moft fimple plants bear a bud, which contains a feed of an oval figure. We may eafily diftinguifh from the flower itfelf, the Leaves of the Covering which involves the bud. From thefe arife the Leaves of the Flower, ferving for the laft concoction of the fap; in which are both woody and fpiral fibres, with various rows of utricles. In the middle of flowers Filaments and little Pillars arife, whofe extremities are covered with a kind of Duft. Thefe pillars are hollow, and have veficles full of liquor, and the rudiments of feeds, which gradually grow ana harden.

That duft is of two kinds, male and female. The male duft is formed in the top of the filaments, where when it is ripe, it burfts its cafe, and is fpilt on the heads of the pillars, and thence conveyed to the utricle or matrix thereof, to impregnate the female duft contained therein.

This

(187)

This duft in any one plant being viewed with a microfcrope, every particle is of the fame fize and figure. But in different plants, the colour, fize, and figure are widely different. In fome it is clear and tranfparent, as chryftal; in others white and opake: in fome blue, purple or red, and in others, flefh-coloured. And its colour varies in the fame fpecies, fuppofe tulips, according to the colour of the flower.

The moft general figure is the oval, more or lefs fharp at the ends, with one or more furrows running lengthways. But the feeds of Melilot are cylinders. Thofe of the Panfy are prifms, with four irregular fides. Others reprefent two chryftal globules faftened together. Thofe of the Junquil are in the form of a kidney. But indeed the varieties are not poffible to be numbered. The office of the Bloffom is partly to prote ℓ, partly to draw nourifhment to the embryo, fruit or feed. The gourd, pumkin, melon, cucumber, and moft bearing trees, have both male and female bloffoms on the fame plant. Male-bloffoms, (ufually called Catkins) may be diftinguifhed from female, by having no piftil or rudiment of fruit about them; but only a large thrum, covered with duft in their middle. The female bloffoms have always a piftil, within the flower-leaves; and the rudiments of the fruit are always apparent, at the bottom of the fruit before it opens.

But there is a fpecies of willow, which appears to change its fex every year. One year it produces male blafloms, and female bloffoms the next.
19. The Seed, when it is ripe, \cdot is inclofed in a peculiar covering. In fome plants it fo increa-
fes, as to become a fruit. And in thefe alfo we find fibres and utricles difperfed with endlefs variety.

Various are the methods which the wifdom of God takes for fowing Seeds of various kinds. Thofe of Arum and Poppy are heavy enough to fall directly to the ground. Others that are light, have hooks to flop them, from flraying too far from their proper place. So have Agrimony and GoofeGrafs, the one wanting a warm bank, the other a hedge for its fupport.

On the other hand many Seeds have wings, that the wind may carry them off the plant, and may fcatter them afunder, that they may not fall together, and come up too thick. The kernals of Pines have very fhort wings, juft enabling them to flutter on the ground. But fome Seeds have many long feathers, by which they are wafted about every where.

Others are lodged in elaflic cafes, which dart out the Seed to convenient diftances. ThusWoodforrel having a running root, needs to have its Seed fown diftant from each other. And this is done, by means of a tendinous cover, which when it begins to dry, burfls open on one fide in an inftant, and is violently turned infide out. The Seed of Harts-Tongue is difperfed in a different manner. It has a fpring wound round its cafe. When it is ripe, this fuddenly breaks the cafe in two h-lves, and fo throws out the feed. Equally remarkable is the way wherein Fern-feed is fcattered. If a quantity of this be laid on a paper, the feminal veficles burft, and are feen by a microfcope projecting the feeds to a confiderable diftance.

The Seeds of the feveral fpecies of Fern, were wholly unknown to the ancients. But it is now well
well known, that in the female fern, the whole furface of the leaf on the under-fide is covered with a congeries of feeds, fo that they guard one another, and need no other covering. And in the common male fern, there are found at the proper feafon, feveral brown fpots, placed in a very regular manner. Thefe are a fungous matter, round which the fmall feed veffels are inferted.

The fruitfulnefs of plants, in producing Seeds, tranfcends all imagination. An elm living an hündred years, ordinarily produces thirty-three millions of feeds. Add, that if its head be cut off, it puts forth as many branches within half an inch of the place where it was cut as it had before: And at whatever height it is cut off, the effect will be the fame. Hence it appears, that the whole trunk, from the ground to the rife of the branches, is full of embryo-branches, each of which will actually fpring forth, if the head be lopped off juft over it. Now if thefe had fprung out they would have born an equal number of feeds, with thofe that did. Thefe feeds therefore are already contained in them : and if fo, the tree really contains 15840000000 feeds, wherewith to multiply itfelf as many times. But what fhall we fay, if each feed contain another tree, containing the fame number of feeds? And if we can never come, either at a feed which does not contain trees, or a tree which does not contain feed.

Timber-trees of any kind, might certainly be planted to more advantage than they generally are. There is a foreft two miles from St. Loe in Normandy, planted chiefly with oaks, many of which are but of a moderate height, though of a large circumference. But near its entrance from St.

Loe, there is a plantation, about twenty-five years old, wherein none of the oaks are under feventy, and fome an hundred feet high. They are fet fo clofe, that they almof feem to touch one another, and are no more than four or five inches in diameter. This timber is of great ufe, both for making charcoal, and many other purpofes. And the owners may reap four crops of them in an hundred years.

This foreft belongs to the king of France, who ordered the plantation to be made by way of trial And his minifters have caufed feveral of the trees, an hundred feet high, to be tranfplanted, to leave flanding proofs of the wonderful effects of the experiment.

As to fowing, the perfection of agriculture confifts, in fetting plants at due diftances, and giving a fufficient depth to the roots, that they may fpread and receive due nourifhment. Yet this is little regarded, but all forts of grain are fown by handfuls caft at random. By this means four parts in five of the feed is utterly loft. To remedy this, a Spanifh gentleman contrived an engine (defcribed in the Philofophical Tranfactions, under the name of the Spanifh Simbrador) which being faftened to the plow, the whole bufinefs of plowing, fowing, and harrowing, is performed at once ; and the grain is fpread at equal diftances, and equally deep in the furrow. An experiment being made, land which ufually produced five fold, by this means produced fixty fold. One falk is all that fprings immediately from one grain: but on the fides of this, near, if not within the ground, iffue feveral lateral ftalks. And fome of thefe fend forth roots, whence one or feveral other ftalks fpring, if they are early formed, the oil.
foil good, and the weather favourable. By this means one grain of wheat planted in a garden has produced ninety, yea an hundred ears. If then each ear, taking one with another, contain fifty grains, a fingle grain may produce five thoufand. Nay, a gentleman in Yorkfhire, who made the experiment in his garden fome years ago, counted upwards of eight thoufand grains, which fprung from a fingle one.

After all that has been faid and wrote for fo many centuries, on the generation or propagation of plants and animals, a late author (to whom the French naturalifts in general fubfcribe) totally denies the whole, and cenfures all who pretend to difcover any animalcula in the femen of animals. He will by no means allow, that every animal or plant, proceeds from an egg lodged in the parent plant or animal. On the contrary, he fuppofes, " there are in matter certain organical parts, difpofed for the formation of animal and vegetable fubftances, which by coalition conftitute the firft flamina of all animal and vegetable bodies. Thefe are fimple, uniform, common to all, and confequently to be found more or lefs in every portion of the nutritive juice. From thence they are digefted, and when the fubject becomes adult, fecreted for the formation of the feed of every plant and animal. Thefe organical parts, moving when difengaged, and thence imagined to be alive, are extremely fimple in their compofition, being perhaps, only elaftic Iprings, more or lefs compreffed, more or lefs diverfified in the direction of their force.
" All microfcopic animals, fo called, are indeed no other than fuch organical particles. Seeds macerated in water, firft difunite into fmall par'ticles,

(192)

ticles, which foon after move, and feem alive, though they are not fo. The fame may be obferved of the juices of animals, as mutton-gravy and the like. And as to the common imagination, that the male femen, while in the velfels, contains millions of animalcula like tadpoles, it is certain, they are produced, after the evacuation of the fluid, and rife from principiles contained therein, by a real vegetation, and a fubfequent change from the vegetable to the animal life.
"Semen immediately evacuated is an homogeneous fluid. In a few moments it begins to feparate, and after this a kind of vegetable filaments grow in it, and fhoot out ramifications on every fide. Thefe open and divide into moving globules, which trail after them fomething like long tails; which are in truth only ftrings of the vifcid matter, from among which the globules were feparated. By degrees the globules get rid of them, and then move at eafe.
" This vegetable power of fhooting into filaments, is in all animal and vegetable fubftances, down to the leaft microfcopic point. And to this is really owing, all that is called animal life, in the fluids produced from vegetables.
" In all our obfervations on thefe fubfances, the whole quantity of matter, after a feparation of fome volatile and faline parts, always divides into filaments, and vegetates into numberlefs zoophytes, which afterwards yield all the fpecies of microfcopic animals. After this, thofe fuppofed animals themfelves fublide to the bottom of the liquor, become motionlefs, refolve into a gelatinous filamentous fubflance, and then afford new zoophytes or animals of a fmaller kind.
" Hence we may obferve, that every animal or vegetable fubftance, advances as faft as it can, to refolve into one common principle, which is the fource of an: a kind of univerfal femen, from which each atom may again afcend to a new life. Thefe animalcule then in the femen of animals, and in the infufions and juices of animal and vegetable Fubflances, are not of the nature of any other beings, nor to be ranked with them. They conillitute a clafs apart from all others, the characteriftic of which is, that they neither are generated, nor fubfill by nutriment, like other plants or animals, nor do they generate in the ordinary way."

What then becomes of this whole boafed branch of modern philofophy? If this be fo, moft of our microfcopic difcoreries vanith into air.

Blue-flowered Gentianella requires wet weather to be fown in. As foon as any rain touches the feed-veffels, they burft open and throw the feed on every fide. Cardamines burft their pods and dart out their feed on as light touch of the hand: nay, the Cardamine Impatiens does in, even by the approach of the hand. Other fceds by their agreeable tafte or finefl, invite birds to feed upon them, who drop them again, fertilized by paffing through their body. So Miffilto is ufually fown.

The berries of Miffelto-have within their vifcid pulp, a kernel covered with a thin, whitifh fkin. One placed thefe berrics within the bark of oak, afh, beech, pear, and apple-trees, by making feveral cuts in the fides of the trees, but the whole berries would not ftay in any of them. And when he broke them, the feed always fipt out to the edge of the cut, and there fluck to the bark by its vifcous covering. He fluck one feed to the bark without any cutting at all, which fucceeded

Vol. II.
I
bcit
beff, and yielded two plants. The vifcous matter drying away, drew the feeds clofe to the bark, and on thefe with two more on an apple-tree and one on a pear-tree, there began in fpring to fhoot out at the end of the feed next the eye of the berry, a fmall deep-green fhoot, like a little clafper of a vine. At firft it rofe upward, then turning again, fwelled out fomewhat bigger round the end: yet leaving the tip quite flat, forming as it were a foot to fland upon. This foot in June came to the bark, and fixed itfelf thereon. Being thus faftened at both ends, it formed a little arch, whofe diameter was as long as the feed. Thus it remained till March following. Then the other end let go its hold, and raifing itfelf upward became the head of the plant, while the end which fprung out firf, became the root. 'Tis not uncommon, for the feeds of ever-greens to be two years before they fpring out of the ground. But this was furprizing, the change of the ends, firft one thooting out, and then the other. Yet we find nature is uniform, and even in this frrange plant, acts as in other vegetables, firft carrying the fap to form the root, then turning the courfe of it back again, to fend out the upper parts of the plant. The frangeft circuinftance is, that the rooting end flould firft fhoot into the air, and then turn down to find a place to fix on. This it is, which has kept the world fo long in ignorance about the growing of this fced. For by requiring a new, fmooth part of the bark whereon to fix the rooting part, it has fruftrated all attempts of fowing it as we do other feeds.

In Strawberries and Raberries the hairs which grow on the ripe fruit, are fo many tubes leading to the feveral feeds. And therefore we
may obferve, that in the firft opening of the flower, the whole inward area is like a little wood of thefe hairs: and when they have received and conveyed their globules, the feeds fwell and rife in a flefly pulp.

The manner wherein Moffes in general feed, is exceeding little underflood. But in one fpecies at leaft, it may be clearly explained, from a number of obfervations. The head of this Mofs appears to the naked eye, fmooth and of a pale brown colour. The top of this is bounded by an orangecoloured ring, which is a Calix, containing fixteen pyramidal ftamina, loaded with a white Farina. Thefe bend towards each other, and when the head is nearly ripe, almoft meet in a point at their tops. Immediately under the arch formed by thefe ftamina, is placed a flender, hollow piftil, through which the Farina makes its way, and is difperfed among the feeds in the head. The external membrane of the head, is a continuation of the outward covering of the falk. A fection of the head fhews, that this membrane includes a feed velfel fo large as to fill it every way. This is filled with perleet and beautiful feeds. They are round and tranfparent when unripe, but afterwards they are opake, and of a bcautiful green. The number of feeds in one of thefe heads, is not lefs than 13,800 .

The Seed veffels of Mahogany-tices are of a curious form. They confift of a large cone, which fplitting into five parts, difclofes its winged feeds. None would think, that fo tall and fo large trees, could grow on folid rocks. They are four feet and upwards in diameter. The manner
of their growth is as follows. The Seeds fly along the furface of the ground, and fome falling into the chinks of the rocks, ftrike root, then creep out upon the furface, and feek another chink. In this they fwell to fuch a fize and frength, that the rock fplits and makes way for the root to fink deeper. And with this little nourifhment the, tree in a few years grows to that flupendous fize.
The progrefs of Germination was accurately obferved by Malpighi in the Seed of a Gourd. The day after it was committed to the ground, he found the outer coat a little fwelled: and in its tip a fmail cleft appeared, through which the fperm was feen. The fecond day the outward coat was much fofter, the inner torn and corrupted, the Germ fomewhat longer and more fwelled and the beginning of the root appeared. The third day the root had made itfelf a paffage through the coat, near the former cleft. The Germ and feed-leaves alfo were now grown much bigger. On the fixth more of the feed-leaves had broken through, and were found thicker and harder. The root had fhot out many fibres, and the ftem grown a finger's length. About the twenty-firft day the plant feemed compleat, from which time the feed-leaves began to droop, till they died away.
20. The Parts of different Fruits are different: but in ail the effential parts of the Fruit, are only continu tions of the fibres, obferved in the other parts'of the tree. And there is a dire ℓ communication between the fruit and the remoteft part of the tree. Thus an apple cut crofs-ways appears to confint of four parts, Firft the Skin, derived from the outer bark of the tree. 2. The Pulp,

Pulp, which is an expanfion of the inner bark. 3. Ramifications of the woody part of the tree, difperfed throughout the pulp. To thefe are faftened the coats of the kernels. And thefe being at firft extended to the flower, part of them directly, and part obliquely, furnifh it with its nourifhment. But the Fruit increafing intercepts the aliment: and then the flower is farved and falls off. 4. The Core, which is a production of the pith of the plant, flrengthened by fibres of the wood intermixed. This is a cafe for the kernels, filtrates the juice of the pulp, and conveys it to them.

Fruit ferve not only for the food of animals, but to guard and nourifh the feed inclofed; to filtrate the coarfer part of the nutritious juice, and tranfmit only the pureft for the fupport and growth of the plantule.
In every fort of Grain, wheat, barley, or any other, there are three particulars obfervable, 1 . The outer coat, which contains all the reff. This in the fame fpecies of grain, is of a very different thicknefs in different years, as alfo in different foils. 2. The Germ or Bud. This issalways hid in the grain, and is the plant in miniature. And 3. The Meal, which is inclofed in the fkin, that furrounds the Germ, and gives it nourifhment, when firft put into the earth, before it is capable of drawing it from the earth itfelf.

The whole flructure of the plant which produces thefe grains is equally admirable. The chaffy Hufk is well adapted to defend the grain, as long as that is neceffary, and then to let it fall. The Stalk, hollow and round, is at once light and frong, capable of fuftaining the ear, without abforbing too much of the juices deflined for its

198)

nourifhment. And the Beards are a defence aspainft the Birds, that would otherwife deftroy the grain before it ripened. The covering of the grain is formed of fibres, which meet in a line and form a kind of furrow. This is the place at which the feed, when moillened, is to burft open. Were not this means prepared for the germ's coming out, the toughnefs of the outer coat, would have kept in both the meal and the germ, till they had rotted together.

Nor is this the only ufe of this place of opening. The grain is defigned not only for feed, but for food alfo. Men have art enough to erect machines, for reducing it to powder. But the birds eat it as it is, and it would pafs them whole without doing them any good, were it not, that when it is moiftened, it burfts open at the furrow and yields them nourifhment.

The meal is compofed of an infinite number of round, white, tranfparent bodies. Thefe inclofe the young plant, and by their figure being eafily put in motion, as foon as affected by the heat and moifture of the earth, they infinuate into the veffels of the plant, and give it increafe, till it is in a condition to feed on the juices of the earth. The lame procefs of nature is obfervable, when grains of corn grow out of time, on being thrown carelelly together, in a moift place.
21. Plants do likewife perfpire. To find the quantity imbibed and perfpired by plants; Dr. Hale took a pot with a large fun-flower planted in it, and by various experiments found, the greateft perfpiration in a very warm day, to be one pound fourteen ounces; the middle perfpiration one pound four ounces. It perfpired three ounces in
a warm
a warm night, when there was no dew. If finall dew fell, it perfpired nothing, if a large dew it gained two or three ounces.

The weight of the flower was three pounds: the weight of a well-fized man is one hundred and fixty. The flower perfirires twenty-two ounces in twenty-four hours: the man about twenty-five; (befides fix ounces, which are carried off by refpiration from the lungs).

A middling man eats and drinks in twenty-four hours, about four pounds ten ounces. The plant imbibed and perfpired in the fame time twentytwo ounces. But taken bulk for bulk, the plant imbibes feventeen times more food than the man. For deducting five ounces for fæces, there will remain but four pounds, five ounces, which enter the veins, and pafs off in twenty-four hours. And fince taken bulk for bulk, the plant imbibes fo much more food than the man, it was neceffary by giving it an extenfive furface, to provide for a plentiful perfpiration, fince it has no other way of difcharging fuperfluities as a man has. It was neceffary likewife that the plant thould imbibe a larger quantity of frefh fluid than the man, becaufe the fluid filtrated through its roots does not contain fo many nutritive particles, as the chile which enters our veins.

But there is a latitude of perfpiration both in men and plants. In this flower it varied from fixteen to eighteen ounces during twelve hours day, as it was watered lefs or more: in an healthy man it varies from a pound and a halfto three pounds.

Ever-greens perfpire far lefs than other plants. In proportion, they need lefs nourihment: hereby they are better able to bear the winter: like in-
I_{4} feets,
feets, which as they perfpire little, live the whole winter without food.

In order to try whether any fap rofe in winter, he made various experiments: from all which it appeared, it docs rife then alfo, but in fmall quantities. And hence we fee why an evergreen grafted on an oak will remain verdant, when the oak-leaves drop. Perfpiring lefs, it needs lefs nourihment than the oak, and fo is fufficiently fed by the fap that rifes even in winter.

In fummer, when hot fun-fhine follows a fhower, the vines in the middle of a hop-ground, are often all fcorched up, almoft from one end of a large ground to the other: at the fame time the vapours afcend plentifully. The fcorching of the vines feems to be caufed by thefe fcorching vapours, which afcend moft in the middle of the ground, the air there being more denfe, and confequently hotter than on the outfides.

The white clouds likewife which appear in fummer-time, occafion a vehement heat, by reflecting many of the folar rays, which otherwife would not touch the earth. And if the fun be on one fide, and the clouds on the other, they are perfect burning-glaffes.

Sometimes there is a kind of hollow clouds, full of hail or fnow. During the continuance of thefe the heat is extreme, fince by fuch condenfation they reflect more ftrongly. By thefe likewife thofe blafts may be produced, as well as by the reflection of denfe vapours.

The fun-flower being tender, if the fun rifes clear, faces to the caft. The fun continuing to fhine, at noon it faces to the fouth, and at fix in the evening to the weft. The caufe is, that fide
of the ftem which is next the fun, perfpires the moft, and thereby fhrinks.
" What degree of heat will plants bear ?" The common temperate point in the Thermometer is eighteen degrees." The external heat of an human body, will raife it to fifty-four degrees. Very hot fun-fhine will raife it to eighty-eight. Plants. endure a confiderably greater heat than this, near the line, for fome hours a day. But the hanging of the leaves of many of them fhews, they could not long fubfift under it.

The winter heat is from the freezing point to ten degrees; the vernal and autumnal from ten to twenty. The May and June heat is from feventeen to thirty, in which the generality of plants flourifh beft. The heat of July is, in the thade, about thirty-eight degrees; in the fun-fhine, at noon, about fifty. The heat of an hot-bed, when too hot for plants, is eighty flive or more: and near this is the heat of the blood in high feversThe dew heat of an hot-bed is fifty-fix degrees; and the fame heat hatches eggs.

A continual fleam is afcending during the fummer: the fun-beams giving the moifture of the earth, at two foot depth, a brifk, undulating motion, which rarefied by heat, afcends in the form of vapours. And the vigour of warm and confined vapour (fuch as is that which is two or three feet deep in the earth) mult be great,and penetrate the roots with fome vigour; as we may reafonably fuppofe, from the valt force of cenfined vapour in the engine for raifing water by fire.

Tho' vegetables have not, like animals, an engine which by its alternate dilatations and contractions, drives their juices through them, yet has mature contrived other means, powerfully to raife
the fap and keep it in metion. And their roots are covered with a very fine thick ftrainer, that nothing may enter but what can be readily carried off by perfpiration.

That there is a iateral communication of the fap-veffels in plants, as of the blood-veffels in animals, plainly appears from the experiment of inarching trees. For when three wall-trees are thus incorporated, the root of the middlemoft may be dug up, and the tree will grow ftill, as receiving nourilhment from the trees with which it is connected. And hence elders, willows, vines and moft fhrubs, will grow with their tops downward in the earth. For the fame reafon, if you frequently, in an evening, walh the bodies of new-planted trees, they will grow quicker and better than any others of the fame plantation.
22. If the top of a Viburnum is planted in the ground, it becomes roots, and the roots turned up become branches; and the plant grows exaclly as well as it did in its natural pofition; whether the veffels which fed the branches have changed their courfe, or whether the juices go up and down the fame veffels.
23. 1 cannot better conclude this chapter, than by tracing the Analozy between the Propagation of animals and that of vegetables. The roes of fiflies, the eggs of infects, birds, and all other animals nearly refemble each other. They are compact bodies of fuch forms as beff fuit their natures. They all have integuments nobly contrived for their prefervation, with firm coverings to fecure them from outward injuries. Thofe to be kept in the body have coverings alfo; but foft and membranous. Every kind contains its peculiar fubflance,
flance, differing from that of every other kind. And all the ee characters belong alfo to Seeds of every kind. They have their coverings, more or lefs compact, according to their neceffities. Their forms are convenient. The fubftances they contain are fpecifically different from each other: and their offspring proceeds from them in the fame manner, as animals proceed from their eggs.

But befide the fubftances peculiar to cach feed, there is a peculiar organization treafured up in each, which is the rudiment of the future plant, capable of being propagated into fuch a plant as it fprung from, and no other. So in every one of the nutkind, there is a vifible organization, peculiar to each fpecies. And if fuch an organization appear in every feed, which is large enough to be viewed clearly, we cannot reafonably doubt of their exiftence, even in thofe which are fo fmall as to efcape our fight. There are multitudes of feeds, which produce large plants, and yet appear only like duft, and a vaft number, which we cannot fee, but by the microfcope. And yet thefe doubtlefs have all their peculiar forms, and their organizations as well as the larger.

But from what are thefe organizations produced? How does every plant or animal, bring forth a frefh one after its kind? A little of this we may underftand, if we trace a tree and an animal through every flage from the egg to their utmoft growth.

See a youvg tree pufhing out its leaves and flowers, till it has extruded an entire fet of boughs and branches. Onc part regularly opens after auother from the firlt fhoot till it comes to perfec-

(204)

tion. Then and not before, it produces feeds, containing the rudiments of other trees like-itfelfThe fibres of its general organization grow into little knots, fome to form leaves, fome the calix, fome the petals, fome the piftil and utricle, fome again the little feeds, each growing fromits own pedicle. For the male parts, other fibres are formed into flamina, and from thefe terminate into apices: and again from thefe others terminate into the minute grains, commonly called the Farina facundans; each grain growing on its own pedicle, juft as the leaves or fruits of trees.

