This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

1
?
\square

A

S U R V E Y OFTHE
WIS D O.M of G O D

I N
The Creation: O R, A
COMPENDIUM 0 F

NATURAL PHILOSOPHY:

IN FIVE VOLUMES.
The Third Edition, Enlarged.
$\mathrm{By}_{\mathrm{y}} \mathcal{F} O H^{\prime} N W E S L E Y$, A. M.
V O L. IV.
Thefe are thy glorious Works; Parent of Good; Almighty! Thine this univerfal Frame,
Thus wond'rous fair! Thyfelf how wond'rous then?

> Miletoner

$$
L \quad O \quad N \quad D \quad O \quad N:
$$

Printed by J. FRY and Co. in Queen-Street:And fold at the Foundry, Upper-Moorfields, and by the Bookfellers in. Town and Country. 177.7.

$$
\text { RB. } 23.9 .17769 .(4)
$$

PART the FIFTH. CONTINUED.

C H A P. III.

Of the Properties that are common to all Bodies, and of the Elements of Natural Bodies.

1. Of Exten/ion.
2. Of a Vacuum.
3. Of Solidity.
4. Of Divifibility.
5. Of Motion and Reft.
6. Of the laws of Motion. 10. What is the primary Element of all things.
7. TAVING fpoken of the particular feecies of Bodies, it remains only to fpeak of Bodies in general. And it may be oblerved of them all, that they are extended, folid, divifible,
figured,

(4.).

figured, and capable of motion. We cannot conceive any body that is not extended, or compofed. of feveral parts. And yet we cannot affirm, that the $f f$ ence of Body confifts in this alone.
2. For there may be extenfion without body, which is ufually termed /pace or a vacuum. Thefe are widely different from each other. Body is : divifible and feparable into parts, and confequently capable of motion; none of which can be faid of mere face. And that there is empty fpace is clear from hence. That if all were full, there could be no motion in the world. For in order to this it is requifite that each particle leave its place empty for another to fill. It is faid indeed, this need not be, becaufe all motion is circular, fo that in every motion of whatever kind, each part of the body moved, fucceeds another. But this is abfolutely contrary to matter of fact. We fee with our eyes, that all motion is not circular. And if not, then there muft be empty, fpace, or there could be no motion at all.
3. Another property of Body is Solidity, whereby it refifts another body, moving it out of . its place. Not much different from this, is Impenetrability, whereby a body excludes another from the place where it is. Solidity is not the fame with hardne/s, the former belonging to all, the latter to fome bodies only. Hardnefs confifts in the firm cohefion of the parts, fo as not eafily to be feparated. As the Solidity of bodies flows from the intrinfic nature of matter, it is vain to affign as the caufe of it, either the figure or reft of the parts, or the preffure of the air, or of fome fubtle matter: By thefe folutions, we do note at all explain

(5)

explain the thing, but only intangle ourfelves in frefh difficulties.
4. Divifbility likewife belongs to all bodies. For fince no body can be conceived that is not extended, and extenfion fuppofes parts, it follows that every body, however fmall, is divifible : perhaps not by the att of man, but in its own nature. Nor is it any objection, that our underflanding cannot comprehend infinite Divififility, It cannot : nor can it comprehend infinite number: or indeed infinites of any kind.

It is true, there is no fuch thing, frictly fpeaking, as parts infinitely finall. Yet the fimallnefs of the particles of feveral bodies, is fuch as vaftly furpaffes our conception. And there are innumerable inftances in nature of fuch parts actually feparated from each other.

Mr. Boyle gives us feveral infances of this. He fpeaks of a filken thread, three hundred yards long, that weighed but two grains and an half. Fifty fquare inches of leaf-gold weighed but one grain. Now if the length of an inch be divided into two hundred parts, the eye may diftinguifh them all. Therefore there are in one fquare inch forty thoufand vifible parts, and in one grain of leaf-gold, two millions of fuch parts : which vifible parts no one will deny to be farther divifible. In odoriferous bodies, we may difcern a fill greater fubtlety of parts, yea, of parts actually feparated from each other. Several bodies fcarce lofe any thing of their weight in a long time, and yet continuatly fill a large fpace with odoriferous particles. Several animals are but juift vifible A 3 with

i 6 ;

with the fineft microfcope. And yet thefe have all the parts neceffary for life, as blood and other juices. How wonderful muft the fubtlety of the parts be, whereof thofe fluids are compoled. And hence the following frange theorem is deduced and demonftrated by Dr. Keil. "Any particle of matter, how fmall foever, and any finite fpace, how large foever, being given, it is poffible for that particle to be diffuled through all that fpace, and to fill it in fuch a manner, that there fhall be no pore in it, whofe diameter fhall exceed any given line."
5. The laft general property of matter is Motion and Ref. For it is plain, all matter is either at Reft or in Motion. God is the firft and univerfal caufe of Motion, as well as of all things. The immediate caufe of it, is either matter or fpirit. It is beyond doubt, that a body moved, communicates its motion to another, though in its own nature it be purely paffive. Nor can we reafonably deny that a fpirit is able to move matter, although the manner of its doing this we cannot comprehend.
6. All the laws of Motion may be reduced to three. 1. Every moving body is moved by another: 2. Every moving body communicates its motion to any body it meets: 3. Every moving body continues in motion, till it communicates that motion to another. While thefe laws remain in force, and concur in prodiucing various effects; thofe effects are termed natural. When any of thefe laws is fufpended, this is properly 2 iniracle.
7. As the elements or firft ftamina of bodies are too fmall to be difcerned by any of our fenfes, we can only form conjettures concerning them. The moft probable conjectures are thefe. Empedocles, and Ariftotle from him, fuppofed, there are four elements, fire, air, water and earth. And indeed this divifion feems to be grounded on the nature of things : for there is no doubt but at the creation of this globe, the confufed mafs was feparated into four parts, the heavieft of which conflituted the earth, the particles next in weight the water, the third, lighter ftill, air, and the lighteft of all, fire, otherwife termed ether. And it is manifeft, all bodies known to us, are reducible to one or more of thefe. Every thing corporeal is either earth, air, water or fire, or compounded of them. So that after all the difquifitions of two or three thoufand years, this eafy, plain, natural account of the elements, is not likely to be amended: it being a certain fact, that of thefe do all bodies confift.
8. The Chymifts have taken another way, endeavouring to trace the principle of bodies, not by the ordinary ufe of their fenfes, nor by reafoning, but from experiments made by fire. And by this means they make five elements. For whatever is diftilled, firf emits a fapid and fpirituous vapour, which is by cold condenfed into a liquor: and this they term Mercury: then an infipid liquor, which they call phlegm: afterward an acid liquor, which is alfo termed Mercury. A thicker and oily liquor comes next, which becaufe eafily inflammable, is ftiled Sulphur. The Salt which is afterwards found is their fourth element, the infipid Earth, which is left, the fifth.