Sec an animal, exactly in the fame manner, unfolding itfelf by degrees, till its parts are explicated entirely, and it is compleat in every organ. Then and not before each female is capable of producing eygs, each being a continuation of the general organization, and growing upon its own pedicle. Each male likewife, when at its fate of. perfection, is capable of producing from itfelf the Lecundating matter, neceffary for the propagation: of the fpecies.

Let us again view a full grown tree or plant, putting forth its parts for fructification. Obferve the apices on the flamina, loaden with the globules of the farina fæcundans, the pulp of each: globule containing an exalted fluid, and conveying it to one of the papille of the piftil. The utricle is now filled with green, foft feeds, ready: to be impregnated by the globule, and containing, a. fluid, which afterward becomes a hard cosering, to each. And within this the little organization. gradually increafe.

As then a refined fluid from the feminal matter of the male, impregnates the organization in the egre of a female animal, mingles with the fubtle.
fluids.

Iuids contained iherein and promotes its growtry and progrefs; fo the refined part of the pulpy fluid contained in the globule,- impregnates the organization in the feed of a plant, mixes with its juices, and gradually promotes its growth into a perfect plant. And doubtlefs both the impregnating effluvia of animals and vegetables, and the innate juices of the organization, have qualities peculiar to themfelves. Hence the offspring of a black and a white parent, is of a colour between both. And thus if the farina of one fort of flower impregnate the egg of another, the colour of the flower produced thereby is variegated proportionably.

The juices imbibed by a plant, being compofed of innumerable various fubftances, after every part has attracted its kindred particles, the fuperfluous ones are carried off by perfpiration : chiefly by the Iea ves, which are the emunctories, that throw off thofe juices which have no kindred particles in the plant. Accordingly when the warm fun begins to rarefy the fluids, which during the winter were condenfed and inactive, the new leaves then begin to put forth, from their feveral organizations. When winter comes, as no more fluids afcend in trees, fo there is no perfíration. Confequently moft of them needleaves no longer, which therefore fall off. Nor are they fucceeded by others, till the vegetable begins to receive frefh nourifhment, and has occafion therefore for excretory velfels to carry off fuperfluities. Juft fo the fuperfluous juices in animals, are continually carsied off by peripiration: an obftruction of which is equally pernicious to animals and vegetables.

But is there any thing in the vegetable kingdom analogous to that ftrange animal the Polypus, which multiplies by being cut in pieces? There

(206)

is. View, for inflance, a young willow. This is an organized body, capable of growing, till it come to its perfect growth by means of the vegetative principle. The Polypus is an organized body, capable of being extended till it comes to its perfect growth, and of feeding and loco-motion, by its animating principle. The willow as it grows, is gradually fending off new branches, which are its fretufes, proceeding from the organizations lodged in every part. The Polypus in tike manner gradually fends off new frotufus; from organizations placed in every part of it. If the willow be cut in pieces and planted, each piece will be explicated into a tree, and then fend forth new fretufes, like its parent. And if the Polypus be cut in pieces, each piece will be explicated into a Polypus, and then extrude new faxtules: fo that cutting it in pieces, is but anticipating the propagation of thofe organizations in the pieces, which would, if let alone for a white, themfelves iffue from the fides of the parent.

If we obferve the extreme tendernefs of this animal, liable to be wounded, nay torn in pieces; by any hard body, which is carried down the ftreams, or moved in the ponds, wherein they dwell: we fee the providential reafon, for this contrivance to propagate them: as perhaps no other animal is of fo tender a texture, and fo eafily deftroyed, having neither fagacity to avoid danger, nor ftrength to bear the leaf violence.
Other trees have been propagated by a fill more furprizing way. One having caufed fome afhen pipes, that had brought water to his fountain twelve years to be taken up, they were left in the yard, where they rotted almoft entirely.
tirely. But in their room there fhot up a young foreft of afhes, which are now about four feet high. There is no afh-tree within a great diftance of the yard. Where then were the feeds from which they fprung?
24. Mr. Bonet of Geneva was inclined to try whether plants would grow, when planted in mol's inftead of earth. So he filled feveral gardenpots with mofs, and compreffed it more or lefs, as he judged the feveral plants might require, a clofer or a loofer foil.

He then fowed therein wheat, barley, oats, and peas. And he found firft, That all the grains. thus fown, came to maturity later than thofe of the fame forts, which had been fown in mould. 2. That the ftems from the feeds fown in mefs, were generally taller than thofe fown in earth. .3That there came more blades from the grains fown in mofs; than from thofe fown in the ground. 4. The grains fown in mofs produced more plentifully than the others. 5 . The grains gathered from the corn which grew in the mofs, having been fown again partly in mofs, and partly in earth, fucceeded well in both.

He alfo planted in mofs, pinks, daifies, tulips, junquils, and feveral other forts of flowers. And all thefe fucceeded full as well, as thofe of the fame fort which he planted in mould. He allo placed in mofs, cuttings and layers of vines, all which grew up into vines. And thefe in a while were larger than thofe which came from cutting and layers planted at the fame time in the ground.

Mr. Kraft fowed oats and hemp-feed in rich earth, in fand throughly dried, in fhreds of
paper, in pieces of woollen cloth, in chopt hay. He afterwards watered them daily, and they grew near as well in one fubftance as an other.

The hulbandry of Figs, as it is ftill practifed in many parts, is one of the greateft curiofities in nature. There are two forts of fig-trees, the wild and the garden fig-tree. The wild bear three kinds of fruit, Fornites, Cratitires, and Orni: and all thefe are neceffary to ripen the gardenfig. The Fornites appear in Auguft, and hold to November without ripening. Herein breed fmall worms, which turn to a kind of gnats, no where to be feen but about thefe trees. In Nòvember thefe gnats make a puncture in the Cratitires, which do not appear till towards the end of September, and the Fornites gradually fall offs after the gnats have left them. The Cratitires remain on the tree till May, and inclofe the eggs depofited in them. In May the Orni appear, which after they grow to a certain fize, are pricked by the gnat ifluing from the Caititires.

None of thele are good to eat, but only to ripen the fruit of the garden fig-tree in the following manner. In June and July, the peafants take the Orni, when their gnats are juft ready to break out, and carry them to the garden fig-tree. If they do not mind the time exaclly, the Orni drop and the garden-fruit not ripening, for want of its: proper puncture, will likewife falt foon after. Therefore they carefully infpect the Orni every morning, and transfer fuch of them as are proper. By this means the garden-figs become ripe, in about fix weeks after they have received the puncture of the infect. When they have dried them in the fun, they put them into ovens, to deftroy the eggs of the gnats laid in them, from whence atherwife
otherwife worms would be produced, which would confume the fruit.

What an expence of time and pains is here! Who can but admire the patience of the Greeks, bufied above two months in carrying thefe prickers from one tree to another! But how do thefe contribute to the ripening of the garden-figs? Perhaps by caufing the nutritious juice to extravafate, whofe veffels they tear afunder, in depofiting their eggs. Perhaps too they leave with their eggs fome kind of liquor, proper to ferment with the milk of the fig, and make it tender. Figs in Paris ripen fooner, for having their buds pricked with a flraw dipped in oil.

C HAP.

C H A P. II.

1. Of forme particular
2. Of Ambergris : plants:
3. Sugar not unwholeSome:
4. Of the corruption of plants and animals: 3. Maple Sugar:
5. General Reflections:
6. FIfty on the produc-
7. Molujies from apples: t:on, Etc. of plants and animals.
8. T remains to give a hort account of forme remarkable productions of the Vegetable kind.

The grails of the Submarine Meadows is not a fan long, and is of a green approaching to a yellow. The Tortoifes feem to live wholly on this; but they bite much more of it than they fallow. Hence the fa is covered with this grafs, whereever they feed at the bottom. About once in half an hour they come up, fetch one breath like a figh, and fink again. They breathe fomewhat oftener, when on fore; if you hurt them, the tears will trickle from their eyes. They will live. out of water twenty days and be fat, if they have twice a day half a pint of falt-water.

A fubmarine Senfitive Plant has been obServed on the Irifh Coaft. It confifts of a long flender tube about as thick as the barrel of a goof quill, growing about fix or eight inches out of the chevices of the rocks, efpecially in fuch hollows as the
the falt water remains in, afier the tide ebbs away. In the middle of the tube fprings up a flender flalk. The top of which is a reddifh, round veficle. If you point a finger to this, as foon as you are near touching it, the flalk withdraws to the very bottom of the tube, and the tube itfelf bends and becomes flaccid. The plant has no branches, nor can the root be feparated from the rock without breaking it. On the Cornifh fhores, there grows a kind of Senfitive Fucus. Bring this fo near the fire as juft to warm, and its edges fhrink up. In this fate, move a finger toward them, and they fhrink from it, but if the finger is removed, recover their former fituation. Placed on a warm hand, it moves perpetually to and from the hand, like an animal fruggling for life. It feems this odd effect is owing to the ftructure of thefe plants. They are fo extremely thin that they yield to the perfliration of the hand; the effluvia, being of force fufficient to repel the leaves when they are near.

The Vines of Hops wind about the poles with the fun, thofe of kidney-beans againf the fun, and that fo obflinately, that although the one or the other be over-night wound the oppofite way, yet in the morning it will be found to be got back again to its natural bent.

The Herb of Paraguay, as it is called, is the leaf of a tree, of the fize of a middling Apple-tree. It is fent to Peru and Spain, in great quantities, well dried and almoft reduced to powder, being ufed by the miners and many others, as we uie wine, and the Turks Opium to raife the fpirits. Indeed the Spaniards believe it to be a prefervation
tion from, and remedy for all their diforders. It is opening and diuretic, and what is furprizing produces very different effetis at different times. It purges fome, and nourifhes others: it gives fleep to the reillefs and fpirits to the drowfy. Thofe who are accuftomed to the ufe of this herb, can fcarce ever leave it off, or even take it moderately though when ufed to excefs, it brings on moft of thofe diforders that attend the too free ufe of ftrong liquors. They prepare it nearly as we do tea; but feldoon ufe any fugar with it. Sometimes they take it by way of vomit: then they drink it lukewarm.

The Caa-Tree (that is its proper name) thrives beft in the marfhy bottoms between the mountains of Maracayu, eaft of Paraguay, in about twenty five degrees twenty five minutes fouth latitude. They fometimes fend to Peru alone in a year, an hundred thoufand arobes, (an arobe is 28 pounds,) and each arobe is worth feven French crowns.

By the whole account, this appears to be a fpecies of tea, little differing from fome of thofe which grow in China. The leaf is a third part lefs than that of Bohea-tea, but much hardier: for it bears the Englifh froft, which that will not. Bohea-tea has a fmaller and a darker leaf than Green; which is as large and as bright as a bayleaf, and endures all weathers. All thefe appear to be of the lawrel kind: and I doubt, if lawrel or bay leaves properly cured, would not equal any of them.

The Coco-tree grows frait, without any branches, thirty or forty foot high. Near the top it bears twelve leaves, each ten foot long, and half
half a foot broad. Thefe are ufed in making mats, covering houfes, and for many other purpofes. Above the leaves grows a large excrefcence, in the form of a cabbage. But the taking it off kills the tree. Between the leaves and the top grow feveral fhoots, as thick as a man's arm, which when cut, yield a white, fweet, agreeable liquor, ferving as wine, and equally intoxicating. Yet at the end of four and twenty hours, it becomes a ftrong vinegar. As long as this liquor diftils, the tree bears no fruit: but when thefe fhoots are fuffered to grow, it puts forth a large bunch, wherein the Coco-nuts are to the number of ten or twelve. In each there is firft about half a pint of clear, cooling water. In a little while this becomes a white, foft pulp, which afterwards condenfes into a nut. The tree yields fruit thrice a year. Some of the nuts are as large as a man's head.

The Cacao Tree is of a middling fize; the wood is porous, the bark fmooth, and of a cinnamon colour. The flower grows in bunches between the ftalks and the wood, of the form of rofes, but without fcent. The fruit containing the Cacao is a fort of pod, of the fize and fhape of a cucumber. Within this is a pleafant, acid pulp, which fills up the interftices of the nuts till they are ripe. Then they lie clofe together, in a regular and elegant order. They have a tough thell; within which is the oily fubftance, whereof the Chocolate is made. This fruit grows differently from our European fruits, which always hang upon the fmall branches: whereas this grows along the body of the great ones, principally at the joints. None are found on the fmall; a man-
ner of vegetation frange here; but which prevails in feveral other plants within the Tropics.

The Tallow-tree, which grows plentifully in China, is about the height of a cherry-tree. Its bark is very fmooth, and its leaves of a deep fhining red. Its fruit grows in a pod, like a chefnut, confifting of three white egrains: each of which is about the fize, and of the form of a fmall nut. In each is a little fone, furrounded with a white pulp, in confiftence, colour, and even fmell like tallow. And this it is, of which the Chinefe in general make their candles.

The Horfe Chefnut contains a faponaceous juice, ufeful not only in bleaching, but alfo in wafhing linens and fuffs. Peel and grind them; then the meal of twenty nuts, is fufficient for ten or twenty quarts of water. Either linen or woollen may be wafhed in the infufion, without any other foap. It takes out fpots of all kinds, rinfing the clothes afterwards in fpring-water.

If you grind the nut, fteep the meal in hot water, and then mix it with an equal quantity of bran, both hogs and poultry will eat it. Both horfes and cows will eat the nut itfelf, mixt with other food.

The Sago Tree is between 20 and 30 feet high, and about 5 or 6 round. It grows in the Molucca Iflands. Its outward bark is about an inch thick : under this are ligneous fibres, which "cover a mafs of a kind of gummy meal. When this is ripe, a whitifh duft tranfpires through the leaves. The Malais then cut down the tree, fcoop out the mealy fubfance, dilute it with water, and ftrain
it through a fine cloth. It afterwards gradually dries and hardens, and will keep good for many years.

Palm Trees are male and female. In March or April, when the fheaths that inclofe the young clufters of the flowers and fruit begin to open, (at which time the Dates are formed) they take a fprig of the male clufter, and infert it into the fheath of the female; or elfe take a whole clufter of the male tree, and fprinkle the farina of it over feveral clufters of the female. Where they ufe the former method, one male fuffices to impregnate 4 or 500 females.

The palm tree is in its greateft vigour about 3° years after tranfplantion, and for 70 years longer bears yearly, 15 or 20 clufters of dates, each of 15 or 20 pounds weight. Afterward they gradually pine away, and ufually fall about the latter end of their fecond century.

To procure the honey of the Palm Tree, they cut off its head, and fcoop the top of the trunk into the fhape of a bafon. The fap afcending lodges in this cavity, for the firft ten or twelve days, three quarts or a gallon a day. Then it gradually diminifhes, till in fix or eight weeks, the juices are confumed, and the tree is fit only for firewood. This liquor is a thin fyrup, of a more lufcious fweetnets than honey. Hence our Poet mentions
"Fruit of Palm-Tree, pleafant to thirft And hunger both:"
Though one would imagine, a liquor of that kind, would not be very proper to quench thirf.

[^2]
(216)

fras, Rhubarb, and many others commonly thought not to be natives of Europe. The Palma Chrifti too, that plant fo much celebrated of late, from the feed of which the Caftor Oil is made, grows in many places of Sicily in the greateft abundance. Our Botanifts have called it Ricinus Americanus, fuppofing it only to be produced in that part of the world.

But the moft uncommon of all the vegetable produttions of Sicily, are fome of the trees that grow on the fides of Mount Etna. Three of thefe are nearly of one fize; but one is rather taller than the other two. It rifes from one folid ftem to a confiderable height; after which it branches out. I meafured it about two feet from the ground, and found it feventy-fix feet round. All thefe grow on a thick rich foil, formed originally of alhes thrown out by the mountain.

The Balfam-Tree grows on rocks, and frequently on the limbs or trunks of other trees. This is occafioned by birds, fcattering or voiding the feeds, which being glutinous, like thofe of Miffelto, take root and grow; but not finding fufficient nourifhment, the roots fpread on the bark till they find a decayed hole wherein is fome foil. Into this they enter and become a tree. But the nourifhment of this fecond fpot being exhaufted, one or two of the roots pafs out of the hole, and fall directly to the ground, though at forty feet diftance. Here again they take root, and become a much larger tree than before. They flourifh on the Bahama Iflands, and many other of the hot parts of America.

In Italy are many Coppice Woods, of what our gardeners call the Flowering Afh. Manna is procured
procured by piercing the bark, and catching the fap, as we do that of birch trees, to make birch wine. It begims to run in the beginning of Auguft, and in a dry feafon, runs for five or fix weeks. But we have no need to be beholden to the king of Naples. For the tree grows as well in England as in Italy.' What fupidity is it then, to import, at a large expence, what we may have at our own doors? The leaves of this tree are the proper Sena, and better than any brought from Apulia.

Peruvian Bark comes from. a tree, about the bignefs of a plumb-tree. Its leaves are like ivy. and are always green. It is gathered in Autumn, the rind is taken off all round, both from the boughs and the tree, and grows again in four months. It bears a fruit, not unlike a chefnut, except its outward fhell. This fhell is properly called China-China, and is efteemed by the natives, far above the bark, which is taken from the trunk or boughs. And it feems this only was in ufe, till the demand for it fo increafed.

The tree which produces Cotton is common in feveral parts both of the Eaft and Weft Indies. The fruit is oval, about the fize of a nut. As it ripens, the outfide grows black, till opening in feveral places by the heat of the fun, it difcovers the cotton, of an admirable whitenefs.

Pepper grows on a fhrub in feveral parts of the Eaft-Indies, which is of the reptile kind; and for that reafon is ufually planted at the foot of fome larger tree. It grows in clufters, which at firft are green. As the grains ripen, they grow reddifh; Vol. II.
and after being expofed a while to the fun, become black. To make White Pepper, they moiften it with fea-water, and then expofing it to the fun, diveft the grains of the outer bark, which. of confequence leaves them white.

The tree that bears Jamaica Pepper, is about thirty feet high, and covered with a grey, fmooth, fhining bark. It hoots out abundance of branches, which bears large leaves, like thofe of the baytree. At the very end of the twigs grow bunches of flowers, each ftalk bearing a flower, which bends back. To thefe fucceeds a bunch of herries, larger when ripe than juniper berries. They are then black, fmooth, and fhining; but they are taken from the tree when unripe, and dried in the fun. They have a mixed flavour of many kinds of fice, and hence they are called All-fpice.

The plant which affords Ginger, refembles our reed, both in its ftem and leaves. The root fpreads itfelf near the furface of the ground, in form not unlike a man's hand. When it is ripe they dig it up, and dry it either in the fun, or in an oven.

Nutmegs are inclofed in four different covers: the firft, thick and flefhy, like that of our walnuts: the fecond is a thin, reddifh coat, of an agreeable fmell, called Mace. The third is a hard blackifh fhell. The fourth is a greenifh film. In this the nutmeg is found, which is properly the kernel of the fruit.

The Wild-pine, as it is called, is a wonderful inftance of the wife providence of God. , The leaves
leaves of it are channelled, to catch and convey water into their refervoirs. Thefe refervoirs are fo made, as to contain much water. And they clofe at the top when they are full, to hinder its evaporation. Thefe plants grow on the arms of the trees in the woods, as alfo on the bark of their trunks. Another contrivance of nature in this vegetable is very admirable. The feed has many long and fine threads, that it may be carried every where by the wind, and that by thefe, when driven through the boughs, it may be held faft, and ftick to the arms or trunks of trees. As foon as it fprouts, although it be on the under part of a bough, its leaves and ftalk rife perpendicular, becaufe if it had any other pofition, the ciftern made of hollow leaves could not hold water. In fcarcity of water, this refervoir is not only neceffary and fufficient for the plant itfelf, but likewife ufeful to men, birds, and infects. Hither they then come in troops, and feldom go away without refrefhment.

Thefe leaves will hold a pint and an half, or a quart of rain-water. When we find thefe pines, tays Captain Dampier, we ftick our knives into the leaves, juft, above the root; and that lets out the water, which we catch in our hats, to our great relief.

The fame providential defign is ahfwered by the Water-withy of Jamaica. This, which is a kind of vine, grows on dry hills in the woods, where no water is to be found. Its trunk, if cut into pieces, two or three yards long, and held by either end to the mouth, affords a limpid, innocent and refrefhing fap, as clear as water: and
that in fo great abundance, as gives new life to the weary and thirfly traveller.

An admirable inftance of the fame good providence we have in the Fountain Tree, which grows on Hierro, one of the Canary Iflands. In the rocky cliff which furrounds the ifland, is a narrow gutter, which begins at the fea, and continues to the fummit of the cliff, where it falls into a valley, which is bounded by the fteep front of a rock. On the top of this grows a tree, which has continued many years. Its leaves conftantly diftil as much water as is fufficient for the drink of every living creature on the ifland. It fands by itfelf a league and a half from the fea, and no one knows of what fpecies it is. Its trunk is about nine feet round, in diameter about three. It is thirty feet high; the circumference of all the branches together is about ninety. The brantches are thick, the loweft of them is about an ell from the ground. Its fruit refembles an acorn, its leaves refemble thofe of the lauref', but are longer and broader. They come forth in perpetual facceffion, fo that the tree is always green. On the north fide of it are two cilterns of rough ftone, each fifteen feet fquare, and twelve deep: one of which contains water for the drink of the inhabitants: the other, for their cattle and all other purpofes.

Every morning, near this part of the Itland; a mint rifes from the fea. This thie South and Eafterly winds drive againf the fore-mentioned cliff, which it gradually afcends, and thence advances to the end of the valley. Being ftopt there by the front of the rock, it refls upon the leaves and branches of the tree, whence it diftils the remainder of the day.

But trees yielding water are not peculiar to the ifland of Hierro. One of the fame kind grows on the Illand of St. Thomas, in the gulph of Guinea. And of the fame nature is that near the mountains of Vera Pogz, whereof we have the following account in Cockburne's Voyages.
" In the morning of the fourth day, we came out on a large plain, in the midft of which ftood a tree of an unufual fize. Its trunk was above five fathoms round; the foil it grew on was very fony. And on the niceft enquiry we could afterwards make, both of the Spaniards and the Natives, we could not learn, that any other fuch tree had been known in all New Spain.
" Perceiving the ground under it wet, we were furprized, knowing that according to the certain courfe of the feafon in that latitude, there had no rain fallen for fix months, and that it could not be owing to the dew, for this the fun entirely dried up, in a few minutes after its rifing. At laft, to our great amazement, as well as joy, we perceived water dropping from the end of every leaf; after we had been labouring four days through extreme heat, and were almon expiring for thirft, we could not look upon this, but as liquor fent from heaven, to relieve us in our extremity. We catched it in our hands, and drank fo plentifully, that we could fcarce tell when to give over.

The Manchineel apple is moft beautiful to the oye, agreeable to the fmell, and pleafant to the tafte, but the whole tree is fo poifonous, that the wood of it while green, if rubbed againft the hand, will raife bliters.

The wood is good for tables, cabinets, and all other curious work. But the virulent nature of the fap, calls for great caution in felling the tree. I was cutting down one of them, fays Mr. Catefby, when fome of the milky juice fpurting in my eyes, I was two days totally blind, my eyes and face being much fwelled. For four and twenty hours, I felt a violent pricking pain, which then gradually abated.

Indeed it is reported, and generally believed of this tree, that the wound of an arrow dipped in its juice is mortal, that the rain which wafhes the leaves, will raife blifters on the Ikin ; and that even its fhadow is fo noxious, that the bodies of thofe that fleep under it fwell. Yet a pregnant woman ate three of the apples without any inconvenience; and a robuft man of about fortyfive years of age, ate more than two dozen without being difordered more than twenty four hours. About an hour after he had eaten them, his belly fwelled, and he complained of a burning heat in his bowels. He could not keep his body in an erect pofture; his lips were ulcerated, and he was feized with cold fweats: but he was relieved from all thefe fymptoms by a decoction of the leaves of Ricinus, the Avellana purgatrix, in water, which being drank plentifully, produced a violent vomiting and purging, for four hours, after this he was made to walk about, and fome rice gruel perfected the cure.