(. 8)

9. But not to infift, that all bodies are not refolvible into thefe principles, it is utterly uncertain, whether fire does not alter the natural qualities of bodies, and introduce other qualities into them, which they had not before. Befides fome of thefe are not fimple elements. They are compounded of others, oils and falts in particular. Therefore neither are all thofe oils and falts of one fort, but as various as the bodies from which they are extracted. In truth, thefe are at maft the conftituent parts of two of the Ariftotelic elements, namely water and earth: but the two others, air and fire, are quite omitted in their ac. count.
10. Perhaps one might rather term Matter itfelf with its general properties, the firt and moft fimple element, out of which all things are compounded. But the particles of this are not fit to conmpofe the immediate ftamina of larger bodies, till they combine together into oils, falts, and juices of various kinds. And hence arife thofe principles of the Chymifts, of which mof bodies are compounded: although fill they are only fecondary elements, as being themfelves compounded. Indeed it feems probable, God in the Deginning formed Matter in folid, impenetrable, moveable particles, of fuch fizes and figures as moft conduced to the end for which he formed them ': and that thefe primitive bodies are incomparably harder than any porous bodies compounded of them: even fo hard as never to wear out, no natural power being able to divide them. And thus remaining entire, they compofe bodies of the fame nature and texture in all ages: whereas Should thefe wear away, or break in pieces, the

(9)

nature of things depending on them would be changed. Nor would water and earth, composed of broken, worn-out particles, be the fame as they were at the beginning. But they are the fame in all ages: and the changes of things do not impply any change in thole original particles, but only various affociations and reparations of them. Nor do compound bodies ever break in the middie of folid particles, but where thole particles are joined together, and only touch in a few points.

\mathbf{A}_{5}
CHAP.

C H A P. JV.

Of thofe things wherein Nataral Bodies differ.

1. Of the particular pro- 7.Of Moifure and Dryperties of Bodies. ne/s; Heat \mathcal{E} Cold.
2. Of Light.
3. Of Colours.
4. Of Sounds.
5. Of Smells.
6. Of Tafes.
7. Of Gravity.
8. Of the other properties of Bodies. 10. Of occult Qualities. 11. Reflections.
9. TTAVING confidered wherein Natural Bodies agree, we come now to conlider, the particular Properties wherein they difagree, and whereby they are diftinguifhed from each other. Thofe of them, which are perceived by our outward fenfes, are divided accordingly into various claffes, as they affect the fenfe of fight, of hearing, of tafting, of fmelling, or of feeling.
10. Light feems to be one of the moft fubtle bodies in the univerfe. The grand refervoir thereof is the fun: but it is likewife emitted by many other bodies, and by almoft all, when they are on fre. When it falls on any body which it cannot pafs
pafs through, and fo is beat back, it is faid to be reflected. But when it paffes from one tran/parent body into another, which is either rarer or. denfer, it moves obliquely, its rays being bent, and is faid to be refratted. When it paffes through a body in frait lines, it is faid to be tran/mitted. Thofe which emit the light are termed lucid bodies; thofe which reflect it, opake.

The particles of Light, minute as they are, are attracted by thofe of other bodies. Hence in their paffage near the edges of bodies, whether opake or tranfparent, they are diverted from the right lines, and reflected towards thofe bodies. This action of bodies on light exerts itfelf at fome diftance, but increafes as the diflance is diminilhed : as appears in the paffage of a ray between the edges of two thin plates, at different apertures in which it is peculiar, that the attraction of oneedge is increafed, as the other is brought nearer it. The rays of Light paffing out of glafs into a vacuum, are not only inflected toward the glafs, but if they fall too obliquely, they will revert back to the glafs, and be totally reflected. This reflection cannot be owing to any refiffance of the vacuum, but merely to the attracting power of the glafs. This appears farther from hence: if you wet the pofterior furface of the glafs, the rays, which would otherwife have been reflected, will pafs into and through that liquor: which fhews that the rays are not reflected, till they come to that pofterior furface of the glafs; nor even till they begin to go out of it. For if at their going out, they fall into any liquor, they are not reflected, but perfift in their courfe, the attraction of the liquor counterbalancing that of the glafs.

From this mutual attragtion between the particles of light and other bodies, arifes the reflection and refraction of light. The determination of any moving body is changed, by the interpofal of another body. Thus light meeting any folid body, is turned out of its way, and reflected: but with this peculiar circumflance; it is not reflected from the body itfelf, but by fomething diffufed over the furface of that body, before it touches it. It is the fame thing in refraction: The rays refracted come. very near the refracting body; yet do not touch it. Thofe that actually touch folid bodies, adhere to them, and are as it were extinguifhed and loff.

This entirely agrees with the curious obfervation of an ingenious writer. "It is common to admire the luftre of the drops of rain, that lie on the leaves of Coleworts and fome other vegetables. Upon infpecting them narrowly, I find the luftre rifes from a copious reflection of the light, from the flattened parts of its furface, contiguous to the plant. When the drop rolls along a part which has been wetted, it immediately lofes; all its luftre. The green plant being then feen clearly throngh it, whereas in the other cafe it is hardly to be difcerned.

From thefe two obfervations laid together, we may conclude the drop, when it has the luftre, does not really touch the plant, but hangs in the air at fome diftance from it, by the force of a repulfive power. For there could not be fo copious" a reflection of light from its under furface, unlefs there were a real interval between it and the furface of the plant.

Now if that furface were perfectly fmooth, the under furface of the drop would be fo likewife, and would therefore reflect the image of the illuminating body, like a piece of polifhed filver. But

$13)$

But as it is rough, the under furface of the drop becomes rough likewife; and fo reflecting the light copioufly in different direetions, affumes the colour of unpolifhed filver."

Again. Rays paffing from a more rare into a more denfe medium, are turned out of their right line, becaufe more ftrongly attracted by the denfer medium.

Rays of Light differ in refpect of refraction, reflection and colour. Thofe that agree in the firft of thefe, agree in all, and may therefore be termed homogeneal. Colours exhibited by them we may call homogeneal colours. This being premifed, we may obferve, 1. That the fun's light confifts of rays varioufly refrangible: 2. The rays varioufly refrangible, when feparated from. each other, exhibit different colours: 3 . That there are as many fimple, homogeneal colours, as, there are degrees of refrangibility: 4. A compofition of all the fimple colours, is requifite to conffitute whitenefs: 5 . The rays of Light do not act upon one another, in paffing through the fame medium: 6. Neither do they thereby fuffer any refration: 7. The fun's rays contain all homogeneal colours, which may therefore be called primitive.

As fome rays of Light are lefs than others, 50 they are more refrangible. Thofe which are moft refrangible, conftitute violet colour: that is the fmalleft rays excite the moft languid colour, Thofe which are largeft and fo leaft refrangible, conftitue red, the moft vivid colour. The other rays excite intermediate fenfations, according to, their refpective fize and refrangibility.

(14)

Bodies reflect, inflead of tranfmitting Light, that is, are opake, not tranfparent, not for want of pores; but either becaufe of the unequal denfity of their parts, or the magnitude of their pores. Either their pores are empty, or they are filled with matter of a different kind, whereby the rays are varioufly refracted and refletted, till they are quite abforbed.

Hence paper and wood asc opake, while glafs is tranfparent. For in the confines of parts alike in denfity (fuch as thofe of glafs and water) there arifes no refraction or reflection, by reafon of the equal attraction every way; fo that the rays which enter the firff furface, pafs ftrait through the body. But in the parts of wood and paper, which are unequal in denfity, and contain much air in their large pores, the refractions and reflection are very great; fo that the rays cannot pafs through them, but are bandied about till they are extinguilhed.

Hence opake bodies become tranfparent, when their pores are filled with a fubftance of equal denfity: as paper dipt in water or oil. And on the contrary, tranfparent bodies, by emptying their pores, or feparating their parts, become opake. Thus falts and wet paper become opake by drying, glafs by pulverizing. Yea, water itfelf, if beat into froth, lofes its tranfparency.

That Light is corporeal, cannot now be doubted, having been proved by a thoufand experiments. By reflection and refraction it may be turned more or lefs out of its way, according to the different denfities of the reflecting or refracting medium. Its rays in their progreffive motion may be intercepted by the interpofal of a $1 y$ opake object.
object. And when this is removed, they proceed again, in the fame ftrait courfe as before. They may likewife be contracted into a lefs, or diffufed through a larger fpace, while the quantity of light continues the fame, neither increafed nor diminifhed. So in the focus of a burning glafs, all the rays which would otherwife pafs directly through the glafs, are contracted into one bright fpot, while the circumambient fpace, for the breadth of the glafs, is deprived of its light, and left Thaded. And the action of light thus con denfed, is proportional to its quantity, and produces all the effects of the moft intenfe fire, yea, fuch as no culinary fire will produce. Whence it is plain, that fire and light are effentially the fame, and that fire is only condenfed light.

The materiality of light is farther confirmed by its motion. For vifion is propagated through this medium fucceffively, as found is through air. This has been demonitrated from the eclipfes of Jupiter's fatellites. For the Satellite having been hid behind the planet, it requires a certain time, after it emerges, before its light can reach the eye, namely feven minutes and an half: which is a motion fix hundred thoufand times fwifter than that of found through the air.

The quantity of Elementary Light, is cateris paribus, every where the fame at the fame diftance from the fun. But its action is more or lefs intenfe, as the rays are more direct or oblique. Thefe are in a continual vibrating motion, going and returning to and from the refifting medium, in exceeding fhort and imperceptible intervals, which makes the element feem to be at perfeat ref.
ret. Alt the rays are refracted and reflected alternately; fo that the fame incident ray, which is refracted at one interval, is reflected at the next. This is vifible in tranfparent mediums, where the rays fall upon glafs, water and the like. But in opake bodies, though the fact is the fame, it is not fo fenfible. When the rays fall upon glafs, they are reflected one moment, and tranfmitted the next. And this vibrating motion feems to be effential to Light, when its rays are put into motion.

In talking of Light and Sound, we are apt to confound the fenfation with the motion of the medium that excites it. Thus in a deep calm we fay, There is no air, becaufe we feel none: though there is really the fame quantity of air in equal fpace, as if it blew a florm. And fo in deep darknefs we fay, There is no light in the room : although there is fuppofed to be as much light there, as there was at noon day. Only its rays are quiefcent, and make no impreffion upon the vifive organs.

Sound is faid to move about fourteen miles in a minute, which is performed thus. The froke given by the founding body to the contiguous air; is communicated to the next, and fo on till it reaches the ear.

The ofeillations of the air are required to fuc-ceed each other with a certain velocity; and in order to render them audible, they muft not be fewer than thirty in a fecond of time. But the more frequent thefe fonorous waves are in a given time, the' fharper is the found heard; and the mose iArongly'
does it affect us; till we come to the moft acute of audible founds, which have 75^{20} tremors in a fecond.

Acute founds are, in general, yielded from bodies that are hard, brittle and violently fhook or ftruck; grave founds are from the contrary. Cords or other bodies, that yield the fame number of vibrations in a given time, are faid to be uni/on; as thofe which make double the number of ofcillations in that time, yield a tone that is an octave, or eight notes higher; and other proportions betwixt the number of the vibrations, have different names affigned to them in a mufical fcale. The fhorter cords produce charper tones, and the reverfe in a proportion directly as their lengths; allo thofe, which are more fretched, afford Sharper founds.

The Sound whether acute or grave, Itrong ar weak, is carried through the air about 1038 Paris feet in a fecond, and that with an uniform velacity, without abating in the larger diftances. But a contrary wind, caufing the vibrations to extend more flowly, retards the progreffion of Sound about one-twelfth of its velocity. Denfity and drynefs of the air increafe the Sound, as the rarefaction and moifture of the air leffen it. Hence in fummer time Sound moves fwifter; and in Guinea, it has been obferved to pafs at the rate of 1398 Parifian feet in one fecond.

Plutarch fays, Deers and horfes are of all irrational creatures, the moft affected with mufic. Mr. Playford fays the fame thing, and adds, " Myfelf, as I travelled fome years fince, near Royfon, met about twenty ftags upon the road, following a bagpipe and violin; which when
the mufic played, went forward, when it ceafed, they all ftood ftill. And in this manner they were brought from Yorkflire to Hampton Court. Horfes likewife, lions and elephants are fufceptible of the powers of mufic. So are many dogs, and moft, if not all finging birds." A late author gives a ftranger account ftill.

Monfieur de ——, Captain of the Regiment of Navarre, was confined in prifon fix months. He begged leave of the governor that he might fend for his lute. After four days he was aftonifhed, to fee at the time of his playing, the mice come out of their holes, and the fiders defcend from their webs, which came and formed a circle round him, to hear him with attention. This at firt fo furprized him, that he left off, on which they all retired quietly into their lodgings. It was fix days before he recovered from his aftonifhment. He then began to play again. They came again, and in fill increafing numbers, till after a time he found an bundred of them about him.

I faw a very large and fierce lion which was then kept at the Infirmary at Edinburgh, quite tranfported with the found of a bagpipe, and rolling upon its back with the utmoft fatisfaction. I faw likewife the old lion, in the Tower of London liften with the utmof attention to a German Flute. Meantime a young Tiger leaped up and down inceffantly, till the mufic ceafed. So it may be literally true,

Suetus amphion lenire tigres.
Light is propagated about two hundred thoufand miles in a fecond, after the very fame man-
ner. The fun impreffes the contiguous part or its vifive atmofphere: (Light feems to be the atmofphere of the fun, as air is of all opake bodies.) That part impreffes the next, and fo on, till it reaches the eye.

All fenfation is from contact or feeling. And when the object is not in immediate contact with the organ it affects, touches, or impreffes, by an interpofed medium. By this means the foul perceives or feels the object by the proper organ. And thus, feeing is in effect, the feeling of the eye; hearing, the feeling of the ear.

From all our experiments it appears, that the particles of Light are extremely minute. Probably they are the very fmalleit and laft divifions of matter, which being perfectly folid, cannot receive any otber form. So minute are they as to pafs freely even through the pores of glafs, which no other fluid can penetrate.
All other bodies are immerfed in this univerfal fluid, the common medium of all their actions on each other. But amidft all the changes of compound bodies, all the forms they fucceffively put on, this fimple element remains for ever fixed and immutable.