The Negroes in Africa ufe a poifon of an extraordinary nature. The dofe is very fmall, and hath no ill tafte. The fymptoms are various, according as the dofe is. It kills fometimes in a few hours, fometimes in months; at others, in fome
fome years. -If a great quantity is given, death follows in fix or feven hours. (The Negroes turn white.) If the dofe is but fmall, the fick lofes his. appetite, feels pain in his head, arms, and limbs, a wearinefs all over, forenefs in his breaft, difficulty in breathing, and at laft dies languifhing. Probably it is the fame poifon which is ufed in Spain and Italy. This hath but one fpecific antidote, the knowledge of which a famous Negroepoifoner, was at length perfuaded to impart. The antidote is the root of the Senfitive Plant. Take none of the root but what is in the ground; wafh it well, and fplit it in two. Take a good handful of thefe fplit roots; fteep them in three quarts of fair water, in an earthen glazed pot, having a cover. Ufe but a moderate fire, that it may boil gently. The decoction has no ill tafte; you may add fugar, as you think beft. Give the patient a good glafs of this decoction as warm as he can drink it; an hour after give another, and fo for fome time, till you make a perfect cure. There is no danger of giving too much, it can do no harm at all.

In theValley of the Lancy, which runs between the mountains of Jurin, grows a plant like the Doronicum, near the roots whereof is found pure quickfilver, running in fmall grains like pearls. One would not imagine the plant had any influence on this, but for the following experiment. Exprefs thejuice: expofe it to the air in a clear night, and there will be found as much Mercury as there is loft of juice.

But of all productions of the vegetable kind, there is none more remarkable than the Aloe. It
grows exceeding flowly. But the flownefs of its growth is afterwards compenfated, by the bulk to which it arrives, the velocity with which it thoots, and the prodigious number of flowers it produces, which ordinarily anount to feveral thoufands. It ufually takes up three months, May, June, and July, from the firfi budding of the flem, to the finifhing of the flowers. There are however exceptions to this rule. The Aloe in the garden of Cardinal Farnefe at Rome, fhot up in the fpace of one month, to the height of twenty-three feet. Another at Madrid grew ten feet in one night, and twenty-five more in the night following.

The progrefs of the Venetian Aloe, in the garden of Signior Papatava, was as follows. It began to fhoot its ftem on the roth of May, which by the 19 th of June, was rifen four Paduan feet and an inch. On the $24^{\text {th }}$ it had gained ten inches more, and on the 29th eight more, on which day it began to emit branches. On the 6th of July it hat garmed one foot one inch: ons the igitu une fưt eignt inches more; on the 7 th of Auguft, one foot and a half. From that day to the 3oth, it grew very flowly, but continued emitting branches and flowers. The trunk wasat the bottom a foot thick; the branches were twenty-three in number. On the top of each was x knot or collection of flowers. On each of the firft branches there were an hundred and twelve : on others an hundred and ten, and on others an hundred. They yielded little fmell: but what was of it was agreeable.

When the tree has once flowered, it quickly dies, being quite exhaufted by fo copious a birth. They feldom flower till they are of a confiderable
confiderable age, when they are of a large fize. and a great height. As foon as the flowerfetm begins to fhoot from the middle of the plant ${ }_{r}$ it draws all the nourifhment from the leaves, fo. that as that advances, thefe decay. And when the flowers are fully blown, farce any of the leaves remain alive. But whenever this happens. the old root fends forth a numerous quantity of off-fets for increafe.

Perhaps there is fcarce any plant in the creation which is of fo general ufe. The wood of it is firm, and ferves for fences ${ }_{r}$ and for the ufe of the carpenter. The leaves. makes coverings for houfes: the flrings and frbres ferve, in the soom of hemp, flax and cotton. Of the prickles. are made nails and awls, as alfo pins and needles. And from a large Aloe, when rightly tapped, may be drawn three or four hundred gallons of fuice, which by diftillation grows fweeter andthicker till it becomes fugar.

If there be a more beautiful flower than that of the Aloe, it grows on a fpecies of Cereus. (or Prickly Pear, as they call it, in America). which grows well in our floves: about the middle of July the flower is grown to its bignefs. Till then it appears. like a bit of wool on a dead ftem. It ufually begins to open about five in the evening, and is full blown abou eight, and: continues fo till about four the next morning. It then gradually clofes, and is thut up about fix o'clock, covered with a cold moifture. The calyx or empalement is a foot diameter, divided into fixty fegments; the outfide of a fine gold colour, the infide of a fplendid yellow, fpreading like the rays of a flar. The petals are about thirty, in form of a cup, of a pure white. There

K 5
is
is one fyle furrounded by a great number of Ramina. It fends forth a very fragrant perfume, like the Gum Benjamin while in bloflom; the empalement and petals open one by one. with great elafticity.

There is not in nature any flower of greater beauty, or that makes a more magnificent appearance. What pity, that it is only an Ephemeran! Literally the creature of a day!

It has been before obferved, That as all animals are from eggs, fo all vegetables are from feeds. But many have fuppofed there is one fort of vegetable, which is an exception to this: namely Muihrooms, the feeds whereof have been long fought in vain. And it is certain, if you only range in April, balls of horfe-dung, as big as one's fift, in lines three feet diftant from each other, and one foot under the ground, covering them all over with mould, and that again with horfe-dung in the beginning of Auguft the upper pieces of dung will begin to grow white; being covered with fine white threads, woven about the fraws whereof the dung is compofed. By degrees the extremities of thefe threads grow round into a kind of button: which enlarging itfelf by little and little, at length forms itfelf into a mufhroom. At the foot of each, when at its full growth, is an infinity of little ones. The white threads of the dung preferve themfelves a long time without rotting, if kept dry. And if they are laid again in the ground, they will produce new mulhrooms.
"Are thefe then any thing elfe than the mouldinefs or putrefaction of horfe-dung?" Yes certainly. Indeed all Mouldinefs, fo called, is a congeries
congeries of very fmall plants. And thefe in particular, like all other plants, have their origin from feeds. But before the feeds can vegetate, there are required, certain juices, proper to penetrate their coats, to excite a fermentation in them, and to nourifh the minute parts thereof. Hence arifes that valt diverfity of places; wherein different forts of this plant are produced. Some will only grow on other particular plants, whofe trunk or roots have the juices proper for them. Nay, there is one fort which grows only on the fillets and bandages of the patients in the hofpital at Paris. It is not therefore at all furprifing that horfe-dung fhould be a fit foil for common Mufhrooms. it is probable the feeds of thefe are fpread in numberlefs places, well nigh throughout the whole earth. And the fame may be faid concerning the feeds of many plants, as well as the eggs of many infects: more efpecially of thofe which are fo minute, that we can fcarce difcern them even with glaffes: feeing the fmaller they are, the more eafily may the leaft wind convey them hither and thither. So that in truth the earth is full of an inconceivable number both of animals and vegetables, perfectly formed in all their parts, and defigned as it were in minature ; only. waiting for certain favourable circumftances to enable them to make their appearance at large. How rich then muft that hand be, which hath fown them with fo much profufion!

It may not be improper before concluding this head, to defcribe one more fpecies of fea-plants. Coral grows chiefly in grottoes, which open to the fouth, and whofe concave arch is nearly parallel to the furface of the earth. It will not grow at all, but where the fea is quiet as a pond. K 6

(828)

It vegetates the contrary way to all other plants; its root adhering to the top of the grotto, and its branches fhooting downward. The root takes the exact form of the fotid it grows to, and covers it (as far as it goes) like a plate: and this is a probable proof, that its fubftance was originally fluid. Accordingly corals fometimes line the infide of a fhell, which they could not have entered hut in a fluid form. All its organifm, with regard to vegetation, feems to confift in its rind, in the little tubes whereof the juice runs to the extremities of the branches. And this juice petrify ing both in the cells, that encompafs the coraline fubftance, and in thofe at the extremity of the branches, whofe fubftance is not yet formed, by this means inlarge the plant to its full dimenfions, both in height and bulk. It is vulgarly believed, that coral is foft while in the water. But experiment proves the contrary.

It is obfervable that all Sea-plants, (except the Alga) are without roots. Nor have they any longitudinal, capillary fap-veffels, through which rooted plants draw nourifment to every part. But the whole fubftance of Sea-Plants is compofed of veficles, which receive their nourifh ment immediately from the furrounding water. Confequently they can have no circulation of the fap, having no veffels to convey it from one end of the plant to the other.
2. Many phyficians affirm, That Sugar is umwholefome, and moft, that it deffroys the teeth. But how will this agree with the following account? " My grandfather, fays Dr. Slare, took as much fugar as his butter fpread upon bread would receive,
receive, for his daily breakfaft. He put fugat into all his ale and beer, and into all the fauces he nfed to his meat. At eighty years old he had all his teeth ftrong and firm (having never had the tooth-ach) and never refufed the hardeft crult. In his $8 z d$ year one of his teeth came out, and in two or three years all the reff. But others filled ap their room, and in a fhort time he had a new fet quite round. His hair alfo from very white became dark. He continued in health and frength, and died without any difeafe, in his ninety-ninth or hundredth year.
3. It is mot only from the canes that fugar is extracted. In New England much of it is made from the juice of the Upland Maple. They firft make a hole in the tree, within a foot of the ground, fhelving inward, fo as to hold about a pint. Then they tap this hole, and by a reed draw off the liquor into a veffel. A large tree will yield between the beginning of February and the end of April twenty gallons of juice. A gallon in boiling fixteen hours is reduced to three pints, and yields more than two pounds of fugar, which our phyficians prefer to all other for medicinal ufes.
4. Moloffes likewife may be procared without fagar-canes. This was difcovered a few years ago by Mr. Chandler, of Woodftock, in New. England, an inland town, where the common Moloffes is fcarce and dear. Ever fince both he and his neighbours fupply themfelves with it, out of their own orchards. The apple that produces it, is a fummer fweeting, of a middling fize, and full of juice. They grind and prefs the apple, and then
then gently boil the juice for about fix hours. In that time it comes to the fweetnefs and confiftency and anfwers all the purpofes of other Moloffes.
5. There is one Sea-production, if it may be fo termed that is not commonly underftood. Some have maintained, that Ambergris was a fubftance naturally bred in one feecies of whales, in a bag three or four feet long. But this bag is in truth only the bladder of the whales, and the fuppofed Ambergris is only a calculus of the bladder. The largeft of thefe ever found in a whale, weighed twenty-one pounds. But pieces of Ambergris have been found, which were fix feet long, and weighed above 180 pounds.

It feems, 1. That Ambergris, like yellow amber, comes out of the earth into the fea. 2. That it comes not like Napththa, but in a thicker vifcid and tenacious confiftence. 3. That in the firft formation thereof, a liquid Bitumen or Napththa is mixed with it. 4. That large pieces. may be generated at the fame time; but ufually a fmall one rifes firft, to which another foon adheres, and fo moree and more, forming irregular figures, under which it is foft, fo that various fubftances ftick to it ; but it gradually hardens to the confiftence of wax.

However, one would not be pofitive, as to the manner of its generation. For who can explain in what manner amber is produced? Or how metals, femi-metals, precious ftones, and innumerable other mineral fubftances, are generated? We know what they are, but how they are formed, we know not with any degree of certainty.

3. The

6. The principle of Corruption in plants and animals, is probably the very fame, which during a fate of circulation, is the principle of life: namely the air, which is found in confiderable quantities, mixed with all forts of fluids. This has two very different motions; an expanfive one, arifing from its natural elafticity, by which it gives their flyids an inteftine motion, and gradually extends the parts that contain them: and a progreffive motion. It does not appear that this is effential to it. Rather it is occafioned by the refiftance of the folid parts. This reftraining its expanfion, obliges it to take the courfe that is more free and open, which is through the veffels of plants and animals.

When this courfe is fopped, the expanfive motion remains, and fill continues to act, till it has fo fully overcome the including bodies, as to bring itfelf to the fame degree of expanfion with the outward air. But this it cannot do, without deffroying the texture and continuity of thofe folids, which we call Corruption.

This deftructive quality of the air is promoted, either by weakening the tone or cohefion of the including parts; as when fruit is bruifed, which corrupts in that part much fooner than in the others: or by increafing the expanfive force of the air, by heat or fome other co-operating circumftance.

And certainly there is no corruption or putrefaction, without air. Hence either vegetable or animal bodies buried deep in the earth or water, remain for ages entire, which when expofed to the air, quickly moulder away. And hence fuch vegetables as are moft apt to putrify, remain unchanged in vacuo.

Yet various experiments feem to fhew, that air muft be impregnated by water, before it can occafion putrifation, either in animal or vegetable fubftances. For take a pound of frefh flefh, and keep it in a moderate heat, and it wilt throughly putrify in a few days. But if you firf extract the moifture, it will harden like a fone. And it may then be kept for ages, without any putrifaction. Even blood, if you deprive it of its watry part, may be kept for fifty years. But if you ther diffolve it in water, and place it in a gentle warmth, it will putify immediately.

The procefs of putrefaftion may be learned. from an eafy experiment. Take the green, juicy parts of any frefh vegetable, throw them together in a large heap, in a warn air, and lay a weight apon them. The middle part of the heap will foon coriceive a fmall degree of heat. It will. grow hotter and hotter, till it comes to a boiling heat, and is perfecly putrified.

In three days from the firf patting them together, the heat will equal that of an human body in health. By the fifth day, the heat will be fuch as the hand can hardly bear. By the feventh or eighth, all the juices are generally ready to boil. Sometimes the matter will even flame, (as does moift hay) till it burns away. But commonly it acquires a cadaverous tafte and fmell, and turns. into one foft, pulpy mafs, much refembling human excrements in the fcent, and putrified flefh in the tafte.

If this be diftilled, there will come from it, 1. An urinous fpirit, perfectly like that obtained from animals, and feparable by frefin diflillation into pure water, and a large quantity of white; dry, volatile falt, not to be difinguithed from:
animal.

(233)

animal falts. 2. An oily falt, which fhoots into globes. 3. A thick, fatid oil, both which are entirely like thofe of animals. 4. The remainder being calcined in an open fire, yields not the leaft particle of fixed falt: juft as if the fubject had been of the animal, not the vegetable kingdom. And this procefs holds equally in all kinds of vegetables, though of ever fo different natures. Yea, in dry vegetables, fo they be moiftened by water, before they are thrown into heaps.

By this means the difference between one vegetable and another is entirely taken away. By this procefs, they are all reduced to one common nature : fo that wormwood for example, and fage, become one and the fame thing. Nay, by this means the difference between vegetables and animals is quite taken away: putrified vegetables being no way diftinguilhable from putrified flelh, Thus is there an eafy and reciprocal tranfition of animal into vegetable, and vegetable into animal.

So true it is, that matter, as matter, has no concern, in the qualities of bodies. All depend on the arrangement of the partiches, whereof each body confifts. Hence water, though taftelefs, feeds aromatic mint, and the fame earth gives nourithment to bread and poifon.

As to this arrangement, the firt view of a vegetable gives us an idea, of infinitely numerous and various parts: and fo complex, that many have been difcouraged from profecuting the refearch. But upon examination, the parts which appear fo numerous, are redaced to a very fmall account. For a careful maceration in fof water will fhew, that the parts really diftinct are only feven. Thefe are 1. An outer bark, 2: an inner rind, 3. a blea, 4. a fleflry fubftance, 5. a pith. There

234)

There is between the flefh and the blea, 6. a vafcular feries, and 7. cones of veffels take their courfe within the fleth.

Whatever part of the plant we examine, we find thefe, be it a fibre, the root or the ftem. We never find more : and tracing thefe, we fee the other parts of the plants are only the productions of them. Thus the root, its defcending fibre, and the afcending falk, we find are one, not three fubftances. The fame feven parts are continued from one to the other, and what are fuppofed at its fummit, to be many new and frange parts, are found to be no more than the terminations of thefe feven. The external parts are alfo feven. 1. The cup, 2. The outer petals, 3. The inner petals, 4. The netaria, either diftinet, or connetted in one ring, 5 . The filaments, 6. The receptacle of feeds, and 7. The feed-veffels or feeds. And thefe are only the terminations of the feven conftituent fubftances of the plant. The outer bark terminates in the cup, the inner rind in the outer petals; the blea forms the inner petals, the vafcular feries ends in the neftaria, and the flefh in the filaments: the cones form the receptacle, the pith, the feed, and their capfules. Thefe are univerfal in plants, though their courfe be lefs plain in fome, and their terminations lefs diftinct in others.

Every piece therefore cut from a plant tranfverfely contains all the parts of the plant, ready to grow in length into a ftalk upwards, and into a root downwards, and to feparate at a due height from the root, into the feveral parts of the flower.

Thus we fee the arrangement of the common particles of matter into a vegetable body, although .
it be a work worthy of his hand who formed it, yet is not fo complex a thing as it appears. And this arrangement being once made in one individual, the fpecies is created for ever. For growth is the confequence of the arrangement, when it has heat and moifture.

Upon the whole : if we confider every part of a plant, we fhall find none without its ufe. The Root draws nourifhment from the earth : the Fibres convey the fap: the larger veffels contain the fpecific juice of the plant: others carry air for fuch a refpiration as it needs. The outer and inner Bark in Trees, defend them from heat and cold and drought, and convey that fap which is required for the annual increafe of the tree. And in truth every tree may in fome fenfe be faid to be an annual plant. For both leaf, flower and fruit proceed from the coat that was fuperinduced over the wood the laft year. Ard this never bears more, but together with the old wood ferves as a block to fuftain the fucceeding annual coat. The Leaves ferve, before the bud unfolds, to defend the flower and fruit, which is even then formed; and afterward to preferve them and the branches from the injuries of the fummer fun. They ferve alfo to hinder the too hafty evaporation of the moifture about the root. But their chief ufe is to concoct the fap, for the nourifhment of the whole plant: both that they receive from the root, and that they take in from the dew, the rain, and the moift air. Add to this, that they are as lungs, which fupply the plant with the neceffary quantity of air, and as excrementory ducts, which throw off fuperfluities by infenfible perfpiration. And fo neceffary is
their fervice, that mof trees, if quite ftript of their leaves, will die. And if in fummer you ftrip a vine-branch of its leaves, the grapes will never come to maturity. Not that they are hurt by the fun: expofe them to this as you pleafe, fo the leaves remain, and they will ripen well.

Another point worthy our confideration is, the immenfe Smallnefs of the Seeds of fome Plants. Some are fo extremely minute, as not at all to be difcovered by the naked eye. Hence the number of feeds produced by fome plants, is beyond imagination. A Plant of Redmace, for inftance, and many forts of Fern, produce above a million : a convincing argument of the infinite underflanding of the Former of them.

And it is remarkable, that fuch Moffes as grow upon walls, the roofs of houfes and other high places, have feeds fo exceffively fmall, that when thaken out of their veffels they appear like fmoke or vapour. Thefe therefore may either afcend of themfelves, or by an eafy impulfe of the wind be raifed to the tops of walls, houfes, or rocks. And we need not wonder how the Moffes got thither, or imagine they fyrung up fpastaneoully.

Concerning Vegetables in general we may farther remark, 1. That becaufe they are intended to be food for numberlefs fpecies of animals, therefore nature has taken fo extruordinary care, and made fo abundant provifion, for their propagation and increafe. So that they are propagated and multiplied, not only by the feed, but afo by the root: producing thoots or off-fets in fome, creeping
creeping under-ground in others. Some likewife are propagated by flips or cuttings; and fome by feveral of thefe ways. Secondly; for the fecurity of fuch fpecies as are produced only by feed, moft feeds are endued with a lafting vitality: fo that if by reafon of exceffive cold or drought, or any other accident, they happen not to fpring up the firft year, they may contime their fruitfulnefs, I do not fay, fix or feven only, but even twenty or thirty years. Nay, after this term, if the hindrance be removed, they will fpring, and bring forth frait. Hence it is, that plants are fometimes lof for a confiderable time, in places wherein they abounded before. And after fome years appear anew. They are loft, either becaufe of the unfavourable feafons, becaufe the land was fallowed; or becaufe plenty of weeds, or other plants, prevented their coming up. And as foon as thefe impediments are removed, they fpring up again. Thirdly, Many vegetables are armed 'with prickles or thorns, to fecure them from the browzing of beafts; as alfo to defend others, which grow under their thelter. Hereby likewife they are made particularly ufeful to man, either for quick or dead fences. Fourthly, Such vegetables as are weak and not able to fupport themfelves, have a wonderful faculty, to ufe the frength of their neighbours, embracing and climbing up upon them, and ufing them as crutches to their feeble bodies. Some twift themfelves about others like a fcrew: fome lay faft hold upon them, by their curious Clafpers or Tendrils, which herein are equivalent to hands. Some frike in a kind of root: others by the emiffion of a natural glue, firmly adhere to any thing which has frength fufficient to fupport them:

Clafpers are of a compound nature, between a root and a branch. Sometimes they ferve for fupport only; as in the Clafpers of Vines, whofe branches being long and flender, would otherwife fink with their own weight: fometimes, for a fupply of nourifhment alfo; as in the trunk roots of ivy; which mounting very high, and being of a clofe and veiy compact nature, the fap would not be fufficiently fupplied to the upper fprouts, unlefs thefe affifted the mother root. Fifthly, The beft of all grain, and what affords the mot wholefome and agreeable nourihment is Wheat. And it is mof patient in all climates, bcaring the extremes both of heat and cold. It grows, and brings its feed to maturity, not only in the temperate countries, but alfo in the cold regions of Scotland, Denmark, Norway, - and Mufcovy, on the one hand, and on the other, in the fultry heat of Spain, Egypt, Barbary, Mauritania, and the Eaft Indies. Nor is it lefs obfervable, that nothing is more fruitful. One bufhel when fown in a proper foil, having been found to yield an hundred and fifty, and in fome inflances abundantly more.
7. It may be of ufe to fubjoin here, firft a general view of Vegetation, fecondly, fome additional Reflections on the vegetable kingdom.

And firf. As to Vegetation itfelf, we are fenfible all our reafonings about the wonderful operations of nature, are fo full of uncertainty, that as the wife man truly obferves, Hardly do we gue/s aright at the things that are upon earth and with labour do we find the things that are before us. This is abundantly verified in vegetable
vegetable nature. For though its productions are fo obvious to us, yet are we flrangely in the dark concerning them, becaufe the texture of their veffels is fo fine and intricate, that we can trace but few of them, though affifted with the beft microfcopes. But although we can never hope to come to the bottom and firf principle of things, yet may we every where fee plain fignatures of the hand of a Divine Architect.

All vegetables are compofed of water - and earth, principles which frongly attract each other : and a large portion of air, which ftrongly attracts when fixed, but ftrongly repels when in an elaftic ftate. By the combination, action, and re-action of.thofe few principles all the operations in vegetables are effected.

The particles of air diftend each ductile part, and invigorate their fap, and meeting with the other mutually attracting principles, they are by gentle heat and motion enabled to affimilate into the nourifhment of the refpective parts. Thus nutrition is gradually advanced, by the nearer and nearer union of thefe principles, till they arrive at fuch a degree of confiftency, as to form the feveral parts of vegetables. And at length by the flying off ofthe watry vehicle, they are compacted into hard fubftances.
But when the watry particles again foak into and difunite them, then is the union of the parts of vegetables diffolved, and they are prepared by putrefaction, to appear in fome new form, whereby the nutritive fund of nature can never be exhaufted.

All thefe principles are in all the parts of Ve getables. But there is more oil in the more ex alted parts of them. Thus feeds abound with
oil, and confequently with fulphur and air. And indeed as they contain the rudiments of future Vegetables, it was neceffary they fhould be fored with principles, that would both preferve them from putrifaction, and alfo be active in promoting Germination and Vegetation.

And as oil is an excellent prefervative againft coll, fo it abounds in the fap of the more northern trees. And it is this by which the ever-greens are enabled to keep their leaves all the winter.

Leaves not only bring nourifhment from the lower parts within the attraction of the growing fruit, (which like foung animals is furnilhed with proper infruments to fuck it thence) but alfo carry off redundant watry fluid, while they imbibe the dew and rain, which contain much falt and fulphur: for the air is full of acid and fulphureous particles; and the various combinations of thefe, are doubtlefs very ferviceable in promoting the work of Vegetation. Indeed fo fine a fluid as the air, is a more proper medium, wherein to prepare and combine, the more exalted principles of Vegetables, than the grofs watry fluid of the fap. And that there is plenty of thefe particles in the leaves is evident, from the fulphureous exudations often found on their edges. To thefe refined aëreal particles, not only the moft racy, generous tafte of fruits, but likewife the moft grateful odours of flowers, yea, and their beautiful colours are probably owing.

In order to fupply tender fhoots with nourifhment, nature is careful to furnifh, at fmall diftances, the young fhoots of all forts of trees; with many leaves throughout their whole length, which as fo many jointly acting powers, draw plenty of fap to them.

The like provifion has nature made, in the corn, grafs, and reed-kind: the leafyfpires, which draw nourifhment to each joint, being provided long before the ftem fhoots: the tender ftems would eafily break, ot dry up, fo as to prevent their growth, had not thefe fcabbards been provided, which both fupport and keep them in a fupple and ductile fate.