As to Fire or condenfed Light, all bodies whatever fly or recede from it, in proportion to its denfity: and this feems to be its firftand moft effential property, that no other body can exift with it, or bear its immediate action. So far as it prevails, it diffolves the clofeft and frongeft cohefion of parts in all other bodies, and reduces them into fo extremely minute particles, that they evaporate
in air. And herein is an effential difference between this and ali other diffolvents in nature, that the fubflance diffolved cannot unite with the diffolvent, without deftroying its action.

When falt diffolves in water, iron in aqua-fortis, or gold in aqua-regia, the fubftance diffolved is equally diffufed through the diffolvent, fo as to incorporate with it. But none of the things diffolved by fire, can mix or incorporate with it. They all fly off in vapour: otherwife the fire is prefently extinguilhed.

Elementary Light then, the rays of which when condenfed, take the name of Fire, is an element of a peculiar kind, not fubjeet to the mechianical laws of other bodies. Now if we fuppofe a material fluid, void of gravity, preffure, or atiy other mechanical power, all gravitating bodies will move through fuch a fluid, as freely as in vacuo.

Elementary Light is a material fluid; void of gravity, preflure or any other mechanical power. When condenfed, it is pure, elementary fire, which excludes all other matter out of the fame fpace. Yet it lies in the focus of a burning glafs, perfectly fill and quiefcent. Though it is furrounded by the air, which is a gravitating fluid, preffing equally every way, yet this immechanical element is not at all affected by it, fo as to rife or fall in it, or in the leaft alter its fate, either of reft or motion, which muft neceffarily happen, were it endued with gravity, or the other mechanical properties found in other bodies.

And that the rays of Light, in their progreffive motion, do not prefs, refilt, attract, or at all dif turb
nurb each other, is evident fromifact, though they, come from: every point of face, that can be within the optic angle of the eye. Thus two men ftanding at a diltance, and looking at each . other, fee one another at the fame inftant, and: that by means of rays, which act in conttary directions: without the leaft refiftance. And any number of other men, flanding in any pofition, may fee the fame men in the fameinftant, by rays which crofs each other without any interruption, in all poffible angles. But in founds.which move through a gravitating, refifting medium, the cafe is quite different: For a multitude of founds, fram different fonorous bodies, cannot be diftinetly heard; particularly, when they come to the ear, in many different directions. For the undulations of the refifting medium, mixing : with, and difturbing each other, confufe the fenfation, throwing altogether, indifcriminately to the ear. Thus when a multitude of people are all talking together, the ear receives only a confufed hom or murmur; whereas the eye can perceive all or any one of them diftinetly and without confufion.

Indeed nothing is more fure, than that gravity; preflure, refiftange, and all thofe affections of bodies which are termed their mechanical powers, are not intrinfice or effential to them. For firice matter is purely: pafliwe, and can only act asit is acted upon, it follows, that the active force or energy, which we obferve through the whole material fyftem, muft be the effed of fome intrinfic, non-effential caufe. And fuch a caufe is Light. But then the aftions of this cannever be mechanically accounted for. How this immochanical fuid ads upon other bodies, and determinos.
mines their mechanical powers, we can no more explain than how the foul acts upon the body, or the mind upon matter. But we are fure this is not done by weight, preffure, refiftance, or any mechanical property whatever.
"But what are the general laws of nature?" They are plainly the rules or principles, by which the Governor and Director of all things, has determined to at. Accordingly what we call mecha$n i / m$, is indeed the free agency and continued energy of the Author and DireCtor of natùre. All the neceffary motion of bodies therefore, and all the laws and forces whereby it is communicated and preferved, are the continued, regular will, choice and agency of the Firf Caufe, and inceffant Mover and Preferver of the univerfe.

By the help of this admirable, this firft made, becaufe moft neceffary creature, Light, all the animal world is enabled to go here and there, as their occafions call. We can with pleafure behold the glorious works of God: we can view the glories of the heavens, the beauties of the flowery fields, the gay attire and exquifite garniture of many creatures. We can with admiration fee the great Creator's wonderful art in the parts of animals and vegetables. In a word we can behold the harmony of this lower wortd, and of the globes above, and furvey his exquifite workmanfhip in every creature.

It is a great inftance of his providence, that fo neceflary as Light is, it is not long in paffing from place to place. How inconvenient would it be, were the motion of it no fwifter, than that of the

(23)

the fwifteft bodies on earth, fuch as of a bullet out of a great gun, or even of found itfelf? Did it move at the rate of the firft, it would be above thirty two years in coming from the fun to us, (according to the common computation of the fun's diftance,) above feventeen years at the rate of the fecond motion. The inconvenience of this would be, its energy would be greatly abated, its rays would be lefs penetrant, and darknefs would be diffipated with greater difficulty, efpecially by the fainter Light of our fublunary luminous bodies. But paffing with that prodigious fwiftnefs, (from the fun to us in feven or eight minutes) we receive with fecurity and fpeed the kindly effetts of that noble and ufeful creature.

Another thing worthy of confideration is, the inconceivable extenfion of Light. It is as unlimited as the univerfe itfelf, as is manifeft from our feeing fome of the moft diftant objects, the heavenly bodies, partly with the naked eye, partly with the help of inftruments. And had we infruments of power equal to the extent of light, the luminous bodies in the utmof parts of the univerfe, would doubtlefs be vifible too. Hereby we have a ken of thofe many glorious works of the infinite Creator, which we can improve to fome of the nobleft fciences, and moft excellent ufes of our own globe.

One fpecies of lucid bodies are termed Phofphori: of which fome are natural, others arartificial. Natural Phofphori emit Light without any art or preparation. Such are glowworms, and feveral forts of thining infects. Such are rotten wood: the eyes, blood, fcales, flefh

$$
\left(24^{\circ}\right)^{\prime}
$$

fleth and feathers of fome' animals. Diambinds: likewife when rubbed emit light,' to ore who has' Alayed fome time in the dark. But before the dia-mond is brought into the dark room, it hould lie eight or ten feconds in the fun-hine. It will then thine in the dark twelve or thirteen minutes: but its light gradually weakens alf the time.

But it is remarkable, that fome Diamonds have this property of imbibing the fun's rays, and fhining in the dark, and others not, though there is no other difcernible difference between them.

- Nor is there any rule of judging, which diamonds have this property, and which have not. Their brightnefs, their purity, their fize, their fhape, contribute nothing to it.

Sulphur and fugar when pounded in the dark, will likewife emit light; as will the backs of horfes' or cats, when rubbed with the hand, and fea-water, yea and fome mineral waters, brikly agitated. But no natural phofphorus fhines always, or gives any heat.