The growth of a young bud to a fhoot, confifts in the gradual dilatation and extention of every part, till it is fretched out to its full length. And the capillary tubes ftill retain their hollownefs, notwithftanding their being extended, as we fee melted glafs-tubes remain hollow, though drawn out to the fineft thread.

The pith of trees is always full of moifture, while the fhoot is growing, by the expanfion of which, the tender, ductile fhoot is diftended in every part. But when each year's fhoot is fully grown, then the pith gradually dries up. Mean time nature carefully provides for the growth of the fucceeding year, by preferving a tender, ductile part in the bud, replete with fucculent pith. Great care is likewife taken to keep the parts between the bark and wood always fupple with flimy moifture, from which ductile matter the woody fibres, veficles, and buds are formed.

The great variety of different fubftances in the fame Vegetable proves, that there are peculiar veffels for conveying different forts of nutriment. In many vegetables fome of thofe veffels are plainly feen full of milky, yellow, or red nutriment.

Where a fecretion is defigned to compofe an hard fubftance, viz. the kernel or feed of hardftone fruits, it does not immediately grow from the fone, which would be the fhortef way to

VoL. II. L convey
convey nourifhment to it. But the umbilical veffel fetches a compafs round the concave of the fone, and then enters the kernel near its cone. By this artifice the veffel being much prolonged, the motion of the fap is thereby retarded, and a vifcid nutriment conveyed to the feed, which turns to an hard fubftance.

Let us trace the Vegetation of a tree, from the feed to its full maturity. When the feed is fown, in a few days it imbibes fo much moifture, as to fwell with very great force, by which it is enabled both to frike its roots down, and to force its ftem out of the ground. As it grows up, the firf, fecond, third, and fourth order of lateral branches Shoot out, each lower order being longer than thofe immediately above them : not only as hooting firf, but becaufe inferted nearer the root, and fo drawing greater plenty of fap. So that a tree is a complicated engine, which has as many different powers as it has branches. And the whole of each yearly growth of the tree, is proportioned to the whole of the nourifhment they attract.

But leaves alfo are fo neceffary to promote its growth, that nature provides fmall, thin, expanfions, which may be called primary Leaves, to draw nourifhment to the buds and young Thoots, before the leaf is expanded. Thefe bring nutriment to them in a quantity fufficient for their fmall demand: a greater quantity of which is afterward provided, in proportion to their need, by the greater expanfion of the leaves. A fill more beautiful apparatus we find in the curious expanfions of bloffoms and flowers, which both protect and convey nourifhment to the embryo, fruit and feeds. But as foon as the calix is formed into a fmall fruit, containing a minute, feminal
feminal tree, the bloffom falls off, leaving it to imbibe nourifhment for itfelf, which is brought within the reach of its fuction, by the adjoining leaves.

I proceed to make fome additional Reflections upon the vegetable kingdom.

All plants produce feeds: but they are entirely unfit for propagation, till they are impregnated. This is performed within the flower, by the duft of the Antheræ falling upon the moift Stigmata, where it burfts and fends forth a very fubtle matter, which is abforbed by the fyle, and conveyed down to the feed. As foon as this operation is over, thofe organs wither and fall. But one flower does not always contain all thefe: often the male organs are on one, the female, on another. And that nothing may be wanting, the whole apparatus of the antherx and fligmata is in all flowers contrived with wonderful wifdom. In moft, the fligmata furround the piftil, and are of the fame height. But where the piftil is longer than the fligmata, the flowers recline, that the duftmay fall into the fligma, and when impregnated rife again, that the feeds may not fall out. In other flowers the piftil is fhorter, and there the flowers preferve an ereft fituation. Nay, when the flowering feafon comes on, they become ereft tho' they were drooping before. Lafly, when the male flowers are placedbelow the female, the leaves are very fmall and narrow, that they may not hinder the duft from flying upwards like fmoke: and when in the fame fpecies one plant is male, and the other female, there the duft is carried in abundance by the wind from the male to the female. We cannot alfo without admiration obferve, that mof flowers expand themfelves when the fun thines, and clofe when either rain, clouds, or L 2
evening is coming on, left the genital duft fhou'd be coagulated, or otherwife rendered ufelefs. Yet when the impregnation is over, they do not clofe, either upon lhowers, or the approach of evening.

For the fcattering of feed nature has provided numberlefs ways. Various berries are given for food to animals; but while they eat the pulp, they fow the feed. Either they difperfe them at the fame time; or if they fwallow them, they are returned with interefl. The milleto always grows on other trees; becaufe the thrufh that eats the feeds of them, cafts them forth with his dung. The junipers alfo, which fill our woods, are fown in the fame manner. The crofs-bill that lives on fir-cones, and the hawfinch which feeds on pine-cones, fow many of thofe feeds, efpecially when they carry the cone to a ftone or flump, to frip off its fcales. Swine likewife and moles by throwing up the earth, prepare it for the reception of feeds.

The great Parent of all decreed that the whole earth fhould be covered with plants. In order to this he adapted the nature of each to the climate where it grows. So that fome can bear intenfe heat, others intenfe cold. Some love a moderate warmth. Many delight in dry, others in moift ground. The Alpine plants love mountains whofe tops are covered with eternal fnow. And they blow and ripen their feeds very early, left the winter fhould overtake and deftroy them. Plants which will grow no where elfe, flourifh in Siberia, and near Hudfon's Bay. Grafs can bear almoft any temperature of the air: in which the good providence of God appears : this being fo neceffary
fary all over the globe, for the nourifhment of cattle.

Thus neither the fcorching fun nor the pinching cold hinders any country from having its vegetables. Nor is there any foil which does not bring forth fome. Pond-weed and water-fillies inhabit the waters. Some plants cover the bettom of rivers and feas: others fill the marfhes. Some clothe the plains : others grow in the drieft woods, that fcarce ever fee the fun. Nay, ftones and the trunks of trees are not void, but covered with liver-wort.

The wifdom of the Creator appears no where more, than in the manner of the growth of trees. As their roots defcend deeper than thofe of other plants, they do not rob them of nourifhment. And as their flems fhoot up fo high, they are eafily preferved from cattle. Their leaves falling in autumn guard many plants againft the rigor of winter: and in the fummer afford both them and us a defence againft the heat of the fun. They likewife imbibe the water from the earth, part of which tranipiring through their leaves, is infenfibly difperfed, and helps to moiften the plants that are round about. Lafly, the particular fructure of trees contributed very much to the propagation of infects. Multitudes of thefe lay their eggs upon their leaves, where they find both food and fafety.

Many plants and fhrubs are armed with thorns, to keep the animals from deftroying their fruits. At the fame time thefe cover many other plants, under their branches, fo that while the adjacent grounds are robbed of all plants, fome may be preferved to continue the fpecies.

The Moffes which adorn the moft barren places, preferve the fmaller plants when they begin to fhoot from cold and drought. They alfo hinder the fermenting earth from forcing the roots of plants upward in the fpring, as we fee happen annually to trunks of trees. Hence few Moffes grow in fouthern climates, not being neceffary there to thefe ends.

Sea-Matweed will bear no foil but pure fand. Sand is often blown by violent winds, fo as to deluge as it were meadows and fields. But where this grows, it fixes the fand, and gathers it into hillocks. Thus other lands are formed, the ground increafed, and the iea repelled, by this wonderful difpofition of nature.

How careful is nature to preferve that ufeful plant grafs? The more its leaves are eaten, the more they increafe. For the author of nature intended, that vegetables which have flender ftalks and ereqt leaves fhould be copious and thick fet. and thus afford food for fo vaft a quantity of grazing animals. But what increafes our wonder is, that although grafs is the principal food of fuch animals, yet they touch not the flower and feed bearing ftems, that fo the feeds may ripen and be fown.

The Caterpillar of the Moth, which feeds upon grafs to the great deftruction thereof, feems to be formed in order to keep a due proportion between this and other plants. For grafs when left to grow freely, increafes to that degree as to exclude all other plants, which would confequently be extirpated, unlefs the infett fometimes prepared a place for them. Ard hence it is, that more fpecies of plants appear, when this caterpillar has laid wafte the pafture the preceeding year, than at any other time.

But all plants fooner or later, mulf fubmit to death. They fpring up, they grow, they flourifh, they bear fruit, and having finifhed their courfe, return to the duft again. Almoft all the black mould which covers the earth is owing to dead vegetables. Indeed after the leaves and flems are gone, the roots of plants remain: but thefe two at laft rot and change into mould. And the earth thus prepared, reftores to plants what it has received from them. For when feeds are committed to the earth, they draw and accolimodate to their own nature the more fubtle parts of this mould: fo that the talleft tree is in reality nothing but mould wonderfully compounded with air and water. And from thefe plants when they die, juf the fame kind of mould is formed as gave them birth. By this means fertility remains continually uninterrupted: whereas the earth could not make good its annual confumption, were it not conftantly recruited.

In many cafes, the cruftaceous Liverworts are the firt foundation of vegetation. Therefore however defpifed, they are of the utmoft confequence, in the æconomy of nature. When rocks firt emerge out of the fea, they are fo polifhed by the Gorce of the waves, that hardly any herb is able to fix its habitation upon them. But the minute cruftaceous liverworts foon begin to cover thefe dry rocks, though they have no nourifhment but the little mould and imperceptible particles, which the rain and air bring thither. Thefe Liverworts dying turn into fine earth, in which a larger kind of Liverworts flrike their roots. Thefe alfo die and turn to mould: and then the various kinds of moffes find nourifhment. Laftly, thefe dying yield fuch plenty of mould, that herbs and thrubs eafily take root and live upon it.

That trees, when dry or cut down, may not remain ufelefs to the world, and lie melancholy fpectacles, nature haftens on their deffruction, in a fingular manner. Firft the Liverworts begin to frike root in them; afterward the moifture is drawn out of them, whence putrefaction follows. Then the mulhroom-kind find a fit place to grow on, and corrupt them fill more. A particular. fort of beetle next makes himfelf a way between the bark and the wood. Then a fort of caterpillar and feveral other forts of beetles, bore numberlefs holes through the trunk. Laftly, the wood-peckers come, and while they are feeking for infects, fhatter the tree already corrupted, and exceedingly haften its return to the earth from whence it came. But how fhall the trunk of a tree, which is emerfed in water, ever return to earth? A particular kind of worm performs this work, as fea-faring men well know.

But why is fo inconfiderable a plant as thiftes, fo armed and guarded by nature? Becaufe it is one of the moft ufeful plants that grows. Obferve an heap of clay, on which for many years no plant has fprung up: let but the feeds of a thifle fix there, and other plants will quickly come thither, and foon cover the ground. For the thiftles by their leaves attract moifture from the air, and by their roots fend it into the clay, and by that means not only thrive themfelves, but provide a fhelter for other plants.

I hall add only one obfervation more, concerning the difference between Natural and Artificial Things. If we examine the fineft needle by the microfcope, the point of it appears about a quarter of an inch broad, and its figure neither round,
round, nor flat, but irregular and unequal. And the furface, however fmooth and bright it may feem to the naked eye, is then feen full of raggednefs, holes, and fcratches, like an iron bar from the forge. But examine in the fame manner the fting of a bee, and it appears to have in every part a polifh moft amazingly beautiful, without the leaft flaw or inequality, and ends in a point too fine to be difcerned by any glafs whatever. And yet this is only the outward fheath of far more exquifite inftruments.

A fmall piece of the fineft lawn, from the diftance and holes between its threads, appears like a lattice or hurdle. And the threads themfelves feem coarfer than the yarn wherewith ropes are made for anchors. Fine Bruffels lace will look as it it were made of a thick, rough, uneven hair.line, intwifted or clotted togetherin a very aukwardand unartful manner. But a filk-worm's webb on the niceft examination appears perfectly fmooth and fhining, and as much finer than any finfter in the world can make, as the fmalleft twine is than the thickeft cable. A pod of this filk winds into nine hundred and fixty yards. And as it is two threads twifted together all the length, fo it really contains one thoufand eight hundred and fixty: and yet weighs but two grains and an half. What an equifite finenefs! and yet this is nothing to the filk that iffued from the worm's mouth when newly hatched.

The fmalleft dot which can be made with a pen, appears through, aglafs, a valt irregular (pot, rough, jagged and uneven about all its edges. The fineft writing (fuch as the Lord's Prayer in the compafs of a filver penny) feems as Chapelefs and uncouth as if wrote in Runic characters. But the fpecks of moths, beetles, flies, and other infects, are moft ac-
rately circular; and all the lines and marks about them are drawn, to the utmoft poffibility of exactnefs.
Our fineft miniature paintings appear before a microfcope, as mere daubings, plaiftered on with a trowel. Our fmootheft polifhings are fhewn to be mere roughnefs, full of gaps and flaws. ,Thus do the works of art fink, upon an accurate examination. On the contrary, the nearer we examine the works of nature, even in the leaft and meaneft of her productions, the more we are convinced, nothing is to be found there, but beauty and perfection. View the numberlefs fpecies of infeets, what exactnefs and fymmetry fhall we find in all their organs? What a profufion of colouring, azure, green, vermillion; what fringe and embroidery on every part! How high the finifhing, how inimitable the polifh we every where behold! Yea, view the animalculæ, invifible to the naked eye, thofe breathing atoms fo fmall, they are almoft all workmanhip: in the too we difcover the fame multiplicity of parts, diverfity of figures, and variety of motions, as in the largeft animals. How amazingly curious muft the internal ffructure of thefe creatures be! How minute the bones, joints, mufcles, and tendons! How exquifitely delicate the veins arteries, nerves! What multitudes of veffels and circulations muft be contained in this narrow compafs! And yet all have fufficient room for their feveral offices, without interfering with each other.

The fame regularity and beauty is found in vegetables. Every ftalk, bud, flower, and feed, di'plays a figure, a proportion,' an harmony, beyond the reach of art. There is not a weed whofe
whole every leaf does not fhew a multiplicity of pores and veffels curioully difpofed for the conveyance of juices, to fupport and nourih it, and which is not adorned with innumerable graces to embellifh it.

But fome may afk, to what purpofe has nature beftowed fo much expence on to infignificant creatures? I anfwer, this very thing proves they are not fo infignificant, as we fondly fuppofe. This beauty is given them either for their own fake, that they themfelves may be delighted with it: or for ours, that we may obferve in them the amazing power and goodnefs of the Creator. If the former, they are of confequence ir the account of their Maker, and therefore deferve our regard. If the latter, then it is certainly our duty to take notice of, and admire them:-

In fhort, the whole univerfe is a picture, im which are difplayed the perfections of the Deity. It fhews not only his exiftence, but his unity, his power, his wifdom, his independence, his goodnefs. His unity appears in the harmony we cannot but fee in all the parts of nature; in that one fimple end to which they are direeted, and the conformity of all the means thereto. On every fide we difcern either fimple elements or compound bodies, which have all different actions and offices. What the fire inflames, the water quenches: what one wind freezes, another thaws. But thefe and a thoufand other operations, fo feemingly repugnant to each other, do neverthelefs all concur in a wonderful manner, to produce one effect. And all are fo neceffary to the main defign, that were the agency of any one deftroyed, an interruption of the order and harmony of the creation muft immediately enfue.

$$
\text { L. } 6 \text { Suppofe; }
$$

Suppofe, for inftance, the wind to be taken away, and all Society is in the utmoft diforder. Navigation is at a ftand, and all our commerce with foreign nations deftroyed. On the other hand the vapours raifed from the fea would remain fufpended juft where they rofe. Confequently we fhould be deprived of that ufeful covering the Clouds, which now fcreens us from the fcorching heat: yea, and of the fruitful rains. So our land would be parched up, the fruits of the earth wither, animals die, through hunger and thirf, and all nature languifh and droop. All the parts of Nature therefore were conflituted for the affiftance of each other, and all undeniably prove the Unity of their Omnifcient Creator.

His Power appears in the whole frame of creation, and his Wifdom in every part of it. His Independence is pointed out in the inexhauftible variety of beafts, birds, filhes and infects: and his Goodnefs, in taking care of every one of thefe, opening his hand, and filling all things living with plenteou/ne/s.

Every thing is calculated by Divine Wifdom, to make us wifer and better. And this is the fubftance of true philofophy. We cannot know much. In vain does our fhallow reafon attempt to fathom the myfteries of Nature, and to pry into the fecrets of the Almighty. His ways are paft finding out. The eye of a little worm is a fubje C capable of exhaufting all our boafted fpeculations. But we may love much. And herein we may be affifted by contemplating the wonders of his Creation. Indeed he feems to have laid the higheft claim to this tribute of our love, by the care he has taken to manifeft his goodnefs in the moft confpicuous manner, while at the fame time he
has concealed from us the moft curious particulars, with regard to the effences and ftructure of his works. And to this our ignorance it is owing, that we fancy fo many things to be ufelefs in the Creation. But a deep fenfe of his goodnefs will fatisfy all our doubts, and refolve all our fcruples.
8. I cannot conclude this part, better than with an Effay on the Production, Nourifhment, and Operation of Plants and Animals.

> S ECT. I.

Creatures produce their own kind.
WHEN I furvey the works of Nature with an attentive eye, I am furprized to find with what marvellous exactnefs every Creature draws its own picture, or propagates its own likenefs, though in different manners of operation. The fox produces a living fox ; the goofe drops her egg, and hatches the young goofe; and the tulip lets fall its feed into the earth, which ferments and fwells, and labours long in the ground, till at laft it brings forth a tulip.

Is it the natural fagacity of foxes that enables them to form their own image fo accurately? By no means; for the goofe and the flower do the like : the fprightly and the ftupid, the fenfible and the fenfelefs, work this wonder with equal regularity and perfection; and the Plant performs as well as the Animal.
'Tis not poffible that any of them fhould effect this by any peculiar rules of art and contrivance: for neither the one nor the other are at all ace guainted with the compofition or progrefs of

(254)

their work. The bird is entirely ignorant of the wondrous vital ferment of her own egg, either in the formation of it , or the incubation: and the mother-plant knows as much of the parts of the young plant, as the mother-animal knows of the inward fprings and movements of the young little animal. There could be no contrivance here: for not any of them had any thought or defign of the final production : they were all moved, both the beaft, bird and flower, by the material and mechanical fprings of their own nature to continue their own fpecies, but without any fuch intent or purpofe.

Give fouls to all the animal race, and make thofe fouls as intelligent as you can; attribute to them what good fenfe you pleafe in other affairs of their puny life; allow the brutes to be as rational and as cunning as you could wifh or fancy. and to perform a thoufand tricks by their own fagacity ; yet in this matter, thofe intelleztual powers muft all fand by as ufelefs: the fenfelefs vegetable has as much fkill here as the animal; thegoofe is as wife as the fox or the greyhound; they draw their own portraits with as exquifite art and accuracy, and leave as perfect images behind them to perpetuate their kind. Amazing proof and inconteftable argument of fome Superior Wifdom! Some tranfcendent contriving mind. Some Divine Artificer that made all thele wondrous machines, and fet them at work! The animal and the vegetable in thefe productions arebut mere inftruments under his Supreme Ruling Power; like artlefs pencils in a painter's hand, to form the images that his thought had before defigned: and 'tis that God alone, who before all worlds contrived thefe models of every fpecies in,

(255)

his own original idea, that appoints what underagents he will employ to copy them.

In the week of the Creation, he bad the earth teem with beafts and plants: and the earth like a common mother brought forth the lion, the fox, and the dog, as well as the cedar and the tulip, Gen. i. 11. 24. He commanded the water to produce the firft fifh and fowl; behold the waters grow pregnant ; the trout and the dolphin break forth into life; the goofe and the fparrow arife and fhake their wings, Gen. i. $20,21$. But two common parents, earth and water to the whole animal and vegetable world! A God needs no more. And though he was pleafed to make ufe of the water and the earth in thefe firft productions, yet the power and the fkill were much the fame as if he had made them immediately with his awn hands.

Ever fince that week of Creative Wonders, God has ordered all thefe creatures to fill the world with inhabitants of their own kind; and they have obeyed him in a long fucceffion of almoft fix thoufand years. He has granted (fhall I fay) a Divine Patent to each creature for the fole production of its own likenefs, with an utter prohibition to all the reft; but fill under the everlafting influence of his own Supreme Agency upon the moving atoms that form thefe plants or animals. God himfelf is the Creator ftill.
And 'tis evident that he has kept a referve of fovereignty to himfelf, and has difplayed the enfigns of it in fome important hours. Egypt was once a glorious and tremendous fcene of this fovereignty: 'twas there that he ordered the rod of Mofes, a dry and lifelefs vegetable, to raife a fwarm
fwarm of living animals, to call up a brood of lice in millions without a parent, and to animate the duft of the ground into a noifom army.

It was there he bid Aaron wave the fame rod over the ftreams and the ponds, and the filent rod under divine influence would bring forth croaking legions out of the waters without number.

But thefe are his works of miracle and aftonifhment, when he has a mind to fhew himfelf the fovereign and the controuller of nature: without his immediate commilfion not one creature can invade the province of another, nor perform any thing of this work but within its own peculiar tribe. Even Man the glory of this lower creation and the wifeft thing on earth, would in vain attempt to make one of thefe common vegetables, or thefe curious animated moving machines. Not all the united powers of human nature, nor a council of the niceft artificers with all their enginry and fkill, can form the leaft part of thefe works, can compofe a fox's tail, a goofe quill, or ${ }^{*}$ a tulip-leaf. Nature is the art of God, and it muft for ever be unrivalled by the fons of men.

Yet man can produce a man. Admirable effect but artlefs caufe! A poor limited, inferior agent! The plant and the brute in this matter are his rivals, and his equals too. The human parent and the parent bird form their own images with equal fkill, and are confined each to its own work. So the iron feal transfers its own figure to the clay with as much exatnefs and curiofity as the golden one: both can transfer only their own figure.

This appears to me a glorious inflance wherein the wifdom and power of God maintain their own fupremacy, and triumph over all the boafted reafon

(. 257)

reafon and intellectual fkill of men; that the wifeft fon of Adam in this nobleft work of nature, can do no more than a flower or a fly; and if he would go out of his own fpecies, and the appointed order of things, he is not able to make a fly, or a flower; no, not a worm, nor a fimple bulrufh. In thofe productions wherein mankind are mérely the inftruments of the God of Nature, their work is vital and divine; but if they would fet up for prime artificers, they can do nothing: a dead ftatue, a painted fhadow on a canvafs, or perhaps a little brazen clock-work is the fupreme pride of their art, their higheft excellence and perfection.

Let the atheift then exert his utmof Aretch of underftanding: let him try the force of all his mechanical powers, to compofe the wing of a butterfly, or the meaneft feather of a fparrow : let him labour, and fweat and faint, and acknowledge his own weaknefs: then let him turn his eye, and look at thofe wondrous compofures, his fon, or his little daughter, and when their infant tongues fhall enquire of him, and fay, Father, who made us? Let him not dare affume the honour of that work to himfelf, but teach the young creatures that there is a God, and fall down on his face, and repent and worlhip.

It was God who faid at firf, Let the earth bring forth grafs, and the herb yielding. Jeed-after his kind-and the living creature after his kind; and when this was done, then with a creating voice he bid thofe herbs and thofe living creatures, be fruitful and multiply to all future generations. Great things doth he which we cannot comprehend. -But he fealeth up the hand of every man, that
all men may know his divine work. Gen. i. 11.25. Job xxxvii. 5.7.

SECT. II.
The Laws of Nature Jufficient for the Production of Animals and Vegetables.

WILL you fuppofe that it derogates from the glory of divine Providence, to reprefent the great engine of this vifible world, as moving onward in its appointed courfe, without the continual interpofure of his hand? 'Tis granted, indeed, that his hand is ever active in preferving all the parts of matter in all their motions according to thefe uniform laws: but I think it is rather derogatory to his infinite wifdom, to imagine that he would not make the vegetable and animal, as well as the inanimate world, of fuch fort of workmanfhip, as might regularly move onward in this manner for five or fix thoufand years, without putting a new hand to it ten thoufand times every hour: I fay ten thou/and times every hour; for there is not anhour nor a moment palfes, wherein there are not many millions of plants and animals actually forming in the Southern or Northern climates.

He that can make a clock, with a great variety of beauties and motions, to go regularly a twelvemonth together, is certainly a fkilful artift ; but if he muft put his own hand to alfift thofe motions every hour, or elfe the engine will fand fill, or the wheels move at random, we conceive a much meaner opinion of his performance and his fkill. On the other hand, how glorious and divine an artificer would he be call'd that fhould have made
two of thefe pieces of clock-work above five thoufand years ago, and contrived fuch hidden fprings and motions within them, that they fhould have joined together, to perpetuate the fpecies, and thus continue the fame fort of clocks in more than a hundred fucceffions down to this day? though each of their fprings might fail in forty years time, and their motions ceafe, or their materials decay, yet that by the means of thefe two original engines, there fhould be engines of the fame kind multiplied upon the face of the earth, by the fame rules of motion which the artift had eftablifhed in the day when he firft formed them?

Such is the workmanfhip of God; for nature is nothing but his art. Such is the amazing penetration of divine fkill, fuch the long reach of his forefight, who has long ago fet his inftruments at work, and guarded againft all their poffible deficiences; who has provided to replenifh the world with plants and animals to the end of time, by the wondrous contrivance of his firft creation, and the laws he then ordained.

Thus every whale, eagle and apple-tree, every lion and rofe, fly and worm in our age, are as really the work of God, as the firft which he made of the kind. It is fo far from being a derogation to his honour, to perpetuate all the fecies by fuch inftruments of his agency for many ages, that it rather aggrandizes the character of the Creator, and gives new luftre to Divine Wifdom: for if any thing can be faid to be eafier or harder in this fort of almighty work, we may fuppofe it a more glorious difficulty for a God to employ a fparrow or an oyfter, to make a fparrow or an oyfter, than to make one immediately with his own hand. Perhaps there is not a wafp or a.butterfly now in
the world, but has gone through almoft fix thoufand anceftors, and yet the work of the laft parent is exquifitely perfect in fhape, in colour, and in every perfection of beauty, but it is all owing to the firft caufe.

This is wifdom becoming a God. and demands an eternal tribute of wonder and workip.
S ECT. III.

Of the Nourifhment and Growth of Plants.

IN the beginning of time and nature, at the command of God, the earth brought forth plants and herbs, and four-footed animals in their various kinds; but the birds of the air, as well as the filhes, were produced by the fame command out of the waters. This was intimated in a former fection. The water and the earth were the firf appointed mothers, if I may fo exprefs it, of all the animal and vegetable creation. Since that time they ceafe to be parents indeed, but they are the common nurfes of all that breathes, and of all that grows. Nor is the wifdom of God much lefs confpicuous in conftituting two fuch plain and fimple beings as the earth and water, to be the fprings of nourifhment and growth to fuch an innumerable variety of creatures, than it was in the formation of them out of tavo fuch materials. Is it not counted an admirable piece of divine contrivance and wifdom, that the fingle principle of gravitation fhould be employed by the Creator, to anfwer fo many millions of purpofes among the heavenly bodies in their regular revolutions, as well as among the inhabitants, and the furniture of this earthly globe where we dwell? And may
may it not be efteemed as aftonifhing an effect of the fame fupreme wifdom, that two fuch fimple things as water and earth fhould be the common materials out of which all the fanding ornaments, the vegetable beauties, and the moving inhabitants of this our world, whether flying or creeping, walking or fwimming, fhould receive their continual fuftenance, and their increafe ?

Let us firft confider this as it relates to the vegetable part of the creation. What a profufion of beauty and fragrancy, of Thapes and colours,of fmells and taftes, is fcattered among the herbs and flowers of the ground, among the fhrubs, the trees, and the fruits of the field! Colouring in its original glory and perfettion triumphs here; red, yellow, green, blue, purple, with vaftly more diverfities than the rainbow ever knew, or the prifm can reprefent, are diftributed among the flowers and bloffoms. And what variety of taftes, both original and compounded, of fweet, bitter, fharp, with a thoufand namelefs flavours, are found among the herbs of the garden? What an amazing difference of thapes and fizes appears among!t the trees of the field and foreft in their branches and their leaves? And what a luxurious and elegant diftinetion in their feveral fruits? How very numerous are their diftinct properties, and their ufes in human life? And yet thefe two common elements, earth and water, are the only materials out of which they are all compofed, from the beginning to the end of nature and time!

Let the gardener drefs for himfelf one field of frefh earth, and make it as uniform as be can; then let him plant therein all the varieties of the vegetable world, in their roots or in their feeds,

262)

as he Chall think moft proper; yet out of this common earth, under the droppings of common water from heaven, every one of thefe plants fhall be nourifhed, and grow up in their proper forms; all the infinite diverfity of fhapes and fizes, colours, taftes and fmells, which conftitute and adorn the vegetable world, (would the climate permit) might be produced out of the fame clods. What rich and furprizing wifdom appears in that Almighty Operator, who out of the fame matter fhall perfume the bofom of the rofe, and give the garlick its offenfive and naufeous powers? Who from the fame fpot of ground, fhall raife the liquorice and the wormwood, and drefs the cheek of the tulip in all its glowing beauties? What a furprize, to fee the fame field furnifh the pomegranate and the orange-tree with the juicy fruit, and the ftalks of corn with their dry and hufky grains? To obferve the oak raifed from a little acorn, into its ftately growth and folid timber, out of the fame bed of earth that fent up the vine with fuch foft and feeble limbs? What a natural kind of prodigy is it, that chilling and burning vegetables fhould arife out of the fame fpot? That the fever and the frenzy fhould flart up from the fame bed, where the pally and the lethargy lie dormant in their feeds? Is it not exceeding ftrange, that healthful and poifonous juices fhould rife up in their proper plants out of the fame common glebe, and that life and death fhould grow and thrive within an inch of each other?

What wondrous and inimitable fkill muft be attributed to that Supreme Power, that Firft Caufe, who can fo infinitely diverfify effects, where the fervile fecond caufe is always the fame?

(263)

It is not for me in this place to enter into a long detail of Philofophy, and fhew how the minute fibres and tubes of the different feeds and roots of vegetables take hold of, attract, and receive the little particles of earth and water proper for their own growth; how they form them at firft into their own fhapes, and fend them up afpiring above ground by degrees, and mould them fo as to frame the ftalks, the branches, the leaves and the buds of every flower, herb, and tree. But I prefume the world is too weary of fubftantial forms, and plaftic powers, to be perfuaded that thefe mere creatures of fancy fhould be the operators in this wondrous work. It is much more honourable to attribute all to the defign and fore-thought of God, who formed the firft vegetables in fuch a manner, and appointed their little parts to ferment under the warm funbeams, according to fuch eftablifhed laws of motion, as to mould the atoms of earth and water which were near them into their own figure, to make them grow up into trunk and branches, which every night ihould harden into firmnefs and ftability; and again, to mould new atoms of the fame element into leaves and bloom, fruit and feed, which laft being dropt into the earth, fhould produce new plants of the fame likenefs to the end of the world.

It is eafier for the fons of men to ftand and wonder, and adore God the Creator, than to imitate, or even to defcribe his admirable works. In the beft of their defcriptions and their imitations of this divine artifice, they do but chatter like Hottentots, and paint like Goths and Vandals.

$$
\begin{gathered}
\left(26_{4}\right) \\
\text { s ест. iv. }
\end{gathered}
$$

Of the nouriflament and growth of animals.

LET us proceed in the next place to furvey new wonders. All the animals of the creation as well as the plants, have their original nourifhment from thefe fimple materials, earth and water. For all the animal beings which do not live upon other animals, or the produce of them, take fome of the vegetables for their food; and thus the brutes of prey are originally indebted to the plants and herbs, i. e. to the earth for their fupport, and their drink is the watery element. That all flefh is grafs, is true, in the literal, as well as the mataphorical fenfe. Does the fion eat the flefh of the lamb? Doth the lamb fuck the milk of the ewe? But the ewe is nourifhed by the grafs of the field. Does the kite devour the chicken, and the chicken the little caterpillars or infects of the fpring? But thefe infects are ever feeding on the tender plants, and the green products of the ground. The earth moiftened with water is the common nurfe of all. Even the fifhes of the fea are nourifhed with vegetables that fpring up there, or by preying on leffer fifhes which feed on thefe vegetables.

But let us give our meditations a loofe on this entertaining fubject, and we fhall find numerous inflances of wonder in this fcene of Divine contrivance.

1. What very different animals are nourifhed by the fame vegetable food! The felf-fame herbage or fruits of the earth by the divine laws of nature and providence, are converted into animated bodies of very different kinds. Could you imágine that half the fowls of the air, as different
as they are, from the crow to the tit-moufe, fhould derive their flefh and blood from the productions of the fame tree, where the fwine watches under the boughs of it, and is nourifhed by the fruit ? Nor need Iftay to take notice what numerous infects find their nefts and their food all the fummer feafon from the fame apples or apricots, plumbs or cherries, which feed hogs and crows, and a hundred fmall birds. Would you think that the black and the brindled kine, with the horfes both grey and bay, fhould clothe themfelves with their hairy fkins of fo various colours, out of the fame green paflure where the fheep feeds, and covers himfelf with his white and woolly fleece? And at the fame time the goofe is cropping part of the grafs to nourifh its own flefh, and to array itfelf with down and feathers. Strange and flupendous texture of the bodies of thefe creatures, that fhould convert the common green herbage of the field into their different natures, and their more different cloathing ! But this leads me to another remark.
2. What exceeding great diverfity is found in the feveral parts, limbs, and coverings even of the fame creature? An animated body is made up of flefh and blood, bones and membranes, long hollow tubes, with a variety of liquors contained in them, together with many ftrings and tendons, and a thouland other things which efcape the naked fight, and for which anatomy has hardly found a name: yet the very fame food is by the wondrous fkill and appointment of the God of nature formed into all thefe amazing differences. Let us take an ox to pieces, and furvey the wondrous compofition. Befides the flefh of this huge living fructure, and the bones on which it is Vol. II.

M
built,
built, what variety of tender coats and humours belong to that admirable organ the eye? How folid and lard are the teeth which grind the food? How firm the general ligaments that tie the joints of that creature together? What horny hoofs are his fupport, and with what different fort of horny weapons has nature furnifhed his forehead? Yet they are all framed of the fame grafly materials : the calf grazes upon the verdant pafure, and all its limbs and powers grow up out of the food to the fize and firmnefs of an ox. Can it be fuppofed, that all thefe copufcles, of which the feveral inward and outward parts of the brute are compofed, are actually found in their different and proper forms in the vegetable food? Does every fpire of grafs actually contain the fpecific. parts of the horn and the hoof, the teeth and the tendons, the glands and membranes, the humours and coats of the eye, the liquids and folids, with all their innumerable varieties in their proper diftinct forms? This is a moft unreafonable fuppofition. No, it is the wifdom of the God of nature that diftributes this uniform food in the feveral parts of the animal by his appointed laws, and gives proper nourifhment to each of them.

Again, 3. If the food of which one fingle animal partakes of be never fo various and different, yet the fame laws of motion, which God has ordained in the animal world, convert them all to the fame purpofes of nourifhment for that creature. Behold the little bee gathering its honey from a thoufand flowers, and laying up the precious ftore for its winter food! Mark how the crow preys upon a carcafe: anon it crops a cherry from the tree, and both are changed into the flefh and feathers of a crow. Obferve the kine in the meadows,
meddows, feeding on an hundred varieties of herbs and flowers; yet all the different parts of their bodies are nourithed thereby in a proper manner: every flower in the field is made ufe of to increafe the flefh of the heifer, and to make food for men: and out of all thefe varieties, there is a noble milky juice flowing to the udder, which provides nourithment for young children.

So near a-kin is man, the lord of the creation, in refpect of his body, to the brutes that are his flaves, that the very lame food will compofe the flefh of both, and make them grow up to their appointed ftature. This is evident beyond doubt in daily experiments. The fame bread-corn which we eat at our tables will give rich fupport to fparsows and pigeons, to the tarkey, and the duck, and all the fowls of the yard: the moufe feals it and feeds on it in his dark retirements; while the hog in the fly and the horfe in the manger, would be glad to partake. When the poor Cottager has nurfed up a couple of geefe, the fox feizes one of them for the fupport of her cubs, and perhaps the table of the landlord is furnifhed with the other to regale his friends. Nor is it an uncommon thing to fee the favourite lap-dog fed out of the fame bowl of milk, which is prepared for the heir of a wealthy family, but which nature had originally defigned to nourifh a calf. The fame milky material will feed calves, lap dogs, and human bodies.

How various are our difhes at an entertainment? Ho has luxury even tired itfelf in the invention of meats and drinks in an exceffive and endlefs variety? Yet when they pafs into the common boiler of the ftomach, and are carried thence M 2
through
through the inteftines, there is a white juice frained out of the frange mixture called chyle, which from the lacteal veffels is converted into the blood, and by the laws of nature is conveyed into the fame crimfon liquor. This being diftributed through all the body by the arteries, is farther ftrained again through proper veffels, and becomes the fpring of nourifhment to every different part of the animal. Thus the God of nature has ordained, that how diverfe foever our meats are, they fhall firft be reduced to an uniform milky liquid, that by new contrivances, and Divine art it may be again diverfified into flefh and bones, nerves and membranes.

How confpicuous, and yet how admirable are the operations of Divine Wifdom in this fingle inftance of nourifhment! But it is no wonder that a God who could create fuch aftonifhing and exquifite pieces of machinery as plants and animals, could prefcribe fuch laws to matter and motion, as to nourifh and preferve the individuals, as well as to propagate the fpecies, through all ages to the end of time.

> S E C T. V.

The fimilar Operations of Plants and Animals.

IT is with admiration and pleafure we take notice of the regular actions of animals even in their earlieft hours of life, before they can poffibly be taught any thing by remark or imagination. Obferve the young fparrows in the nefl: fee how the little naked creatures open their mouths wide to their dam, as though they were fenfible of their dependance on her care for food and nourifhment.
ment. But the chicken juft releafed from the prifon of the fhell, can pick up its food with its own bill, and therefore it doth not open its mouth to beg food of the hen that hatched it. Yet the chicken feems to fhew its dependance too: for when the firt danger appears, you fee it run and fly to the wing of its dam for proteCtion; as though it knew, that though it could feed itfelf, yet it was not able to defend itfelf, but muft trult to better fecurity and a parent's wing.

We admire thefe little creatures, and their remarkable fagacity; we are furprized to find that they diftinguifh fo happily, and purfue their proper intereft; that they are fo foon acquainted with their abilities and their wants, and come to ufe their underftanding fo very early; for it is evident, that the mere faculty of fenfe, that is, the paffive reception of images or ideas, can never be fulficient to account for thefe wondrous imitations of reafon; fenfe has nothing to do but with the prefent impreffion, and includes no reflection or profpect of the paft or the future, no contrivance of means to an end, nor any action in order to obtain it.

But what fhall we fay, or how fhall we account for it, if we are told there are inftances almoft as admirable as thefe to be found in the vegetable world, where we never fufpect fenfe or reafon? The vine, as though it were fenfible of its own weaknefs, thrufts forth its long tendrils, which curl round the branches of any ftronger tree that ftands near, and thus it hangs its weighty clufters upon the arms of the elm that fupport it. Nay, every clufter has a tendril belonging to it, and if any Aronger twig of its own be within its reach,
it hangs itfelf there by this tendril for fupport. The hop and the lupin, or French bean, as though they knew they could not fand by themfelves, find another'way to raife their heads on high; they twine the whole length of their bodies round the poles or the rods which are planted near them; and thus their growth and their fruit are upheld from rotting upon the ground. The ivy, for the fame reafon, but by another contrivance, climbs up the oak, and flicks clofe to its fides: and the fecble plant which we vulgarly call the creeper, that can hardly raife itfelf three foot high alone, thrufts out its claws at proper diftances, fixes them faft in the neiglibouring wall or building, and mounts by this means to the tops of the highelt hovifes. What variety of artifice is found here among thefe feeble vegetables to fupport themfelves!

Yet we believe thefe plants have no underfanding, and mankind are all agreed they have no fuch thing as fenfe belonging to them; and we immediately recur to the wifdom of God the Creator, and afcribe the contrivance and the honour of it to Him alone. It was he, (we fay) who gave the vine its curling tendrils, and the creeper its hooky claws: it was he inftructed the one to bind itfelf with natural winding cords to the boughs of a fronger tree, and he taught the other as it were, to nail itfelf againft the wall. It was he fhewed the ivy to afcend flraight up the oak; and the hop and the lupin, in long fpiral lines, to twine round their proper fupporters.

Let us ènquire now, What do we mean by fuch expreffions as thefe? Truly nothing but this; that God formed the natures of thefe vegetables in fuch a manner, as that by certain and appointed
appointed rules of mechanical motion, they fhoult grow up and move their bodies and their branches fo, as to raife and to uphold themfelves and their fruit. Thus the wifdom of God, the great Artificer, is ytorified in the vegetable world.

And why fhould we not give God the Creator the fame honour of his wifdom in the animal world alfo? Why may we not fuppofe that he has formed the bodies of brute creatures, and all their inward fprings of motion, with fuch exquifite art, as even in their youngeft hours, without reafoning and without imitation, to purfue thofe methods as regularly which are neceffary for their life and their defence, by the fame laws of motion and the fame unthinking powers? This is nature, when God has appointed it. This feems to be the true idea, and the cleareft explication of that obfcure word, Inftinet.

If we allow thefe young animals to perform all their affairs by their own contrivance and fagacity, why do not we afcribe the fame fagacity and artifice to vines and ivy, that we do to young fparrows or chicken? The motions of the plants are flower indeed, but as regular and rational as thole of the animals; they fhew as much defign and contrivance, and are as neceffary and proper to attain their end.

Befides, if we imagine thefe little young birds. to practife their different forms of motion for their nouriflhment ór defence by any fprings of reafon, meaning or defign in themfelves, do we not afcribe underfanding to them a little too foon, and confefs their knowledge is much fuperior to our own, and their reafon of more early growth? Do we not make men, or rather angels of them, inftead of brute creatures? But if we fuppofe M_{4} them
them to be actuated by the peculiar laws of animal motion, which God the Creator by a long forefight has eftablifhed amongft his works, we give him the honour of that early and fuperior reafon, and we adore the Divine Artificer: Pfalm cxlv. 10. All thy works fhall praife thee, O Lord.

But we are loft among thefe wonders of thy wifdom! We are ignorant of thy divine and inimitable contrivances! What fhall we fay to thee, thou All-wife, Creating Power! Thy works furprize us: the plants and the brutes puzzle and confound our reafonings: we gaze at thy workmanlhip with facred amazement: thy ways in the kingdom of nature are untraceable, and thy wonders paft finding out.

But what will fome readers fay when they pe: rufe thefe difcourfes? Are plants and brutes fo very near a-kin to each other, creatures which we have always diftinguifhed into the fenfible and the fenflefs? Have birds and beafts no more perception or feeling, knowledge or confcioufnefs, underfanding or will than the herbs, the trees and the flowers? Is the grafs of the field as wife a thing as the animal which eats it? Excufe me here, my friends: I dare affert no fuch paradoxes. What if fome of the early actions of brute creatures are merely the effects of fuch machinery and inftinct as I before defcribed? It does not follow thence, that all the actions and operations of their lives muft be afcribed to fuch a mechanical principle. Even in human nature, where there is an undoubted principle of fenfe and reafoning, there are fome early actions which feem to be the proper effects of fuch inftinct or mechanifm, and are owing to the wondrous divine artifice in the contrivance of their
their animal bodies, and not to any exercife of their own reafoning powers. How doth the infant hunt after the breaft, and take it into its mouth, moving the lips, tongue and palate in the moft proper forms for fucking in the milk to nourif it? How does it readily fhut the eyes, to cover them from any danger near? How does it raife its cries and wailings aloud for help when it is hurt? Thefe are certainly the effects of inflinet in their outward members, as much as the circulation of their blood and digeftion of their food in their bowels and inward parts.

It is certain, there are feveral operations in the lives of brute creatures, which feem to be more perfeet imitations of reafon, and bid fairer for the real effect of a reafoning principle within them, than thefe early actions which I have inentioned. What frange fubtilty and contrivance feem to be found in the actions of dogs and foxes? What artifices appear to be ufed hoth by birds and beafts of prey, in order to feizeg the animals which were appointed for their food, as well as in the weaker creatures, to avoid and efcape the devourer? How few are there of the paffrons, as well as the appetites of human nature, which are not found among feveral of the brute creatures? What refentment and rage do they difcover? What jealoufy and: fear, what hope and defire, what wondrous inftances of love and joy, of gratitude and revenge? What amazing appearances of this nature are obferved in birds and beafts of the more docile and domeftic kind? Such as puzzle the wifent of philofophers to give a plain, fair and fatisfactory account how all thefe things can be performed by mechanifm, or the mere laws of matter and motion? But how many actions foever may be
performed by brute creatures, without any principle of fenfe or confcioufnefs, reafon or reflexion, yet thefe things can never be applied to human nature. It can never be faid, that man may be an engine too, that man may be only a finer fort of machine, without a rational and immortal fpirit. And the reafon is this. Each of us feel and are confcious within ourfelves, that we think, that we reafon, that we reflect, that we contrive and defign, that we judge and chufe with freedom, and determine our own actions: we can have no fronger principle of affent to any thing than prefent, immediate, intellectual confcioufnefs. If I am affured of the truth of any inference whatfoever, it is becaufe I am fure of my confcioufnefs of the premifes, and of my confcioufnefs that I derive this inference from them. My confcioufnefs of thefe premifes therefore is a prior ground of affurance, and the foundation of all my certainty of the inferences. Let a thoufand reafons therefore be lait before me, to prove that I am nothing but an engine, my own inward prefent confcioufnefs of this propofition, that I have thoughts, that I have reafoning powers, and that I have a will and free choice, is a full evidence to me that thefe are falfe reafonings, and deceitful arguments: I know and am affured, by what I feel every moment, that I have a fpirit within me capable of knowing God, and of honouring or difhonoring my Maker, of chufing good or evil, of practifing vice or virtue, and that I hereby am bound to approve myfelf to the Almighty Being that made and governs me, who will reward me in fome future fate or other, according to my behaviour in this.

And as I can certainly determine this truth, with
with regard to my own nature, fo when Ifee creatures round about me of the very fame fpecies with myfelf, I jufly infer the fame truth concerning them alfo: I conclude with affurance, that they are not mere engines, but have fuch reafonable and immortal fpirits in them, as I find in myfelf. It is this inference of fimilar and equal caufes from fimilar and equal effects that makes a great part of the frience of mankind.

Befides, I daily hear men difourfing with me on any fubject, and giving as regular and reafonable anfwers to my enquiries, as I do to theirs; I feel within myfelf, it is impoffible for me to do this without thinking, without the careful exercife of my intellettual and reafoning faculties, fuperior to all the powers of mechanifm; and thence I infer, it is as impoffible for them to practife the fame difcourfe or converfation, without the powers of a rational and intelligent fpirit, which in its own nature is neither material nor mortal.

Let the quefion therefore which relates to brute creatures be determined to any fide, it does not at all affet the nature, the reafon, or the religion of mankind. It is beyond all doubt, that man is a creature which has an intelligent mind to govern the machine of his body; that man has knowledge, and judgment, and free choice ; and unlefs he approve his conduct to the eyes of his Creator and his Judge, in this ftate of mortality and trial, he expofes himfelf to the juft vengeance of God in his future and immertal ftate.

It is certain, that the All-wife and All-righteous Governor of intelligent creatures, will not appoint the very fame fate and period to the M6 pious
pious and the profane ; neither his wifdom, his equity, nor his goodnefs, will fuffer him to deal out the fame bleffings and the fame events in every ftate of exiftence, to thofe who have loved him with all their fouls, and thofe who have hated and blafphemed his name. It is the glory and the intereft of the Supreme Ruler of the univerfe, to make a confpicuous and awful. diftinetion in one world or another, between thofe who have endeavoured to ferve him, and to render his majefty honourable among men, and thofe who have impioully abufed all his favours, ridiculed his thunder, and robbed him of his choiceft honours. But if philofophy fhould fail us here, if it were poffible for creatures of fuch different characters to have nothing in their own natures which was immortal, yet it is a very reafonable thing, that the great Judge of all fhould prolong their beings beyond this mortal flate, that the fons of vice might not go triumphant off the flage of exiftence, and that the men of virtue might not be always oppreffed, nor come to a period of their being, without fome teftimony of the approbation of the God that made them.

CHAP.

asan an an an

C H A P. III.

Of Metals, Minerals, and other Foffils.

2. The general Pro- 10. Of Salts. perties of Metals. 11. Of Stones.
3. Of the Nutrition and 12. OfpetrifyingSprings.

Generation of Me- 13. Of Copper Springs. tals.
4. OfGold, Silver, Platina, Copper, Iron,
Tin, Lead.
5. Of Steel.
14. Of Lime.
15. Of precious Stones.
16. Of the Loadftone.
17. Of inflammable Fof-
6. Of Quickflver.
fils.
7. Of Mines.
18. Of Amber.
8. Of Mundic.
19. Of Linum A/beftum.