Artificial Phofphorus is made chiefly from human Urine. But it may be made from blood, or hair; or indeed from any part of an animal; which yields an oily diftillation. It is at firf of the confiftence of hard wax; but diffolves in all kinds of diftilled oil. With fohid Phofphorus one may write on paper as with a pencil, and the letters wiH Thine in the dark. A little piece of it rubbed betweer two papers, takes fire prefently. It burns' ${ }^{\text {s }}$ vehemently, and penetrates deeper into the flen': than common fire. It never fpoils, if kept in a phial
phial full of water. Liquid Phofphorus daes not keep long. If the face or hands be fineared with this, they will fhine in the dark, yet without any hurt to the fkin.

If Phofphorus be put into a long phial, of which three fourths are filled with water, it will -frequently fend up corufcations, which will pierce through the water, and expand themfelves with great brightnefs in the upper part of the phial.

If we compare this, with lightening, we may obferve, that in this the fire paffes alternately through the water, fo in that the flafhes, which come at intervals, pafs uninterrupted through the moft denfe clouds and thickeft rain. But this is ufually in warm weather, not in winter. And it is the fame with Phofphorus. It very frequently tiafhes in warm weather, but very rarely in winter.

Again. The flame of Lightning is generally inoffenfive, and does not fet fire to any thing. In like manner the flathes of Phofporus are harmlefs. and do not fet fire to the molt combuftible matter. But when condenfed Phofphorus is fet on fire, it burns terribly. And in the fame manner lightning when condenfed, burns trees, houfes, or whatever it comes near. Phofphorus while burning, acts as a corrofive, and when it. goes out, forms a menftruum, which diffolves gold, iron, and other metals. Lightning melts the fame fubftances.

Another kind of artificial Phofphorus, is a preparation of the Bononian Stone. This ftone is of no certain figure, but is fometimes round, fometimes oblong, or lenticular. They are ufually as big as an orange, but verv light, confiderVol.IV. B ing
ing their bulk. They are of various colours, fome alh-coloured, fome blue, and fome almoft white. When this ftone is prepared, it receives Light, but in very different degrees, either from the fun, the moon; common day-light, or a flame. After it has been expofed a few minutes to any of thefe, it Chines in the dark like a burning coal, with fuch a light as is fufficient to read by, if the letters be held near the flone. It does not retain its Light long, but requires often renewing. When well prepared, it will retain this virtue for five or fix years. It appears to moft advantage, if brought into a dark room, after being held in the fun.
3. When the rays of light fall on opake bodies, they are varioully reflected to our eyes, according as the furface of thofe bodies are varioully difpofed. And hence arifes our fenfation of Colours. Thefe, as they exift in the coloured bodies, are only the difpofitions of their furface, to reflect fuch particular forts of rays. White bodies reflect all rays every way, without any feparation of them. On the contrary, Black bodies imbibe all the rays, and reflect none or very few, whereas blue, yellow, and red bodies, reflect only one particular fort of rays. The fmalleft fort of rays are fuppofed to be blue; the next yellow, the largeft red.

To be a little more particular. There are eight true primary colours, which are red, yellow, green, blue, violet, purple, orange, and indigo. All the reft are compounded of thefe, and are termed fecondary colours. But the more compound any colour, the lefs vivid it is. And by too much iompofition they may be diluted and weakened till they are deftroyed. The moft extraordinary compofition
compofition of all is that of whitene/s. For to this all the primary colours are required, as alfo, that they be mixed in a certain degree. And hence white is the ordinary Colour of light: light being an affemblage of all colours.

The tranfinutation of Colours by mixing them together, is not real, but merely apparent. Thos mix blue and yellow powders, and they appear green. But view them with a microfcope, and the blue and yellow particles are feen as difinct from each other as before.

To produce black, the particles muft be lefs than thofe which exhibit any other colour. Where they are greater, there is too much light reflected to conflitute this Colour. But if there be a little lefs than forms the indigo, the body appears intenfely black.

And hence it appears, why fire and putrefation turn many fubflances Black. They divide them into exceeding fmall particles, which then abforb, inftead of reflecting the light. Hence alfo it appears, why glafs ground very elaborately with fand on a copper-plate, makes the fand together with what is worn off from the glafs and copper, become very Black: likewife, why Black fubftances expofed to the fun, are hot fooner than any other. This may partly proceed from the multitude of refractions in a little room, partly from the eafy commotion of fo fmall particles, and from their imbibing his rays. Hence alfo we learn, why Blacks are ufually inclined to a bluifh colour. Black borders on indigo, and therefore refletts indigo-rays, if any.

To try if black bodies receive heat more than others, Mr. Boyle whited one half of a tile, and blacked the other, and then expofed it to the fummer fun. While the white part fill remainB 2
ed cool, the black part was grown very hot. For farther fatisfaction he expofed to the fun a tile part of which was blacked, part white, and part of its natural red: and after a while found the black part hot, the red warm, and the white cool.
" I laid on the frow, (fays Dr. Franklin,) little pieces of broad cloth, of divers colours, black, deep blue, light blue, green, purple, red, yellow, white, in a bright fun-fhiny morning. In a few hours the black (being warmed molt) was funk loweft, the dark blue almoft as low, the light blue not quite fo much, the other colours less as they were lighter, and the white notate all. This was an eafy and certain way of thewing which was heated molt."

All the Secondary colours of natural bodies proceed from their reflecting two or more forts of rays together, and abforbing the reft.

Glass, chryftal, dianyond, and other tranfparent bodies, lope their tranfparency, and are white, when reduced to powder: the change of texture caufing them to reflect the rays which before they tranfimit.

White loaf-fugar, melted over the fire, without water, firft turns brown, afterwards black. And a fingle grain of this tinges a quart of fair .water with a beautiful yellow. Violets, rofes, carnations, and molt flowers lofe their colour, by being long in the open air. And by the fame means blue effential oil of chamomile-flowers changes to a dirty green.

Many colours may be produced, deftroyed, and regenerated, upon fimple mixture. Let dried role-
rofe-leaves ftay a while in fpirits of wine, and and they lofe their colour without tinging the liquor. But add a little oil of vitriol, and it turns red: put in a little urinous fpirit, and the red ehanges to green, which by adding a little more oil of vitriol, turns to a red again.

Make a flight infufion of bruifed galls in water, fo as not to difcolour it. Make atfo a weak infufion of green vitriol in water, which will be ftill tranfparent. Yet mix them together, and an inky blacknefs will immediately arife. But add a little oil of vitriol, the blacknefs will vanih, and the liquor be tranfparent again. Yet the blacknefs may be recalled by adding a little falt of tartar.

If a little bruifed camphire which is very white, be put into tranfparent oil of vitriol, the camphire will diffolve, and tinge the liquor firft brown, and at length a fine black. But upon the addition of fair water, the blacknefs entirely vanifhes, and the camphire regains its native whitenefs.

A tranfparent infulion of fugar of lead in water , being wrote with, when dried becomes invifible. But the bare fumes of another tran pasent liquor, namely, infufion of quick lime and orpiment in water, will quickly make the invifible writing black and vifible.