AM ON G the bodies that remain to be confidered, thofe which feem to bear the anereft refemblance to plants, are Foffils, comprehending under the name, all bodies that are dug out of the earth. Thefe have frequently been, for order's fake, divided into three claffes; fuch as are capable of liquefaction, fuch as are reducible to a calix, and fuch as are inflammable. Of the firft clafs are Metals, Gold, Silver, Platina, Copper, Iron, Tin, Lead, Quickfilver. However, thefe differ in other refpeets, they all agree

(278)

agree in the fuilowing particulars, That they are heavier than any other bodies yet known, that they are malleable, and that they are capable of liquefaction.
2. It is not improbably fuppofed, all Metals confift of particles fo heavy, that they cannot be wholly torn afunder or diflipated by fire, or put, into fo rapid a motion as to inflame. It only feparates them fo far as not to refift fo hard a body, which is what we term Liquefaction. Their Malleablenefs, or bearing to be wrought by the hammer, may fpring from the figure of their parts, perhaps oblong or fquare, which may occafion their cohering fo ftrongly, as not eafily to be feparated. And it is probable the pores either of their confittuent particles, or of the whole mafs, are few and finall ; which may account for their being fo much heavier than any other known bodies.

This is the radical character of Metals. The weight of gold to that of glafs is as nine to one. And the weight of tin, the lighteft of all Metals, is to that of gold as feven to nineteen: which confiderably furpaffes the weight of all fones and other the moft folid bodies. Nor is there any body in nature but a Metal, that is one third of the weight of gold.

The fpecific weight of the feveral Metals, and of the granate water and air, fands thus:

Gold	19636	Iron	7852
Quickfilver	14019	Tin	73^{21}
Lead	11345	Granate	3978
Silver	10535	Water	1000
Copper	8843	Air.	$-\quad$-i-

3. The
4. The Nutrition of Metals feems to confift only in the accretion of homogeneous parts, which is not improbably fuppofed to continue, while they lie in their native bed. Many fuppofe, they have lain there ever fince the flood, if not ever fince the creation. Whether they have or not, they feem to grow as long as they remain therein. And after thefe beds have been emptied by miners, in a time they recruit again. Yea, the earth or ore of allum will recruit again above ground, if it be expofed to the open air. And fo in the foreft of Deane the beft iron, and in the greateft quantities, is found in the old cinders melted over again.

However, it has been long difputed, whether Metals are generated, or were all originally produced at the creation: and whether there be any general Seed of Metals, as fome fuppofe Antimony to be. This is indeed a Foffil of a very peculiar nature. It is a kind of undetermined, metallic fubftance, mixed with fony and fulphurcous particles, fo that it is hard to reduce it to any clafs. It is found in mines of all Metals, but chiefly in filver or leád mines. That in gold mines is counted the beft. It has alfo its own peculiar mines. It lies in clods of feveral fizes, nearly refembling black-lead, but is full of fmall fhining threads, like needles, brittle as glafs. It melts in the fire, though with fome difficulty. Its ufes are very numerous. It is a medicine of fovereign ufe in many cafes, when warily and properly adminiftered. It is a commion ingredient in burning concaves, ferving to give the compofition a finer texture. It makes a part in bell-metal, in order to render the found more clear. It is mingled with tin, to make it more hard, as well as of a brighter
brighter colour, and with lead, in cafting of Printers Letters, to render them more fmooth and firm. It is alfo a general help in the cafting of Metals, and efpecially in cafting cannon-balls.
4. Gold is either found in fmall grains in the fand of rivers, (formerly in feveral of the rivers of Europe) or is dug out of the earth, in fmall pieces of a tolerable purity. Sometimes it is alfo found, like the ore of other Metals, in a mafs of earth, ftone, or fulphur. In this fate it is of all colours, red white, blackifh, making no oftentation of its real value.

The chief properties of Gold are, 1. It is the heavieft, though not the hardeft, of bodies. 2 . It is the moft ductile and malleable of all Metals, of which gold-beaters and wire-drawers give us an abundant proof. But this depends altogether (incomprehenfible as it is) on its being free from. fulphur. For mix but one grain of fulphur with a thoufand of gold; and it is malleable no longer. 3. It is more fixed in the fire than any other Metal. Lay a quantity of gold two months in the intenfeft heat, and when it is taken out, there is no fenfible diminution of its weight. And yet in the focus of a large burning glafs, it volatilizes and evaporates. Yea, many thoufands of moidores were wholly confumed, others half, or a quarter confumed, by the flames which broke out of the earth, during the late earthquake at Libon. Gold may likewife by a glafs be fufed into a fort of calx, and then vitrified. But if the fame be fufed again with greafe, it is reflored into gold. 4. It is diffolvible by no menftruum known, but Aqua Regia and Mercury. The bafis of Aqua Regia is feafalt, the only falt which has any effect on gold. But this has its effect, however applied, whether
in a fluid or folid form. 5. It readily and fportaneoully attracts and abforbs Mercury. But as foon as the Mercury enters it, the gold becomes foft like pafte. 6. It withftands the violence both of lead and antimony. All Metals but gold and filver, melted with lead, perifh with it and evaporate; and all but gold, if melted with antimony. Thus melt gold, filver, copper and tin with antimony, and all the reft rife to the top, and are blown off with bellows, but the gold remains hehind. Hence antimony is ufed as the teft of gold.

The malleablenefs or ductility of gold, is beyond all imagination. By exact weighing and computation it has been found, that there are gold leaves, which in fome parts of them are fcarce 3500 oth part of an inch thick. And yet this is a notable thicknefs. in comparifon of that of the gold fpun on filk in gold-thread. It has been proved, that the breadth of thefe gold plates is only the 96 th part of an inch, and their thicknefs, the 3072 d : fo that an ounce of gold is here extended to a furface of 1190 fquare feet.

How thin muft it be when thus extended! In fome parts it has been computed, its thicknefs is only the $3,150,000 t h$ part of an inch! And yet with this amazing thinnefs, it is ftill a perfect cover for the filver: nor can the beft eye, or even the beft microfcope difcern the leaft chafmor difcontinuity. Nay, there is not an aperture to admit Alcohol of wine, one of the fubtleft fluids in nature : no, nor light itfelf. So clofely connected are the particles, notwithftanding their inconceivable thinefs.

Silver approaches the neareft to gold in ductility and refifting fire. Like the ore of all other

Metals,

Metals, it is found in the earth, undef different forms and colours. But it ufually affects fomewhat of a pointed regular form like chryftals. It is never found in fand or grains, as native gold is. It is fometimes afh-coloured, fometimes fpotted with red and blue, fometimes of changeable colours, many times almoft black.

Although the hiftory of Foffils has been diligently cultivated, efpecially by the moderns, yet it muft be owned, that amidft the vaft variety of them, there is fill room for new enquiries. No wonder therefore, that among the great variety of falts, ores and other concretes, new mixtures fhould daily be difcovered. But that among bodies fo fimple as Metals, any fhould fill remain unknown, will appear extraordinary.

Yet fo it is: there has been difcovered in New Spain, an original Metal between gold and filver. The Spaniards call it Platina, from the refemhance in colour which it bears to filver. It is of an uniform texture, bright and Chining. It takes a fine polifh, and does not tarnifh nor ruft. It is, very hard and compact, but exeremely brittle, and malleable but in a finall degree.

It is found chiefly in fmall grains, yet not pure, but mixed with a fhining black fand. There are likewife ufually mixed with it, a few fhining particles of a golden colour.

When expofed by itfelf to the fire, it is extremely hard to melt. It has been kept for two hours in an air furnace, in a heat that would melt caft iron in fifteen minutes, without being either. melted or wafted. But when expofed to a proper heat with gold, filver, copper, lead, or tin, it readily melts and incorporate $\$$ with them. Hay-
ing been kept in an affay-furnace with lead for three hours, till all the lead was wrought off, it was found remaining at the bottom, without having fuffered any alteration or diminution. A piece of it was put into ftrong aqua-fortis, and kept in a fand-heat for twelve hours, yet when taken out, it was no ways corroded, and was of the fame weight as when put in. It has been faid to be heavier than gold: but that is a miftake. Its fpecific gravity is to that of water, as fifteen to one. Yet an equal mixture of gold and platina, was near as heavy as gold itfelf, being to water as nineteen to one. It appears then, that no known body comes fo near gold in fixednefs and folidity. If it could be made as ductile as gold it would not cafily be diftinguithed from it.

Platina is likewife found in large hard maffes; thefe maffes are with great labour, reduced into fmall grains, which are afterwards ground with mercury to extraEt the gold; and it is not to be brought into fufion by the greateft degree of fire procurable in the ordinary furnaces. It entirely refifts the vitriolic acid, which diffolves or corrodes every other known metallic body except gold. Nay, it refifts the marine fumes, and the regal cement, fo called, from its being fuppofed to purify gold from all heterogeneous metallic matters. It alfo refift's the force of the vitriolic and nitrous acids, though applied in fuch a manner as to be capable of perfectly diffolving all other known metallic bodies. It follows from other experiments, that Platina contains no gold; for it cannot any more than the common metallic fubftances, ' prevent a fmall portion of gold mixed with it from being difcoverable. It farther appears, that Platina, like gold, is not acted on hy the fimple

(284)

fimple acids which diffolve every metallic body befides: that aque regix, the folvents of gold, prove menftrua for Platina; and that confequently the common methods for affaying or purifying gold by aqua fortis, aqua regia, or the regal cement, can no longer be depended on: that it differs from gold, in giving no fain to the folid parts of an:mals, not ftriking a purple colour with tin, not being revived from its folutions by inflammable fpirits, not being totally precipitable by alcaline falts; that in certain circumflances it throws out gold from its folutions; that thefe properties afford means of diftinguifhing a fmall portion of gold mixed with a large one of Platina, or a fmall portion of Platina with a large one of gold; and that Platina contains no gold excepting the few particles diftinguifhed by the eye. That Platina is precipitated from its folutions by the vitriolic acid, and by the metallic fubfances, which precipitate gold, though fcarce totally by any: and that its precipitates refift vitrification, and this perhaps in a more perfect manner than precipitates of gold itfelf. It is therefore a fimple Metal of a particular kind, effentially diftinct from all thole hitherto known, though poffefied of fome properties generally fuppofed peculiar to gold. Many of its characters have been already pointed out; others refult from combining it with the feveral Metals, with each of which, notwithftanding its refiffance to the moft intenfe fires by itfelf, or with unmetallic additions, it melts perfetly; occafioning remarkable alterations in their colours, texture, and hardnefs. It melts with equal its weight of each of the Metals, with one more readily than with another. With forpe it becomes fluid, in a moderate
moderate fire; but a ftrong one is requifite for its perfect folution. Compofitions of filver, copper, lead, with about one third their weight of Platina, which had flowed thin enough to run freely in the mould, and appeared to the eye perfectly mixed, on being digefted in aqua-fortis till the menftruum ceafed to att, left feveral grains of Platina in their original form. Upon viewing thefe with a microfcope fome appeared to fuffer no alteration; others exhibited an infinite number of minute bright globular protuberances, as if they had juft began to melt. Platina hardens and fliffens all metals; one more than another, lead the moff. In a moderate quantity it diminifhes, and in a large one deftroys, the toughnefs of all the malleable Metals, but communicates fome degree of this quality to caft iron. Tin bears much the leaft, and gold and filver the greatef quantity without the lofs of their malleability. A very fmall portion of Platina fcarce injures the colour of copper and gold : a larger renders both pale. A far lefs quantity has this effett on copper than on gold. It debafes and darkens in proportion to its quantity, the colour of the white Metals; that of filver much the leaft, and of lead the moft. It in good meafure preferves iron and copper from tarnifhing; fcarce alters gold or filver in this refpe e ; makes tin tarnifh foon, and lead exceeding quick.

Copper comes next to filver in ductility. Brafs is an artificial Metal, compofed of copper fufed with lapis calaminaris. Iron is lefs ductile than any of thefe, and contains more drofs.* It likewife

[^3]wife eafily rufts, whereas filver feldorn rufts, and gold feldom either rufts or cankers. Tin refembles * lead, but is confiderably harder, and not near fo heavy. Indeed it feems to be a fort of imperfect metal, generated of two different feeds, that of filver and that of lead, which makes it a kind of compound of both. And it is fometimes found in filver mines, fometimes in leadmines, though it has alfo mines of its own. It is the lighteft of all Metals, very little ductile or elaftic, but the moft fufible of all. It is fcarce diffolvible with acids, but eafily mixes with other Metals.

Of all the fubftances concurring to form the terreftrial globe, Iron feems to have the greateft fhare; as it not only abounds in moft kinds of fone, but enters greatly into the compofition of clay. This may be judged from the fimilitude of colour between clay, and dry Iron-ore, from the eafy vitrification of clay, from the refemblance of vitrified clay to clinkers of Iron, from its deep red colour after calcination, and lafty, from its yielding pure iron, by being burnt with oil.

Dr. Lifter bas fhewn that flones out of the human bladder being calcined, Iron may be extracted

Spirit of vitriol, you ufe oil of vitriol, which is the moft acid part of that mineral, there happens immediately a fnall fermentation, which is quickly over. That fermentation begins again in a few days, under the form of a white fmoke, which rifes to the furface, and the whole mafs of iron turns into a very white Pap which fmells like common fulphur. When the fermentation is over, the iron, inftead of turning into green vitriol, becomes on a fudden white vitriol. Mean time there is on its furface a black duft, which it has thrown up.i It feems this would have made it green. For if white vitriol be mingled with this duft, it acquires a green colvur.

* White-Lead is thin plates of lead diffolved in vinegar.

Red Lead is common lead calcined.
Black Lead (very improperly fo called) is only a talk y kind of earth.
tracted from them by a loadftone. And there is fcarce any terreftrial fubftance either in men, brutes, or plants, which after uftion doth not exhibit fome metallic particles. Dr. Bucher fays, that out of brick-earth, mixed with any fat or oil, and calcined in the fire, he hath produced iron: for it is only the iron that caufes the rednefs of the bricks: and it can be extracted from them again. Moreover, Metals are diffolved by the falts and moifture in the earth, and fo mix with the nutritious juices of vegetables; hence it may in fome refpects be faid, that we eat metals with the greateft part of our food.

The Arbor Martis is a germination of iron, refembling a natural plant. The manner of its difcovery was this. One poured oil of Tartar on Iron filings, diffolved in fpirit of nitre in a glafs. Prefently the liquor fwelled much, though with little fermentation, and was no fooner at reft, than there arofe a fort of branches adhering to the glafs, which increafed till they covered it all over. And thefe branches were fo perfect, that one might even difcover a kind of leaves and flowers thereon. The experiment has fince been frequently repeated, and with the fame fuccefs.

A friend of mine thewed me an experiment of the fame kind. In a glafs placed over a moderate fire, there was a continual budding of filver, in the form of a branch. When this was clipped off with fciffars, and a little crude mercury added, in a fmall time there arofe another branch of true filver, which had fucked in and converted into Metallic fprigs, a confiderable portion of the quick filver. The increment of new Silver branches
branches ceafed not, as long as the fire was continued and frefh mercury fupplied, for the due nutriment of this mineral regetation. The ingredients were only aqua-fortis, quickfilver, and a fmall quantity of filver, far lefs than you may reap in a fmall time from thefe Silver fprigs. Yet far more expence is blown away in fmoke, than can be recovered from this Silver harveft.

Not much unlike this was an experiment made by a gentleman, who kept in a cabinet fome pieces of Fire-ftone from a coal-pit, and fome large pieces of crude Allum-ftone, fuch as it was when taken out of the rock. After a time both thefe lad fhot out tufts of long and flender fibres : fome of which were half an inch long, bended and curled like hairs. And as often as thefe tufts were wiped off, they fprouted out again.

But both of thefe fall fhort of what is related by a curious naturalift. "Having extracted the falts out of a quantity of Fern-afhes after the common method, moft of the water being evaporated, I had feveral pounds of falt, moft of which being dried, I expoled the reft to the air. Having put it into a large glafs, I forgot it for five or fix weeks : looking after it then, I was faluted with a pleafing fpectacle. The lixivium had depofited a large portion of falt, out of which fprung at a fmall diftance from each other, about forty branches, which exactly refembled Fern, putting out many leaves on each fide, from one ftem. They were of different fizes, but the figures of all were precifely the fame. And thefe artificial vegetables, taking care not to fhake them, I preferved for many weeks."

And yet the following account is franger fill. " I mixed equal parts of Sal Ammoniac and Potafhes which were put into a tall glafs body, till plenty of volatile falt fublimed. I expected no unufual appearance from this, having often repeated the operation. Being called out juft as the falt began to appear, how was I amazed at my return, to fee in the glafs-head a foreft in perfpective, fo delineated, as fcarce to be equalled by the greateft mafters. They were a reprefentation of firs, pines, and another fort of tree which I had never feen. But of this delightful fpectacle I was foon deprived by the fublimation of more falts.
" The next day I related this to Sir Robert Murray. He told me, one Davifon, an experienced Chymift at Paris, had frequently fhewed him in a glafs a great company of firs and pines, full as lively as any can be painted. But in a little time they difappeared. He produced them ayain at pleafure. But herein his operation differed from mine: : the fubftance out of which he raifed thofe Shapes was of a more fixed nature; that which afforded mine, was volatile to the higheft degree. Again, He could conftantly and regularly produce thofe beautiful reprefentations: whereas mine unexpectedly appeared; nor have I any hope of feeing them again."

Sal Ammoniac is made of the foot arifing from the dung of four-footed animals, as fheep, oxen and camels, fo long as they feed only on green vegetables. This dung is collected in the four firft months of the year, when all thefe feed on frefh fpring grafs. This in Egypt is a kind of trefoil or clover. But when the cattle are fed on hay, and the camels on bruifed date-kernels, their excrements are not fit for this purpofe.

Voi. II.
N
The

The Nitre of Egypt was well known to the antients. It is produced in two lakes near Memphis. One of them is four or five leagues long and one league broad: the other, three leagues long, and one and an half broad. In both, the Nitre is covered by a foot or two of water. They cut it up with long iron bars, fharp at the end. And what is taken away, is replaced in one or two years, by new Nitre, coming out of the earth.
5. If iron in melting be carefully purged from its drofs, drawn into plates, and plunged red hot into cold water, it grows harder, and is termed Steel. But it is confiderably foftened again, if it is put into the fire, and afterward left to cool gradually in the air.
6. Quickfilver differs from all metals, in that it is naturally liquid. Its properties are $1 . \mathrm{I}_{\mathrm{t}}$ is the heavieft of all bodies, but gold and platina. 2. It is the moft fluid of all. The particles even of water, do not divide fo eafily as thofe of Quick filver: they have hardly any cohefion. 3. Of all bodies it is divifible into the minutef parts. Being on the fire, it refolves into an almoft invifible vapour. But let it be divided ever fo much, it fill retains its nature. For the vapours of diftilled Quickfilver, rereived in water or on moift leather, become pure Quick filver. And if it be mixed with lead or other bodies, in order to be fixed, it is cafily by fire feparated from them again, and reduced to its ancient form. 4. It is extremely volatile, being convertable into a fume, even in a fand-heat. 5. Of all fluids it is in equal circumftances
flances the coldef and the hottef. This depends on its weight; for the heat and cold of all bodies, is (creteris paribus) as their weight. 6. It is diffolsable by almoft all acids, but vinegar. And hereby we difcover, if it be fophificated with lead. Rub it in a mortar with vinegar. If it be mixed with lead it grows fweetifh : if with copper it turns greenifh or bluifh. If there be no adulteration, the Quickfilver and vinegar will both remain as before. 7 . It is the moff fimple of all bodies, but gold and platina. 8. It has no acidity at all, nor does it corrode any body-

But it may be obferved of Metals in general, there is great uncertainty and inconftancy in the Metallic and Mineral kingdoms, both as to colour, figure, and fituation. A Marcafite, for inffance, may have the colour of gold and filver, and yet afford nothing but a little vitriol and fulphur: while what is only a pcbble in appearance, may contain real gold.

It is common alfo to find the fame Metal thot into many different forms, as well as to find different kinds of Metal of the fame form. There is the fame uncertainty as to their place. Sometimes thcy are found in the perpendicular fiffures of the frata, fometimes interfperfed in the fubfance of them; and the fame Metals in ftrata of very different natures. They are likewife frequently intermixed with each other; fo that we feldom find any of them pure and fimple, but copper and iron, gold and copper, filver and lead, tin and lead in one mals: yea, fometimes all fix together.

What diftinguifhes them from all oth bodies as well as from each other, is their heavincfs :
each Metal having its peculiar weight, which no art can imitate.

But who can reckon the various ways, wherein Metals are ufeful to mankind? Without thefe we could have nothing of culture or civility; no tillage or agriculture; no reaping or mowing, no plowing or digging, no: pruning or grafting, no mechanic arts or trades, no veffels or utenfils of houfhold ftuff, no convenient houfes or edifices, no fhipping or navigation. What a barbarous and fordid life, we muft neceffarily have lived, the Indians in the northern parts of America, are a clear demonftration.

And it is remarkable, that thofe which are of mof neceffary ufe, as iron and lead are the moft plentiful. Thofe which may better be fpared, are more rare. And by this very circumflance they are qualified to be made the common meafure and ftandard of the value of other commodities, and to ferve for money, to which ufe they have been employed by all civilized nations in 41 ages.

All Metals are liable to ruft. Gold itfelf rufts, if expofed to the fumes of fea-falt. The great infrument in producing ruft is water: air, only by the water it contains. Hence in dry air Metals do not ruft; neither, if they are well oiled: water not being able to penetrate oil. Ruft is only the Metal under another form. Accordingly ruft of copper may be turned into copper again. Iron if not preferved from the air by paint, will in time turn wholly into ruft.
7. Mines in general are cavities, within the earth, containing fubftances of various kinds. Thefe the miners term loads: if Metallie, they are faid
to be alive; if not, to be dead loads. In Cormwall and Devonfhire the loads always run from eaft to weft. Mines feem to be, or to have been channels of waters within the earth, and have branches opening into them in all directions. Moft mines have ftreams running through them: where they have not, probably the water has changed its courfe. The fprings in thefe parts are always hard, abounding either with ftony or fulphureo-faline particles. Thefe particles are either of a vitriolic or an arfenical nature. The firft concretes into white cubes, refembling filver, the fecond into yellow ones refembling gold. Both thefe are by the miners termed Mundic.
8. Mundic is varioufly coloured on the outfide with blue, green, purple, gold, filver, brafs and copper-colours. But within it is either of the colour of filver, of brafs, or gold colour, or brown. The other colours are no more than a thin film or fediment, which water varioufly impregnated, depolites upon the furface.

There are few copper-loads, if any, but have this Semi-metal (which is a kind of wild mockcopper) attending upon them. Therefore, in fearching for copper, it is reckoned a great encouragement to meet with Mundic. The Mundic does not intimately incorporate itfelf with the ore of copper ; for copper in its mineral ftate, being ufually of a clofe confiftence, repels the Mundic, which is therefore cafily feparated from the ore.

Cornifh waters are infected by Mundic, more or lefs, according to the quantity which they pafs through, and the difpofition of the Mundic, either to retain or to communicate the noxious particles.
of which it confifts. Anfenic, fulphur, vitriot, and mercury are the conftituents of Mundic, yet thefe pernicious ingredients are fo bridled and detained by their mutual action and re-action, and by mixing with other Minerals, that the water is not poifonous, (generally fpeaking) even in the mine where it proceeds directly from the Mundic.

Mundic refembles plants, animals, mouldings, carvings, and fundry more varieties, too numerous to infert. Shall we attribute this to a plaftic power fuperintending the congrefs of foffils, and fporting itfelf with fuch reprefentations? Or fhall we rather fay, that the great Power which contrived and made all things, needing no delegate, artfully throws the flexile liquid materials of the foffile kingdom into various figures, to draw the attention of mankind to his works, and thence lead them, to the acknowledgment, and adoration of an intelligent Being, inexhauftibly wife, good and glorious? Doubtlefs thefe are the works of that fame lover of fhape, colour and uniformity that paints the peacock's train, that veins the onyx, that ftreaks the zebra: it is the fame hand whofe traces we may difcover even among the meaneft and moft obfcure foffils. God loves fymmetry, gracefulnefs, elegance, and variety, and diftributes them for his complacency as well as glory, limits them not to plants, and animals, and open day light, but like a great Mafter habitually imparts them to all his works, though in the deepeft ocean, and in the moft fecret parts of the earth:
9. Although Fiffures are the natural refult of a moiftened and mixed congeries of matter, paffing

295)

fing by approximation of parts into a flate of folidity, we are by no means to conclude them ufelefs, or the works of chance. No, the great Architect, who contrived the whole, determined the feveral parts of his fcheme fo to operate, as that one ufeful effect flould become the beneficial caufe of another. Hence it happens that matter could not contract itfelf into folid large malfes, without leaving Fiffures between them: and yet the Fiffures are as neceffary and ufeful as the ftrata through which they pafs.-Thefe are the drains which carry off the redundant moilture from the earth, which but for them, would be too full of fens and bogs for animals to live, or plants to thrive on.-Through thefe Fiffures the rain whick finks beneath the channels of rivers, not having the advantage of that conveyance above ground, returns into the fea, bringing the falts and mincral juices of the earth into the occan, enabling it to fupply the firmament with proper and fufficient moifure, and preferving that vaft body the fea, wholefome, fit for filh to live in, and failors to navigate.