And not only fecondary, but primary colours are producible by fimple mixture: If the fun's rays pafs through two pieces of differently coloured glafs, fuppofe a blue and yellow piece laid on each other, and thefe rays are received upon white paper, they produce a beautiful green. A mixture of feven, or even five, original colours, will make a pure white. If different celoured flames be brought to mix, the experiment is made to perfection.

Flames from different bodies are of different colours. The flame of camphire is white, of fulphur blue, of white-wax inclining to yellow. For making experiments, oil may be impregnated with different metals, fo as to exhibit their particular flames.
4. Air is the ordinary veichle of Sound, which is the fainter, the more remote the founding body is. It is alfo leffened, and fometimes quite interrupted either by contrary winds or thick vapours floating in the air. It is fuppofed, that the founding body, excites a kind of undulation or tremulous motion in the air, raifing as it were waves of air, one of which impells the other till they reach the ear.

Sound moves but little quicker by having the wind with it, as it moves at leaft thirty three times fafter than the moft violent wind we know. But it is heard much farther thereby.

That air is the grand veichle of Sound, appears from various experiments. A bell in an unexhaufted receiver, may be heard at fome diftance: but fcarce at the fmallef, when it is exhaufted. But it is not the only one. Water too will convey found. If you ftrike a bell under water, the found is heard plain, only not fo loud, and alfo a fourth deeper. And a found made in air, is heard under water, with juft the fame difference.

Sounds commonly move a mile in about nine fecond and a quarter. If a gun be difcharged with its mouth to us or from us, the report comes to us in the very fame time. It always moves the neareft way, and equally fwift from the beginning to the end of its motion.

If the unadultating air ftrikes againft hard, concave bodies, it rebounds, and occafions what we call an echo. As often as Sound frikes perpendicularly on a wall, behind which is any vault or arch, or even a parallel wall, fo often it will be reverberated in nearly the fame line. For a multiplied echo, there muft be a number of walls and cavities, either behind, or fronting each other.

The echo in Woodftock-park returns very diftinctly, in the day feventeen, in the night, twenty fyllables. There is an echo on the bank of the river Naffa, between Bingen and Collentz in Germany, which repeats what is faid feventeen times. And what is ftill more peculiar, the perfon who fpeaks is fcarce heard at all, but the repetition clearly, and with furprizing variety: the echo feeming fometimes to approach nearer, and fometimes to be farther off. One perfon hears only one voice, another feveral: one hears it on the right, another on the left.
Two miles from Milan there is a fill more furprifing echo. It returns the found of a piftol fiftyfix times. The firft repetitions follow one another very quick; but they are more diftinet in proportion as they decay. There are two parallel walls, which beat the found back upon each other.
5. The fine effluvia from odorous bodies, when they reach our noftrils, excite the fenfation of Smelling. Some bodies emit thefe moft when they are moift: fome only when they are warmed or heated. From all fuch bodies innumerable particles flow, which according to their various fize, figure, and motion, varioully affect the ol-factory-nerve. But what particular motion, fize or figure, is required in order to any particular fmell, who is able to explain?

Thefe effluvia indeed are inconceivably finall : fo that amber and divers other odorous bodies, emit them for many years, without any difcernable lofs, either as to bulk or weight.

Mr. Boyle fhews, 1. That the number of particles thus emitted, is exceeding great. 2. That they are of a very penetrating nature. 3. That they move with vaft fwiftnefs and in all directions. 4. That there is often a wonderful congruity between the bulk and fhape of thefe effluvia and the pores of the bodies they penetrate, and lafly, that they may excite great motions, and thereby make great changes in organized bodies.

That Effluvia are emitted to a very great diftance we learn from hence, that wines grow turpid in the hogthead, precifely at the time that the grapes are ripe in the country whence they were imported. That they are very penetrating, even without lofing their virtue we have a proof from the loadfone, whofe Effluvia pafs through the moft folid bodies, without any change of their force. That they occafion great changes in organized bodies, we have a remarkable proof in a cafe lately publifhed by Dr. Heitter, " Alaking an afternoon's vifit to the Reverend Mr. Sentag, he received me in an apartment where there were three or four flower-pots with white lillies. I afked him, if he did not find his head affected, when he continued long in the room where they were, and told him, phyficians thought them dangerous, and I myfelf could not bear them. I therefore begged the window might be opened, that the effiuvia might be difperfed.

He ordered the window to be opened, and replied, He found no inconvenience from them, being a tall, ftrong, healthy man. But the Smell being
being ffill too powerful for me, I was obliged to take my leave of him fooner than I intended.

The night following he was feized with an apoplexy. Dr. Bayer and myfelf were fent forWe found him with his eyes wide open, but without fpeech, fenfe or motion. I told Dr. Bayer what had paffed the day before. We ordered bleeding, blifters, and ftrong friction of the folesof the feet, head, and hands, with the other remedies. ufual in thofe cafes: but without fuccefs; for the next morning he began to rattle in thethroat, and foon after died."

This may admonifh thofe to whom thefe odours. are not fenfibly prejudicial, not to ftay long within the fphere of their activity.

In fome places Effluvia from the earth produce many effects on the furface of $i t$. The bubbling and boiling fountains in England and other countries are chiefly occafioned by the burfting up of their Effluvia.. Our burning well in Lancaflire has no peculiar property in its water: but an inflammablevapour rifing through it, makes it boil and bubbleon the furface. And this vapour, as foon as fet at liberty from the water will take flame at a lightedcandle.

The famous boiling fpring near Montpelier, is likewife no other than common water, through: which a vapour of the fame kind makes its way. indeed all the fprings thereabouts, bubble more or lefs; the vapoup making its way through the whole furface of the earth. Water taken out of that fpring has no fuch property, norany peculiar tafte or virtue. What is a farther proof is, the cracks of the earth thereabouts. all perfpireflrongly a vapour of this kind: So that if fraws be laid on the furface, they will be blown up, and if an hole be any where dug in the ground, and

(34)

water poured into it, it will boil up in the fame manner as the fpring.

The like fort of fprings are common in Switzerland, and fome other places. Thefe are known to be owing to Effluvia from beneath by the water of them being cold. But there are others which actually boil, and are hot enough to boil an egg. Such are the famous boiling fountains, of Solfatara, near Naples.

From thefe various fprings we find that there is much variety of this kind of exhalations: fome being cold and dry: fome of a bituminous nature, and not actually cold, as ours in Lancafhire: fome hot as thofe in the fweating vaults and can verns, and in the mountains of Italy. Others are of a poifonous nature, containing particles of arfenic, or other poifonous minerals.
6. Many bodies are taftelefs. But fome even of thefe may contract a very ftrong tafte (as do feveral metals) when they are refolved into a fine powder. Some bodies by feveral other changes, acquire Taftes which they, had not before, or varioufly increafe, leffen or alter their Tafte. Hence it has been fuppofed, that all Taftes proceed from falts, which are often fo inveloped, that they cannot exert their power. But if the containing bodies are diffolved by fire or liquors, then they varioufly affect the nerves in the tongue and palate. And hence arife all the various fenfations of Tafte. But what particular fize, fhape or motion of the particles, is required to produce any particular Tafte, all our ikill cannot determine.
7. Of the properties which we perceive by Feeling, the chief are Moifne/s, Dryne/s, Heat and Cold. There is no Heat without fire, or at leaf

(35)

leaft fome difpofition of the heated body to take fire. If the particles of it, rapidly agitated, frike againft another body, they tear and diffolve it: if againft the body of a man, the fenfation of Heat arifes in the mind. Some fuppofe, Cold confifts in the reft of thofe particles which were fo agitated before. Others think this would not fuffice to produce that acute pain which we fometimes feel from Cold: and therefore fuppofe there are pofitive frigorific particles, which move on in frait lines, and fa not only deftroy the circular motion which is required for Heat, but likewife penetrate the body, and fharply affect the extremities of the nerves.
8. Gravity and Levity have likewife been reckoned among fenfible qualities. But properly, there is no fuch a thing as Levity, for all bodies tend to the center of the earth, though fome are: light in comparifon of others. The laws of Gravity are, 1. All bodies on the earth, tend to a point which is (nearly at leaft) the center of the globe. 2. In all places equidiftant from the center, the force of Gravity is nearly equal. 3. Gravity equally affects all bodies, without regard either to their bulk or figure. So that were it not for the refiftance of the medium, the greateft and fualleft bodies, the moft denfe, and the molt rare, would defcend equal fpaces in equal times. Thus gold and feathers defcend alike in an exhaufted receiver. 4. This power increafes as we defcend to the center, and decreafes as we afcend from it: and that as the fquares of the diffances. Thus at a double diftance, Things have but a quarter of the force. 5. Thofe things fwim in fluids, which are fpecifically (that is, bulk for bulk) lighter than thofe fluids.

This gravitating power feems to be congenial to matter. It penetrates even to the center of the fun and other heavenly bodies, without any diminution of its virtue. And it atts not according to the furfaces of bodies, as mechanical caures do, but according to the quantity of matter they contain. That it is an original law of nature, immediately impreffed by the Creator, without dependance on any fecond caufe at all, may appear from the following confiderations, 1. Gravity does not require the prefence of the gravitating or attracting body. 2. The diftance being the fame, the velocity wherewith gravitating bodies move, depends on the quantities of matter in the attracting body. And the velocity is not changed, let the mafs of the gravitating body be what it will. 3. If Gravity depend on any known law of motion, it muft be fome impulfe from an extraneous body: whence, as Gravity is continual, a continual froke muft alfo be required. Now if there be any fuch matter continually ftriking on bodies, it muft be fubtle enough to penetrate all bodies. But how fhould matter fubtle enough to penetrate the hardelt bodies, and fo rare as not fenfibly to hinder the motion of any, be able to impel fuch vaft bodies toward each other with fuch force? How does this force encreafe, according as the mafs of that body, toward which any body moves increafes? Whence is it, that all bodies at the fame diftance from the body gravitated to, move with the fame velocity? And how can matter, which only acts on the furface of the bodies themfelves, or of their internal particles, communicate fuch motion as in all bodies fhall exactly follow the proportion of the quantity of matter in them?

(37)

But after all comes Mr. Hutchinfon, calls Sit Ifaac and all his followers fenfelefs, unphilofophical blockheads, and to folve all the difficulty in a moment, fuppofes the fun to be the center of the whole univerfe, and to project Light every way, through every point of fpace, to the utmof circumference of it. When this Light arrives at the circumference, it is condenfed into larger maffes, and returns in the form of Spirit or Air, through every point of fpace to the fun. There it is again comminuted into light by the immenfe Fire, and fo iffues out again to the circumference. And this double impulfe of Light moving outward, and Spirit moving inward, caufes the motion of all the heavenly bodies, both round their own axies and round the fun. But to wave that grofs abfurdity, of fuppofing every point of fpace to be continually filled with light, and every point of it to be filled with fpirit at one and the fame time, (which is flatly impoffible, fince both are material, and two particles of matter cannot co-exift in the fame (pace:) how does this remove the difficulty at all? How does it help us forward an hair's breadth? For what impels light outward, or fpirit inward? It can be no mechanical power. It mult then be the finger of God:" And if fo, what have we gained? May we not as well fay at once, (as go thus round about) "Gravitation can be no otherwife accounted for, than by allowing the dirett, immediate power of God,operating through the whole univerfe?"

But befide the Attraction of Gravity, there is another fpecies of Attraction, between the minute particles whereof bodies are compofed. Thefe attract each other at or near the point of contąt, with
with a force much fuperior to that of Gravity. It is by this Attraction of Cohefion, that the atoms or infenfible particles of bodies are united into fenfible maffes. Hereby numberlefs phænomena may be accounted for, which are otherwife inexplicable : fuch as coagulation, chryftallization, and the afcent of fluids in capillary tubes. Suchlikewife are fermentation, animal fecretion, and many others. Thus nature will be found very fimple and conformable to herfelf, performing all the great motions of the heavenly bodies, by the Attraction of Gravity between thofe bodies, and almof all the motions of their feveral parts, by this Attraction diffufed through every particle. Sir Ifaac thinks, that without thefe two principles there would be no motion in the world. And without the continual operation of them, it could not long continue, confidering the vaft and conflant diminution of motion by various other caufes.

Mr. Hervey's obfervations on this head, are ftrong and beautiful.
" The fundamental laws of our modern aftronomy are projection and attraction: one-the allcombining cement, the other the ever-operative fpring of the mighty frame. In the beginning God impreffed a proper degree of motion on each of the whirling orbs. This, if not controlled, would have carried them on in frait lines, till they were loft in the abyfs of fpace. But the principle of gravitation being added thereto, determined their courfe to a circular form. And how neceffary for the confervation of the univerfe, is both the one and the other? Were the projectile
projectile power to ceafe, all the harmonioullymoving fpheres would fall into the central fire. Were they gravitating, they would exorbitate into wild confufion, or by their rapid whirl be diffipated into atoms. But the impulive and attractive energy, being nicely attempered to each other, the various globes perfevere in their radiant courfe, without any interruption or diminution. \dagger
"How extenfive, and how diverfified is the force of this fingle principle of attraction? (Underftanding by the word, that of cohefion, as well as of gravitation!) It penetrates the very effence of all bodies, and diffufes itfelf to the utmof limits of the mundane fyftem. By this all thofe valt worlds of matter hang felf-balanced on their centers. And to this is owing an effect of a very different nature, the preffure of the atmofphere, which though a yielding and expanfive fluid, yet by virtue of an attracting energy furrounds the whole globe of earth, and inclofes every creature thereon, as it were with a tight bandage: an expedient abfolutely neceffary to preferve the texture of our bodies, and indeed of every animal. Urged by this, the rivers circulate with a never-failing current, along the veins of the earth. Impelled by the fame myfterious force, the nutritious juices are detached from the foil, and afcending the trunks of trees, find their way through millions of the finef meanders, in order to convey vegetative life into the fmalleft branches. This confines the ocean within its bounds. Though the waves thereof roar and fwell, yet checked by

[^0]this curb, they are unable to pafs, even the flighteft barrier of fand. To this the mountains owe that unthaken firmnefs, which laughs at the fhock of careering winds. By virtue of this invifible mechanifm, without any inftrument of human device, thoufands of tons of water are raifed every moment into the regions of the firmament. By this they continue fufpended in the air, without any ciftern to contain them. By the fame variouly-acting power, they in due time drop down again in gentle falls of dew, or are precipitated in copions fhowers of rain. They flidedown in fleecy flights of finow, or dart in clattering fhowers of hail. This occafions the ftrong cohefion of Jolid bodies, without which our large machines would be utterly ufelefs, and the nicer utenfils of life elude our expectations of fervice. In fhort, this is the ballaft which compofes the equilibrium, and conflitutes the flability of things: this the great chain, which forms the connexion of univerfal nature, and the mighty engine, which in good meafure accomplifhes almoft all her operations. What complicated effects from a fingle caufe! What profufion amidft frugality!"