In thefe Filfures the feveral ingredients which form the richeft loads, by the continual paffing of waters, and the menfrua of Metals, are educe. out of the adjacent frata, collected and conveniently lodged in a narrow channel, much to the advantage of thofe who fearch for and purfue them. For if Minerals were more difperfed, and fcattered thinly in the body of the flrata, the trouble of finding and getting at Metals (thofe neceffary inftruments of art and commerce, and the ornaments of hife) would be endlefs, and the expence of procuring, would exceed the value of the acquifition:-without thefe, neither Metals, N_{4}
narbles,
marbles, falts, earths, nor ftones, could be fo eafily or in fuch plenty, provided, as is neceffary for the ufe of man.

Earth is certainly the general food and ftamen of all bodies, yet we know of itfelf it can do nothing: it mult be connected by a cement, or it cannot form fone; it muft be foftened and attenuated by moifture and warmth, or it cannot enter into the alimentary veffels of plants and animals. The parts of earth which conititute the folids of any plants are exceeding fine, and the common mafs in which we plant trees, is fer the moft part gravel, clay, and fand, which promote vegetation, but are too grofs to enter into, and become the conflituent parts of them. Water muft therefore be confidered as the vehicle of more folid nourifhment, and the parent of the fluids: the earths, falts, and oils, are the great inftruments of the increafe of folids. To trace fertility a little farther: when the earth is foftened and diluted, heat rarefies and evaporates the mixture; the falts contained and diffolved, are always active and promote motion; the elafticity of the air quickens and contimues it: the oils fupple the paflages, of which fome are fitted to fecrete, arreft, and depofit the nutritious particles as they pafs; fome adapted (by the fame fecret hand, which conducts every part of the operation) to throw off the redundant moiffure by perfpiration: the earthly mixture compofes the hard and folid parts, and the genial, little atmoiphere of every plant gives fpirit, colour, odour and tafte. Herbs and fruits being thus fed and matured, make the earth they contain better prepared to pafs into the ftill more curious and highly organized parts of animals.

(297)

It is eafy to fee that this is rather a detail of the: feveral materials, and well known inftruments, conducing to fertility, than the caufe. Fertility isowing to the concert, firnefs, and agrement of all thefe, with fome volatile active principle, of which we know nothing at all: But whence that agreement refults, how the materials ferment, replace, connect, and invigorate one another, how the veffels chufe and refufe, (if I may fo fay,) in order to produce the fertility defired, is known only to the infinitely wife Difpofer of all things, ever attentive to the nurture and fupport of what he has created. But to whatever caufe the fertility of earth is to be affigned, carth it muft be owned is a moft fruitful univerfal element. Animals, plants, metals, and flones arife out of it, and return to it again ; there, as it were, to receive a new exiftence, and form new combinations, the ruins and diffolutions of one fort affording more and more materials for the production. of others.

In ftones and Metals, we admire the continuity, hardnefs and luftre of earth; in plants the rarity, foftnefs, colours, and odours: in animals the fleih, the bone, and an infinite number or fluids, in which this fupple element can take place: but the greateft wonder is, that earth is capable of being fubtilized to fuch an exquifite degree, as by uniting and communicating with fpirit, to perform, all animal functions given it in charge by thefoul. This is the higheft and utmoft refinement, which in this flate of being, earth is capable of; but that it may be fill farther refined, in order to be qualified for a future, incorruptible, and more glorious ftate, is one of the greateft truths which: we owe to revelation.
10. To the fecond clafs of Foffils belong thofe which are reduced by fire to a calx. Such are 1. Salts, all Foffils which (whether they have a falt tafte or nol are foluble in water. Common Salt is heavier than water, and if quite pure, melts when left in the open air. If the water it is diffolved in be boiled and evaporated, it remains in the bottom of the veffel. It is well known to preferve flefh from putrifaction, and to be with great ficultly diffolved by fire. Probably it is compofed of pointed particles, which fix in the pores of flefh, and by reafon of their figure are eafily divided by water, though not by fire. It ever comes purer out of the fire. Yet it will fufe in a very intenfe heat.

All Salt diffolves by moifture: but moifture only diffolves a certain quantity. Yet when it is impregnated with any Salt, as much as it can bear, it will fill diffolve a confiderable quantity of another kind of falt. It feems, the particles of this, being of different figures, infinuate into the remaining vacuities. Thus when a cup of water will diffolve no more common falt, alum will diffolve in it. And when it will diffolve no more alum, Salt-petre will diffolve, and after that, Sal Ammoniac.

The moft remarkable Salt-mines in the world, are in the village Willifca, five leagues from Cracow in Poland. They were firft difcovered above 500 years ago, in the year 1251. Their depth. and capacity are fuxprizing. They contain a kind of fubterranean republic, which has its laws, polity, carriages, and public roads for the horfes which are kept there, to draw the Salt to the mouth
mouth of the quarry. Thefe horfes after one they are down, never fee the light of the day again. But the men take frequent occafions of breathing the upper air. When a ftranger comes to the bottom of this abyfs, where fo many people are interred alive, and where fo many were born, and have never ftirred out, he is furprized with a long feries of lofty vaults, fuftained by huge pillars, which being all rock falt, appear by the light of flambeaux that are continually burning, as fo many chryftals, or precious ftones of warious colours.
11. To this clafs, Secondly, belong Stones, which: are hard, rigid, void of tafte, reducible to dur by the hammer, and into a calx by fire. It is: probable, that Stones, like Salts and moft Toffils, are generated from a fluid, which gradually hardens into Stone, by the evaporation of its fincr parts.

Mr. Tournefort obferved, that in the famous labyrinth of Crete, feveral perfons had engraved their names in the living rock, of which its walls are formed: and that the letters fo ingraven, inflead of being hollow, as they were at firlt, flood out from the furface of the rock.. This can no: otherwife be accounted for, than by fuppofing the cavities of the letters filled infenfibly, with natter iffuing from the fubflance of the rock, even in more abundance than' was needful to fill thofe cavities. Thus is the wound of a knife healed up, much as the fracture of a bone is confolidated, by a callus formed of the extravafated nutritiousjuice, which rifes above the furface of the bone. Such callus's have been obferved to be formed on otherflones, which were reunited after they had been N. 6.
accidentally:
accidentally broken. Hence it is manifeft, that fones grow in the quarry, and confequently are fed; and that the fame juice, which nourifhes them, ferves to rejoin their parts when broken. There is then no room to doubt, that they are organized, and draw their nutritious juice from the earth, which is firft filtrated and prepared in the furface of the fone, and thence conveyed to all the other parts.

Doubtlefs the juice which filled the cavities of thofe letters was brought thither from the root of the rock, which grew as corals do, or fea-mufhrooms, which every one allows to grow : and yet they are true flones.

Indeed there are fome fpecies of fones, whofe generation can no otherwife be accounted for, than by fuppofing them to come from a kind of feeds, which contain its organized parts in miniature. But many forts of fones were once fluid; witnefs the various foreign bodies found therein.

That even pebble ftones grow, may be proved to a demonftration, by an eafy experiment. Weigh a quantity of pebbles and bury them in the earth. After a time dig them up, and on weighing them again, you will find they have gained a very confiderable addition.

The Vegetable Mould or Surface of the Earth, is made up of fands, clays, marls, loams, rotten ftalks and leaves of herbs, ferving both as a proper bed and covering, and as a receptable and conductor of moifture to the roots of trees and plants. Sands and pebbles may be confidered as drains, for carrying off the redundant moifture, to places where it may be ready to fupply the place of what is continually rifing in exhalations.

But left the frata of fand fhould be too thick, fmall ones of clay are often placed between, to prevent the moifture from departing too far from where it may be of ufe. And left thefe thin partitions of clay fhould let the particles of fand infinuate into them, and thereby let the moifure pafs through, thin crufts of a ferrugineous fubftance are placed above and beneath each of thefe clayey frata; by which means the clay and fand are effectually kept afunder.

Suppofing fome Stones are organized Vegetables, and are produced from feed, yet moft forts of fones feem to be unorganized Vegetables. Other vegetables grow by a folution of falts, attracted into their veffels. Moft flones grow by an accretion of falts, which often thoot into regular figures. This appears by the formation of chryftals upon the Alps. And that fones are formed by the fimple accretion of falts, appears from the tartar on the infide of a claret veffel; and ftill more clearly, from the formation of a ftone in the human body. The air is in many places impregnated with fuch falts or fony particles: and thefe afcending from the cavities of the earth, may petrify wood. In this cafe the petrifying quality is not originally, either in the earth or the water: but in the rifing fleams impregnated with faline or flony particles.
12. Many waters are generally fuppofed to turn other bodies into flone. This is afcribed to the Lake Loghmond in Scotland, and Lough Neagh in Ireland. But it is a miftake. There is not in reality any fuch tranfmutation in thofe bodies. Only the fony particles floating in the water, lodge
lodge in the pores, or on the furface of them. Petrefactions therefore are nothing more than incruftations of ftony particles, which furround and partly infinuate into the bodies immerfed.

With regard to Lough Neagh, the Petrifying: Quality, feems to be not only in the water, but in the adjacent foil. Many pieces of petrified wood are thrown up daily, in breaking up new ground, which that water never touched. They are often found two miles from the Lough, in great numbers, and deep in the ground, altogether like the Lough Neagh fones. That thefe were once wood is certain. They burn clear, and may be cut with a knife, though not fo eafily, as other wood.

Petrifying Springs are impregnated, fome with: particles of ftone, others with ferrugineous and. vitriolic particles. When the fony ones drop on wood, or other vegetables, they coagulate uponit, and by degrees cover it with a flony coat. If, this be broke before the wood is rotted away, you find it in the heart of the flone. If the wood: is rotted, you will find a cavity in the ftone; but this alfo in time will be filled up with fony particles. Sometimes indeed thefe waters permeate the pores of the wood, fill them up with their ftony particles, and by their burning quality proceeding from lime-ftone, deftroy the wood, and affume the fhape of the plant.

Metallic particles moftly act, by infinuating into the pores of wood or other vegetables, without increafing their bulk, or altering their texture, though they greatly increafe their weight. Such is the petrified wood in and near Lough Neagh.

It does not fhew any outward addition of matter, and preferves the grain of wood. All the alteration is in the weight and clofenefs, by the mineral particles pervading and filling the pores.

That there are Mines near the Lough, we may gather from the great quantity of Iron-ftones found on its fhores, and from the yellowifh ochre and clay in many places near it. Now whatever fprings run through thefe, will be impregnated with metallic particles. And if they rife in the middle of a river or lake, and in their courfe meet with wood or other vegetables, thefe particles will infinuate and lodge themfelves in their pores, and by degrees turn them into ftone.

That fuch fprings are under this Lake, appears from hence, that in the great frofl. 1740 , though the Lake was froze over, fo as to bear men on horfeback, yet feveral circular fpots remained unfrozen. Hence it appears, that this petrific quality is not in all parts of the Lake, but here and there only. As to the trees which are found petrified and buried at a fmall diffance from the Lake, probably it was broader once than it is now, fo that what was then under water, is now dry land. If fo, thefe trees might have been petrified, in the part which was then overflowed, though it is now dry.
${ }^{13}$. It is certain, that water impregnated with metallic particles, when falling on wood or other vegetables, will coagulate upon it, as was obferved above, and cover it with a metallic coat. It is alfo certain, that the vegetables included therein, are gradually deftroyed, till the fame matter which firf
firt formed the cruft, takes up the whole fpacewhich they occupied before. But it is not only wood and other vegetables, which are capable of being thus acted upon, firft crufted over and then deftroyed. A fhovel of iron fome years fince lying in the water, in the County of Wicklow, in Ireland, was obferved to be incrufted with copper, which gave occafion to an important difcovery. A gentleman, who vifited the place on purpofe to examine the truth of what was commonly reported, obferves, " I faw the iron. bars impregnated with copper. I was an eyewitnefs to the change in all its progrefs; and fo were thoufands befides. I faw the mafons laying a chain of new fone troughs, for the copper water to run through. I faw the men alfo laying: the iron bars, on wooden rafters, in thofe troughs. I faw the iron bars lifted up out of fome troughs, where they had laid from one to eight months:and faw them incrufted over with copper, and corroded more or lefs, (fome of them to very thin plates) according to the time they had lain in the water. I faw fome of the troughs emptied, wherein the bars were wholly diffolved: and thekabourers were throwing up with fhovels the copper, which lay on the ftones in the bottom of them. It was like mud, as it lay wet in the heap, but became duft as it dried. I alfo faw feveral pieces of copper, which had been made out of their copper-mud.
" This water is fuppofed to flow over a vein of copper in the neighbouring mountain. It is. of a fharp, acid tafte, and of a blue colour. It is received and collected in thofe troughs, wherein the iron bars are placed; which after lying in the water, often not above three months, are entirely confumed.

(305)'

confumed : then at the bottom of the troughs, a quantity of copper is found, in the form of coarfe fand. And it is remarkable, that there is a greater quantity of this copper, than there was of iron.
" But by what principle is this effect produced? In order to difcover this, I nade the following experiments.
" 1. Some fmall iron nails put into the water, were in four minutes covered with a fubftance of a copper colour. And during that time the nails galned four grains in weight. The water had the very fame effect on filver and tin, but not on gold. Hence we obferve, the colour and increafe of weight were owing to the adhefion of the particles of the matter diffolved in the water by an acid, which could not penetrate gold.
" 2. In order to determine the quantity and quality of this matter, I put two drachms of fmall iron nails intơ thee ounces of the water. After they had lain therein four and twenty hours, I found the furface of the water covered with a thick fcum, exactly like that which ufually covers a chalybeate fpaw. I obferved likewife, it had loft the blue colour, and fharp, vitriolic tafte. It was quite tranfparent, and at the bottom lay a brown powder, which when dried, weighed fourteen grains. This powder, melted without any flux, produced twelve grains of pure copper. The nails alfo (which had loft eight grains) were in feveral places covered with a folid lamina of pure copper. The water being afterward filtrated and evaporated, afforded a pure green vitriol.
" 3. From the fpring water treated in the fame manner, I obtained a blue vitriol, the bafis of which is copper. From all thefe experiments
it appears, that a mineral acid is the active principle in this water, which being diffufed through the copper ore, unites itfelf with that metal, and forms a vitriol. This is diffolved by the water, and remains fufpended therein, till it meets with the iron in the trough, and by which it is more flrongly attracted, than by the copper. Therefore it quits the copper, corrodes the iron, and changes it into a vitriol, which is again diffolved and carried off in the fream. Meantime the copper, deferted by its acid, falls by its fpecific gravity to the bottom of the trough.
" It appears then upon the whole, that this admirable procefs of nature, whereby one metal feems to be turned into another, is no more than a fimple precipitation of the copper, by means of them."

In the Lower Egypt, there is a vaft fandy defert, called The Defert of St. Macarius. One large plain herein is called by a name which fignifies, The Sea without water. This is frewed over with limbs of trees which are entirely petrified: very probably by means of the nitre, with which this whole country abounds.

The change of wood into ftone is not the only wonder here. The fand alfo is changed intoEagle ftones. Thefe ftones are found two or three fingers breadth beneath the furface of the earth, in little mines, fome paces long and broad, about half a mile from each other. It is thought that in thefe places, there oozes out of the earth, a fort of Metallic matter, which ferments with the burning fand, and in fermenting affumes fome kind of roundifh figure, and attaches to itfelf more
more and coarfer fand. Afterward it hardens by degrees, and grows black through the heat of the fun.

The Eagle Stone when in the mine is foft and brittle as an egg, and of a bright yellow or violet colour, but after being expofed to the air, it turns brown or black, and hardens gradually. Likewife after a few days, mof of thefe fones will, if ftruck, found like little bells.

Not far off is a vaft heap of fand, which they call the Eagle Stone Hill, becaufe it is covered over with great rocks of the very fame matter whereof the fmall eagle fones axc formcd.

But what inall we judge of thofe Petrified Shells, which have been dug up in many places? Some indeed are not petrified. Near Reading, in Berkfhire, for fucceeding generations, a continued body of oyfter-fhells has been found through the circumference of five or fix acres of ground. Beneath is a hard, rocky chalk, on which the fhells lie in a bed of green fand, about two feet thick. Above are various flrata for at leaft eighteen feet. The fhells are fo brittle, that in digging, one of the valves will frequently drop from its fellow. But feveral are dug out entire; nay, fome double oyfters, with all their valves united.

In a quarry at the eaft end of Broughton, in Lincolnfhire, there is a clay under the flone, in which are numberlefs fragments of the Shells of Shell-fifh of various kinds. And there are fometimes found whole Shell-fifh, with their fhells on, in their natural colours, only bruifed and broken, and fome fqueezed flat by the weight of earth, which was caft upon them at the deluge.

There

(308)

There is another quarry, fouth of the town, of a blue, hard ftone, (probably a pure clay in fome antediluvian lake) in which are numberlefs fhellfith of various forts, but fo united to the flone, that it is hard to get them out whole. They are all in the furface of the quarry, within a foot of the top. On the furface, there are many fhellfilh half in the ftone, half out. That part which is within the quarry is whole, but is an hard fone. That which is without, is all confumed, but a little of the edges, which are plain fhell.

Some of the fhell-fifh in this quarry are half open, and filled with the matter of the bed on which they lie. Some of them arc broken, others bruifed: the edge of one fifh is fornetimes thrult into the fides of another. One fhell . of fome is thruft half way over the other, and fo they are petrified together.

Among thefe there are feveral great Horfemulcles, fuch as breed in rivers and ponds. And in the fields and fones near Bramby and Fordingham is found a fort of fifh bending like a Ram's Horn, and creafed like one on the outfide. The bed wherein, it feems, this fifh bred, is about a foot thick: in which are millions of the fifh, ficking half within the ftone, half without. And this fhell being extremely durable, even the part fticking out, is not confumed, as it ufually is in others, but remains whole and entire.
14. From fone burnt to duft arifes Lime, which has this remarkable property, that if cold water be poured upon it, it prefently heats and boils up. In order to account for this, fome have fuppofed,
fuppofed, that fome fubtle matter is lodged in the pores of the Lime, (perhaps many of thofe particles of fire, whereby the fone was reduced to duft) which when the water infinuates into thofe pores, occafions the fame kind of ebullition, as if it was poured on any other burning fubflance.
15. Mof Precious Stones are tranfparent, and frike the eye with vivid and various colours. Probably they were once fluid bodies, which while in that flate were mixed with metallic or mineral juices. Their tranfparency likewife makes this probable, and fo does their outward configuration. For many bodies hardening into folids fhoot into Chryftals, juft as is obferved of feveral kinds of precious ftones : and to this their inward ftructure anfwers. For in many we may obferve the thin plates or coats one over the other, juft as we fee in thofe mineral fubftances, which were once fluid. Their colours might be owing to fome mineral juice or exhalation, which tinctured them before their pores were fully clofed. This is the more probable, becaufe many gems lofe their colour, if they lie long in the fire: and becaufe generally coloured gems are found over Metallic or Mineral veins.

Dr. Boerhaave takes Chryftal to be the bafis of all precious ftones, which affume this or that colour, from the Metallic or Mineral Areams mixed with the primitive Chryftalline matter. But how is Chryftal itfelf formed ? An Italian writer gives a particular account of this. - In the Val Sabbia (fays he) I obferved fome parts of a meadow bare of all herbs. Here, and no where elfe thereabouts, the Chryftals are generated. And whenever there is a ferene and dewy kky , if all the Chryftals that
can be found over night, are taken away, others will be found in the lame place in the morning. Having obferved, there is no fign of any Mineral ftream near, I conclude, they are produced by fleams of nitre. Thefe may at the fame time hinder vegetation in thofe places, and coagulate the dew that falls thereon. As nitre is the natural coagulum of water, fo it ever retains its fexangular figure. The largeft Chryftals known were found in the mountains of Grimiule, between vaft frata of fones. The biggeft of them was near three feet in length, and little kefs in circumference. It weighed two hundred and fifty pounds : others weighed lefs and lefs, to thofe of ten pounds, which were the fmalleft there. They were of the fame figure; fexangular columns, terminated by fexangular pyramids at one end, and at the other fixed to the rock. They were in general perfectly clear throughout, but in fome the bafe was foul, in others the point.

If a folution of Alum is permitted to chryftalize quietly, it fhoots into planes of eight, fix, four and three fides. But befide this, its partieles when excited to action by a certain degree of heat, arrange themfelves into regular and delightful ftar-like figures of different fizes. Many of thefe have long freaming tails, and refemble comets. Others fhoot into an infinite number of parallel lines, beautiful beyond defcription. Thefe configurations are no lefs conftant in their forms, than the Chryftals on which they grow. And they are equally tranfparent, but the figures produced are fo extremely different, that every confiderate obferver muft judge them to be owing to fome very different property in nature. But what property
property? Who can determine ? Indeed how littic do we know of the moft common things? The very elements that furround us, the fire, the water, the air we breathe, the earth we tread upon, have many properties beyond our fenfes to reach, or our underftanding to comprehend.

Dr. Borlafe ranges Chryftal itfelf and all gems under the head of Spar, which fays he, are only finer and purer fubftances of the Spar-kind.

All Spar has been in a fate of fluidity. In fome are found fraws and other light bodies. Yet time adds nothing to their frimnefs: but they are as hard when firft confolidated, as ever they will be. But why do we find no fpars in their fluid ftate? Becaufe while the matter of them remains incorporated with the water, it is not to be diftinguifhed from it, and as foon as it is deferted by the water wherein it fwims, it commences ftone. It is by water that the Sparry atoms are wathed out of their repofitories, and collected into a tranfparent or opake juice. As foon as the redundant water is drained off or evaporated, the ftony parts accede to a clofer union. They are affifted therein, either by cold, comprefling the parts, or by fudden evaporating heat. Thus the ftone is formed, fo much water refting in the pores, as is neceffary to fix it into a confiftency. Hence may arife fome queries.

1. Whether Spar is not the univerfal gluten of Stones diftinguifhed from each other, by various mixtures of earthy, Mineral, or Metallic particles, but all united by the Sparry liquor? Perhaps there is fcarce any fand, fone, or ore, which either by the naked eye or glaffes, may not be difcerned to
have a portion of Spar, clearer or opake, in its compofition.
2. Whether thefe and all other fort of ftones are not continually forming in the earth?
3. Whether there are not quarries of ftone, which when left unwrought for a confiderable time, yield a frefh fupply of fone, in thofe channels, which had been before thoroughly cleared?

- A very peculiar kind of precious fone is what is termed a Turquois. It is of the opake kind, and commonly of a beautiful blue colour. And yet it has lately been made very probable, that thefe fhining ftones are originally no other than the bones of animals. In the French mines they are frequently found in the figure of teeth, bones of the legs, \&c. And Turquoifes half formed are compofed of laminæ, like thofe of bones, between which a petrifying juice infinuating, binds them clofe together. And the more imperfect the Stones are, the more diftinguifhable are the different directions of the fibres and their laminæ, and the nearer refemblance they bear to fractured bones.

The Blue Turquois, is indeed no other than forfil bone, or ivory faturated with copper diffolved in an alkaline menftruum; the Green Turquois is the fame fubftance, intimately penetrated by a cupreous matter diffolved in an acid menftruum.
16. The Loadfone is found in iron mines, and refembles iron both in weight and colour. Its moft remarkable properties are, turning to the poles, and attracting iron. As to the former, when
when it moves without hindrance, it conftantly turns one end to the north, the other to the fouth : only declining a little to the eaft or weft. If.two loadfones are brought within a certain diftance of each other, that partof one which is toward the north pole of the earth, recedes from that part of the other which refpects the fame pole. But it accedes to it, if the fouthern pole of the one, be turned toward the fouth pole of the other. The needle touched with the Loadftone, when on this fide the equinoctial line, has its north-point bending downward, on the other fide, its fouth-point: under the line, it turns any way, and is of no ufe.
As to its attractive power, it not only fuftains another Loadftone, (provided the north pole of the one be oppofed to the fouth pole of the other) but iron alfo. Likewife if fteel-duft be laid upon a Loadfone, it will fo difpofe itfelf, as to direct its particles ftrait to the poles, whence they will be moved round by little and little, till they are parallel to the axis of the Loadfone. It communicates its virtue to iron, and if it be armed with (that is, fixed in) iron, its force is greatly increafed. It lofes its force either by fire, or by letting two Loadfones lie together, with the north pole of one oppofed to the north, or the fouth pole of one to the fouth of the other. Thefe plain phænomena of the Loadftone we know: the caufe of them we know not.

From late obfervations it appears, that the Loadftone is a true iron ore, and is fometimes found in very large pieces, half Loadftone, half common ore. In every one, 1.There are two poles, one pointing north, the other fouth. And

Vol. II.

If it be divided into ever fo many pieces, the two poles will be found in each piece. 2. If two Loadftones be fpherical, one will conform itfelf to the other, as either would do to the earth, and will then approach each other: whereas in the contrary pofition, they recede from each other. 3. Iron receives virtue, either by touching, or by being brought near the fone: and that varioully, according to the various parts of it which it touches. 4. The longer the iron touches the flone, the longer it retains the virtue. 5. Steel receives this virtue better than iron. 6. In thefe parts the fouth pole of a Loadfone lifts more iron than the north pole. 7. A plate of iron interpofed hinders the operation of the Loadfone; but no other body, no not glafs itfelf. 8. A touched wire, if bent round in a ring, quite lofes its virtue.- But though bending thus deftroys its virtue by day, it will not deftroy it in the evening. Where is the philofopher in the world, who can account for this? 9 . Loadfones withour any known eaufe, act fometimes at a greater diftance than other times. That of the Royal Society will keep a key fufpended to another, fometimes at the height of ten feet, fometimes not above four. As ftrange it is, the variation of the needle is different at different times of the day. 10. If a touched wire be fplit, the poles are fometimes changed (as in a fplit Loadifone). And yet fometimes one half retains the fame poles, and the other half has them changed. 11. Touch a wire from end to end with the fame pole of the Loadflone, and the end firft touched turns contrary to the pole that touched it. But touch it again from end to end with the other pole of the ftone, and it will turn juft the contrary way. 12. Touch a
wire in the middle with one pole of the fone, and the pole of the wire will be in that place : the two ends will be the other pole. 13. The poles of a fmall Loadftone may prefently be changed, by applying them to the oppofite poles of a large one. 14. Iron bars which fland long in an ereet pofition, grow permanently magnetical ; the lower end of them being the north pole, and the upper the fouth pole. 1_{5}. The fame effect follows, if you only hold them perpendicularly : but if you invert them, the poles will fhift their places. 16. Fire, which deprives a Loadfone of its attractive virtue, foon gives verticity to a bar of iron, if it be heated red hot, and then cooled in an erect pofture, or directly north and fouth. 17. A piece of Englifh oker, thus heated and cooled, acquires the faine verticity. 18. The verticity thus acquired by a bar of iron, is deftroyed by two or three fmart blows on the middle of it. 19. Either a piece of iron or a Loadftone being laid on a cork that fwims freely in the water, which ever of the two is held in the hand, the other will be drawn to it. This proves that the iron attracts the flone, juft as much as it is attracted by it. 20. Draw a knife leifurely from the handle to the point over one of the poles of a Loadftone, and it acquires a ftrong magnetic virtue. But this is immediately loft, if you draw it over the fame pole from the point to the handle. Lafly, A Loadfone acts with as great force in vacuo, as in the open air.

The chief laws of magnetifm are thefe, 1.The load-ftone has both an attractive and a directive power: iron touched by it has only the former. 2. Iron feems to confift almoft wholly of attractive particles, load-fones of attractive and direc-
tive together, probably mixed with heterogenous matter, as not having been purged by fire like iron. And hence iron, when touched will lift up a much greater weight than the load-fone that touched it. 3.The attractive power of armed Load ftones, is cateris paribus, as their furfaces. 4. Both poles of the Loadfone equally attract the needle till it is touched. Then it is that one pole begins to attract one end and repel the other. But even the repelling pole will attract upon contact,orat a very finall diftance. But how odd are the following experiments. I cut a piece, fays Dr. Knight, of a Loadfone, into an oblong Iquare. In this I placed the magnetic virtue in fuch a manner, that the two oppofite ends were both fouth poles, and the middle quite round was a north pole. I made the two oppofite ends of tnother flone, north poles, the oppofite fide fouth poles. An irregular ftone had two broad, flat furfaces oppofite to each other. I made half of each of thefe furfaces a north pole, and the other half a fouth pole. So that the north pole of one furface was oppofite to the fouth pole of the other. I took a fone that had a grain very apparent, running the length-ways of it. At one end of it I placed a north pole, furrounded by a fouth: at the other a fouth furrounded by a north pole: fo that the edges of each furface had a different pole from that which occupied the middle.

Many varieties of this kind might eafily be devifed. But thefe examples are fufficient to fhew, how manageable the magnetic virtue is, with refpect to its direction; and how defective all the hypothefes are, which are brought to account for the phænomena of the Loadfone.

Mr. Howard failed to Barbadoes in company with another fhip, commanded by one Grofton. Suddenly a terrible clap of thunder broke Grofton's fore-maft, and did fome damage to his rigging. When the noife was paft, he was furprifed to fee Mr. Grofton's thip fteering direEtly homeward. He tacked and food after him, and found that Mr. Grofton did indeed fteer by the right point of his compafs, but that the card was turned round, the north and fouth point having changed places. If he fet it right with his finger, as foon as it was at liberty, it returned to its former pofture. And on examination, he found every compafs in the fhip had undergone the fame change.

An odd difcovery has been lately made, that not only iron, as has been generally thought, but Brafs too, by being hammered and properly touched, will contract a true magnetic virtue. And perhaps it will be hereafter difcovered, that other Metals may receive the fame.
Before clofing this article, it may be proper to obferve, firft, The peculiar qualities wherewith fome other fones are endued; and fecondly, The remarkable ufes they are of to us. As to the former, we may obferve, 1. The colour. The Carbunkle and Ruby fhine with red, the Sapphire with blue, the Emerald with green, the Topaz with a yellow or gold colour ; the Amethyft, is as it were tinctured with wine, the Opal varies its colour like changeable taffeta, as it is varioully expofed to the light. Obferve, 2. The Hatdnefs wherein fome ftones exceed all other bedies, the Diamond in particular, which is fo extremely hard, that no art is able to counterfeit it. 3. As to the ufes, fome are ferviceable for building, and

$$
\mathrm{O}_{3} \quad \text { for }
$$

for many forts of veffels and utenfils; for pillars and flatues; for portico's, conduits, palaces, as Free-fone and Marble: fome to burn into lime, fome (with the mixture of kelp) to make glafs as common Flints: fome to cover houfes as Slate; fome for marking, as Chalk, which ferves alfo to manure land, and for medicinal ufes; fome to make veffels which will endure the fire. I might add the Warming-flone, digged in Cornwall: which being once well heated at the fire, retains its heat for a confiderable time.
17. Of the third clafs are inflammable Foffils, the chief of which are Sulphur and Bitumen. Both are highly inflammable: but the fubftance of Bitumen is more fat and tenaceous; whereas fulphur may eafily be broken, and reduced to a fine powder.

The Bitumen of the Latins was by the Greeks called Afphaltos. It is a black, folid, brittle fubftance, refembling pitch. It is chiefly found fwimming on the Dead Sea, where antiently food Sodom and Gomorrah. It is caft up from time to time from the bottom to the furface, where it gradually condenfes by the heat of the fun. It burns as violently as Naptha; but is of a firmer confiftence.

Afphaltos is alfo a kind of bituminous fone, found near the antient Babylon, and lately in the province of Neufchatel, which properly mixed makes an excellent cement, incorruptible either by air or water. With this it is fuppofed, the walls of Babylon were built.
Jet feems to be formed in the earth of a bituminous juice. It is a light, fmooth, pitchy fone. It is fiffile, and works like amber: the beft in the
world is faid to be found in Yorkfhire. It readily catches fire, flafhes and yields a bituminous fimell. Nearly refembling this, is the Channel-Coal, found in feveral parts of Lancafhire, which burns with an even, fteady flame, like a candle or torch.
18. Amber is a kind of Foffil pitch, the veins of which run chiefly at the bottom of the fea. It is hardened in tract of time, and caft on thore by the motion of the fea. It was long thought that none could befound but in Pruffia: but it has fince been found in Sweden, on the fhores of the ifle of Beorkoo, though fituate in a lake whofe water is fweet. Nay, it is digged out of the earth, at a confiderable diftance from the fea, and not only in fandy, but in firm ground.
19. But the moft extraordinary of all Foffils is the Abeftos. It feems to be a fpecies of alabafter, and may be drawn into fine filky threads, of a greyifh or filver colour. It is indiffoluble in water, and remains unconfumed even in the flame of a furnace. A large burning-glafs indeed will reduce it to glafs ghobules; but conmon fire only whitens it. Its threads are from one to ter inches long, which may be wrought into a kind of cloth. This the Antients efteemed as precious as pearls. They ufed it chiefly in making fhrouds for emperors or kings, to preferve their. afhes diftingt from that of the funeral pile. And the princes of Tartary at this day apply it to the fame ufe. The wicks for their perpetual lamps were likewife made of it. A handkerchief of this was long fince prefented to the Royal Society. It was twice thrown into a frong fire, before feveral gentlemen. But in the two experiments it loft
not above two drachms of its weight. And what was very remarkable, when it was red hot, it did not burn a piece of white paper, on which it was laid.

But there is a kind of Afbeftos wholly different from that known to the antients. It is found fo far as we yet know, only in the county of Aberdeen, in Scotland. In the neighbourhood of Achintore, on the fide of an hill, in a fomewhat boggy foil, about the edges of a fmall brook, there is a fpace ten or twelve yards fquare, in which pieces of foffile wood petrified lie very thick. Near this place, if the ground be dug into with a knife, there is found a fort of fibrous matter, lying a little below the furface of the ground, among the roots of the grafs. This the knife will not cut: and on examination it proves to be a true Afbeflos. It lies in loofe threads, very foft and flexible, and is not injured by the fire.

Yet it is fometimes collected into parcels, and feems to form a compact body. When this however is more nearly examined, it appears not to be a real lump, but a congeries refembling a pledgit of preffed lint, and being put into water, it feparates into its natural loofe threads.

A ftranger difcovery hàs ftill been lately made. The proprietor of a forge, upon taking down his furnaces to repair them, found at the bottom a great quantity of a fubftance, which upon repeated trial,effectually anfwered all the ufes of theAfbeftos. It was equally well manufactured either into linen or paper, and equally well endured the fire. Upon profecuting the enquiry, it appeared to him, that both the native Afbeftos (at leaft one fpecies of it) and this obtained from the forge, were nothing more, than what he terms calcined iron, deprived, whether

(3^{21})

whether by nature or by art. of its inflammable part: and that by uniting the inflammable part, either with this, or the foffile Afbeftos, it may at any time be reftored, to its primitive flate of iron.

But it is certain, there is Arbeflos which has no. relation to iron. Both in Norway and Siberia, there are petrifying waters which, pervading the pores of wood lying therein, fill it with flony particles ; and when by a coftic, corrofive power, derived from lime, they have deftroyed the wood, a proper Arbettos remains, in the form of a vegetable, which is now no more. To which of thefedoes the following belong?

Signor Mareo Antonia Caftagna, fuperintendant of fome mines in Italy, has found in one of them a great quantity of Linum Afbeftum. Hecan prepare it $f 0$ as to make it like either a very: white fkin, or a very white paper. Both of thefe refift the moft violent fire. The fkin was covered: with kindled coals for fome time : being taken out, it was foon as white as before : neither had it loft any thing, of its weight. The paper alfo was tried in the fire, and without any detriment. Neither: could any change be perceived, either with regard to its whitenefs, finenefs, or foftnefs.

[^4]1

Digitized by COOgle

$$
\left(3^{2 J}\right)
$$

CONTENTS

OFTHE

SECOND VOLUME.

Chap. MII. Of FIShes:
CONTINUED.
Page
12. Of the Generation of Fifhes

The manner of Sea-tortoifes laying their eggs - - - ib.
Uncommon circumftances actending the generation of Soles 4.

Of the coming of Herrings, Cod, and other Fifh, in fhoals, at cettain feafons of the year - $\quad-5 ;$
Of the coming of fhoals of Mackrel, and the reafons for their coming - 6,
0.6.

Of:
324)
Page
Of the Tunnies, which come in thoals to the coafts of Provence and Languedoc 8Of the fhoals of Pilchards - _ ib.
Of the thoals of Salmon 9
Remarkable Salmon-leap near Dublin ib.
13. Of fome particular forts of Fifhes 10
Peculiar circamfances of the Turbot ib.
Of Whales ib.
Their fingular manner of propagation 11
Of the Norway Whale 12
The ufe of blubber: their method of feeding 13
Of the Whalebone Whale 14
Of the Spermaceti Whale ib.
The wonderful flrength of the tails of Whales b.
Of the Hippopotamos, or River Horfe 15.
His uncommon depredations on land 16
The female always brings forth on land 18
They always fleep on land ib.
Of Sharks 19
Of the White Shark: its amazing fwift- nefs, and number of teeth 20
Of Tortoifes ib.
The great Mediterranean Turtle 21
Of the Frog-fifh of Surinam 22
Of Flying-fifh 23
Of the Ink-fifh: its fingular properties ib.

Page

Of the Aborefcent Star-fifh ' 24
Of the Torpedo, much like a Thorn-bask ib.
Of the Sea-nettle, a frange production of nature - - \quad ib.
The amazing peculiarities of the Limpet 25
14. General Reflections - - 27

Chap. IV. Of Reptiles.

1. Of their motions - - 29
2. Of Serpents - $-\quad 3^{\circ}$

The aftonifling number of their bones ib.
Different forts of Serpents - $3^{\mathbf{t}}$
3. Of their Brain, Stomach, Generation 3^{2}
4. Of the Venom of Serpents and Vipers 33

The fwiftnefs of the poifon of a Rattle-
Snake -
Singular properties of the Rattle-Snake 3^{6}
Particular account of a perfon bit by a Rattle-Snake - - - 37
5. Of fome particular forts of Reptiles. 39

Of the Water-Snake - \quad - ib.
Of the Serpent of the Waters $\quad \subset \quad \mathrm{ib}$.
Of the Crocodile, the king of Reptiles 40
The American Crocodile, or Alligator ib.
Of the Chameleon - - 4
Four fpecies of Chameleons: the Arabian, the Egyptian, the Mexican, the European - $\quad-\quad \begin{array}{r}4^{2} \\ \text { The }\end{array}$
Page
The uncommon ftructure and motion of their eyes 4^{2}
Peculiarities of the Chameleons in Smyrna 43Of the Salamander44
Of the Oocarel of Lower Egypt, refem-
bling a Crocodile ib.
Of the Lizards and Scorpions of Italy ib.
6. Water Lizards often change their fkins 45
A particular fpecies of Water Lizards, termed an Aquatic Salamander 4^{6}
7. Re-production of parts cut off 47
The remarkable re-productions of the parts of a Salamander - - ib.
Of thofe of the Tad-pole 48
Of thofe of the Earth-worm ib.
Of thofe of the Aquatic Boat-worm ib.
Of thofe of the Snail 49:
8. Of Tape-worms 51
9. Of Worms that feed on Stones - ib. Of the Common Leech 5^{2}
Of Frogs changing their fkins 53
The remarkable longevity of a Toad 54
Chap. V. of INSECTS.

1. Of their Shape and Make 57
2. Of their Eyes
3. Their Heart, Refpiration 58
4. Their:
Page
5. Their Generation : particularly the Silk- worm and Silk-fpider - - 59
6. Of the Common Spider 62
Of various fpecies of Spiders that fly 63
7. Of the Tarantula, a kind of fpider 66
The only remedy for the bite of the Taran- tula is mufic - - - ib. .
Two relations of the extraordinary effects of mufic - - - 67
8. Of the Coya 68
The uncommon effects of its fting, andthe only method of cure69
9. Of Microfcope Animals 70
10. Of the Flea 71
11. Of the Loufe 72
Péculiarities of Lice: their amazing in- creafe 73
Many fifhes, particularly falmon, inci- dent to Lice 74
12. Of the Death-watch - — ib.
Remarkable circumflance of the beating of a Death-watch 75
Singular properties of the Death-watch, the fmalleft of the beetle-kind 7^{6}
13. Of the eggs of Flies 78
The eggs of infects the occafion of blights 80 -
14. Of Gnats. 82The:
Page
The uncommon propagation of Gnats 83
15. Of the Cicadula, or Cuckoo-fpit - 84 The Cochineal - - - ib.
16. Of the Drone-Fly 85
17. Of the Fire-Fly of Jamaica 86
A perfon may read the fralleft print by the light of one of thefe infects ib.
18. Of the Ephemeron, that lives but part of a day ib.
Another fort of Ephemeron, called the May-Fly: its remarkable properties 87
19. Of Butterflies 88
20. Of Caterpillars 89
The Caterpillar of the Willow $9{ }^{2}$
Peculiar circumftances in Caterpillars ib.
21. Of the Transformation of Infects 95
That of the Caterpillar very remarkable throughout its various flates - ib.
22. Of Ants 101
The extraordinary nicety of their nefts 102Their beautiful appearance viewed througha microfcope - - ib.
They eat not, but fleep all the winter 103:
The remarkable archite¢ture of Ants. 105.
The employment of working Ants 108
The red, green, and black Ants of Africa 109,
23. Of the Ant-eater, or Formico-leo ib.
His.
Page
His peculiar manner of infnaring hisprey, and various other extraordi-nary operations - - 110
24. Of Bees 112
The habitation of Bees 114
How honey is extracted - 115
Of honey-dews 116
A kind of honey-dew produced by a fmall infect called the Vine-fretter ib.
Ants as fond of this as Bees 117
The curiofity of the fing of a Bee, or Wafp ib.
The peculiar privileges attendant on, and homage paid to the Queen Bee 118
The fwarming of Bees 121
25. Of the Polypus 123
Of various Corallines, a fpecies of Polypi ib.
The Polypus, an aquatic animal, foundin ditch-water - $\quad 125$
Experiments on a Polypus 126
Cluftering Polypi more frange than the reft 127
The nature of Corallines, and the me- chanifm of their Polypi 129
The Polypus is an animal of the vermi- cular kind 13^{2}
26. Of the Transformation of Animals 133
Quadrupeds undergo a yearly change 134Viviparous

Viviparous animals have a more fudden change - - - 134

The Transformation of Oviparous animals ib. The Transformation of Tad-poles $\quad 135$
That of the Beetle-clafs, particularly the Cock-chaffer
С н а р. VI.

General Obfervations and Refledions.

1. Of the number of animals, the various fpecies of beafts, birds, fifhes and infects
2. Of the different methods of taking their food - - - - 137
3. That brutes are not mere machines $\quad 139$
4. Of the Natural Inflinct of all creatures 140
5. Of the cloathing of various animals $\quad 1 \neq 2$
6. Of the admirable fagacity of animals in the fructure of their habitations 144 -
7. Of the peculiar care of Providence over all his works - - 145
8. The remarkable deftruction and reparation of the whole animal creation ${ }_{146}$
9. Farther Reflections on the world in general
10. A comparative view of the animal world, extracted from Mr. Hervey - 152

PART

PARTTHETHIRD.

Chap. I. Of PLATS.
Page

1. What we mean by Plants - 159
g. Their liquid parts - 160
2. Their folid parts -

ib.

$$
\text { 4. Of the Bark - } \quad-\quad \text { ib. }
$$

$$
\text { 5. The Wood - } \quad-\quad 162
$$6. The Pith

$$
-
$$

ib.
7. The Roots and Branches 163
8. The Leaves - ib.
9. The Nutrition of Plants 164
10. Water not the element of Plants 165
11. The motion of the nutritive juice 169
12. The defcent and-afcent of the Sap 171
13. Of the increafe of grains and feeds 172°
14. Of male and female Plants 173
15. Of the Sleep of Plants 174
16. Of the Agreement between Plants and Animals - 179
17. Of the Generation of Plants - 185
18. Of their Flowers - ib.19. Of their Seeds - - 18720. Of their Fruits - - 196
21. Of the Perfpiration of Plants 198

(33^{2})

22. Trees inverted will grow - 202
23. Of the Propagation of feveral Plants ib.
24. Of grain planted in various fubftances 207

Снар. II.

1. Of fome particular Plants - - 210

The fubmarine Grafs - - ib.
The fubmarine Senfitive Plant ib.
The Vines of Hops - - 211
The Herb of Paraguay, or Caa-tree, a fpecies of Tea - - ib.
The Coco-tree - - 212
The Cacao-tree - $\quad 213$
The Tallow-tree: the Horfe-chefnut: the Sago-tree - - 214
Palm-trees: they are male and female 215
Sicilian Plants: particularly Cinnamon, Sarfaparilla, Saffafras, and Rhubarb ib.
The Balfam-tree . - 216

The Flowering-afh, whence Manna is produced ib.
The Peruvian Bark-tree _ 217
The Cotton-tree: the Pepper-fhrub ib.
The Jamaica Pepper-tree - 218
The Plant which affords Ginger ib.
Of the produce of Nutmegs - ib.
The Wild-pine - \quad ib.
The
Page
The Water-withy of Jamaica 219
The Fountain-tree of Hierro, one of the Canary Iflands - 220
The Machineel-apple : its poifonous qua- lity 221
Remarkable method of poifoning by the Negroes in Africa 222
Of a Plant like Doronicum, wherein quickfilver is found 223
Of the Aloe: its fingular properties ib.
The Cereus, or Prickly Pear, of America 225
Peculiarities in the production of Mulh-
rooms 226
Of Sea-plants : the Coral in particular 227
2. Sugar not unwholefome 228
3. Of Maple Sugar - 229
4. Moloffes made from apples - ib.
5. Of Ambergris 230
6. Of the Corruption of Plants and Animals 23^{1}
7. General Reflections 23^{8}
8. Effay on the Production, Nourifhment,
and Operation of Plants and Animals, 253
Sect. 1. Creatures produce their ownKind - - - ib.
See. 2. The Laws of Nature fufficientfor the Production of Animals andVegetables258

(934)

Page
Sect. 3. Of the Nourifhment and Growth of Plants - - 260
Sect. 4. Of the Nourifhment and Growth of Animals - $\quad 264$
Set. 5. The fimilar Operations of Plants and Animals - - 268

Chep. III.
Of Metals, Minerals, and other Foffls.

1. The variety of Foffils - - ${ }_{2} 27$
2. The general Properties of Metals $\quad 278$
3. Of the Nutrition and Generation of Metals - - - 279
4. Of Gold, Silver, Platina, Copper, Iron, Tin, Lead - 280

The chief properties of Gold - ib. The malleablenefs or ductility of gold beyond all imagination - 281
Silver comes the neareft to gold in ductility and refifting fire ib.
Of Platina, an original metal between gold and filver, difcovered in New Spain 282 It is extremely hard to melt - 282 It comes neareft to gold in weight of all other metals -
Copper is next to filver in ductility $\quad 285$
How Brafs is made - ib.
Of
Page
Of Iron 286
The Arbor Martis, a germination of iron, refembles a natural plant 287
Various Experiments ib.
5. Of Steel - 290
6. Of Quickfilver : its fingular properties ib.
Copper and iron, gold and copper, filverand lead, tin and lead, frequentlyfound in one mafs - - 291
7. Of Mines in general 292
8. Of Mundic 293
9. Of the Fiffures of the Earth 294
10. Of Salts 298
Remarkable Salt-mines in Poland ib.
11. Of Stones 299
12. Of Petrifying Springs 301
13. Of Copper Springs 303
14. Of Lime 308
15. Of Precious Stones ib.
16. Of the Loadftone 312
17. Of Inflammable Foffils 318
18. Of Amber 319
19. Of Linum Afbeftum -
ib.
anomoogle
,

[^0]: A particular fpecies of Water-Lizards, Abbe Spallanzani terms an Aquatic Salamander. Yet

[^1]: * All bonelefs infects are hermaphrodites, as are fnails, leeches, and many forts of worms. But fuch worms as become tlies are nut, being indeed of no fex.

[^2]: I find of the number of Sicilian Plants, fays a late writer, the Cinnamon, Sarfaparilla, Saffafras,

[^3]: * The Spirit of vitriol being mixed with iron, after fermenting, produces a green vitrio like the natural one. But if for Spiris

[^4]: LND of the SECOND VOLUME.