How extremely plaufible is all this! And what pity, that it is only plaufible! But it is really no more : it is not capable of any fubftantial proof; I mean, with regard to the motion of the heavenly bodies, and the caufes of that motion.

I do not know that any one has yet given a rational anfwer to Dr. Rogers' obfervations on that head. "The action of thefe two powers (gravitation and projection) is inadequate to fuch a motion:
motion : becaufe in order to produce it, the gravitating force muft exactly balance the projectile. But were this done, one would deftroy the other. This will appear plain, if we confider the nature of thefe two forces. Gravitation, by which the earth attracts all bodies, is at all times uniformly exerted in right lines, from the earth to the body attracted, and acts equally on all bodies according to their denfities. It is perpetual, fubject to no decay, needing no reparation. But Projection is a motion given to a body, contrary to its nature. When given, it would always continue in a ftrait line, if nothing hindered it; but cannot remove any obftruction, without lofing part of its own force. Now the obftruction given by attraction, muft have the fame effect as obftruction given by air or ether : it muit continually lelfen any projectile force, till that force is totally deftroyed.

A mortar elevated forty-five degrees, ejects a bomb at firft in or near a right line, while the projectile force is vaftly fuperior to the attractive; afterwards in a curve: for the moment the two forces are in equilibrio, in a fegment of a circle; then in a curve lefs and lefs bent, till it falls in a right line to the center of gravitation.

This is the nature of all Projectiles : nor can any Projectile, thrown in any direction, by any force of Attraction, produce a circular motion ; much lefs an elliptical one, fuch as that of the earth. Befides, what phyfical reafon can be affigned, why the earth, being nearer the fun in winter, the gravitating force does not increafe; and why the projectile does not increafe in fum-
mer, when it is farther from the fun, to the entire defruction of one or the other?

A third motion alfo is fuppofed to be primarily impinged on the earth, namely, round its own axis. But nothing can be more plain, than that a body fo ftrongly attracted by the fun, as to keep it from flying off in a tangent, muft have its circular motion prefently fopt: as the fide next the fun muft be attracted moft, the attraction of all the planets co-operating thereto.

To make this plain, I hung a loadfone to a finall fring, and gave it as many turns as would continue its revolving motion ten minutes and an half, when no iron was near. But on bringing a piece of iron near, it flopped. The iron being removed, it recommenced its circular motion, which lafted for a minute more. Hence it is evident, that did not fome force continually act upon the earth, to keep up its motions, the attractive power of the fun would foon fop, at leaft the diurnal one.

The Friction likewife of the ether muft be confiderable. Elfe why might not the earth revolve in twenty-four minutes as well as twenty-four hours? Indeed this feems to be one great ufe of the ether, to prevent the too rapid motions of the planets. And as the earth floats in the air, fo does the fun in the ether, his proper atmofphere, which extends to the utmofl limits of his fyttem, and is the medium, Funiculi or Hami, by which he attracts all the planets and comets, and prevents their flying out of the fyflem.

Neither

Neither will Gravitation at all account for the Motion of Comets. That in 1680 defcending from an immenfe height perpendicularly toward the fun, rofe from him again with equal velocity. Now as its accefs to, and recefs from the fun, were made in frait lines, while they were making, the projectile force muft ceafe. But to ftop any projectile, is to deftroy its motion. How came it then to be fo ftrongly exerted in the Perihelion? Was there a continued miracle, a frefh projection given? Or did it rebound? What, from the yielding ether!

Again. This Comet, during half its circuit round the fun, was diftant from it but one third of the moon's diftance from the earth. The attractive force therefore was then vaftly increafed; and the projectile being deftroyed, it muft have impigned on the fun long ago, had there been no other force to prevent it. It is clear then upon the whole, that the motions of the heavenly bodies, cannot be accounted for, by attraction and projection.

How then can they be accounted for? Poffibly thus. The earth being an oblate Spheroid, objetted to the fun in an obliquity of 66 degrees 3° minutes, (the fame which given to the fails of a windmill, occafions its mon forcible converfion) the fun's rays ftriking againft the oblique hemifphere, as the wind againft the fails of a windmill, keep it off, and at the fame time make it turn on its own axis. The ether being a refifting medium, and the atmofphere (like the oars of a boat) friking therein, urges it into a progreflive motion. Meantime its own gravity inclines it to the fun's center,

(. 44)

center, and of courfe keeps it in equilibrio, with the repelling rays.

It is fuppofed likewife, that the plane of the earth's orbit, is in winter in or near the fun's axis, whence the rays are not fo forcibly emitted; for which caufe the earth muft then come nearer, the repelling force being weaker. But in fummer, being objected to the more forcibly repelling rays, it muft be driven to a farther diffance; whence its annual orbit muft become elliptical.

The earth's diameter being known, determines its diftance from the fun. For as the diameter is 7967, the periphery 25031 , which multiplied by the number of its revolutions $3^{6,525}$, gives for its orbit $9,14^{2}, 57^{2}$: and as it moves through this orbit merely by the impulfe of the folar rays, and as the gravitating force muft neceffarily be equal to that impelling force; fo while it rolls onward one mile, it is attrafled another. Confequently the preceding orbit being doubled, by the gravitating force, makes in all $18,28_{5,144}$. The femi diameter of this is the diftance of the earth from the fun: which therefore is neither more nor lefs than $2,910,3^{6} 4$ miles.

In the fame manner we find the diftance of Venus from the fun, to be $1,790,684$ miles: that of Mars, $5,473,690$: that of Jupiter, $34,520,432$: that of Saturn, $85,727,3^{20}$: and that of Mercury, 700,758.

And as thefe diffances are far lefs than thofe affigned by the modern aftronomers; fo is themagnitude of the heavenly bodies proportionably
lefs than they fuppofe. For inftance: the diameter of the fun, commonly fuppofed to be 822,148 miles, is according to this manner of calculating. 23,373 and no more. And that this is nearly the true diameter, and thefe the true diftances, appears from experiments on the tranfits of the planets over the fun."

The Comets, Dr. Rogers thinks, are chiefly defigned to repair the quantities of light continually emitted by the fun, and which are fcattered and difperfed over the whole fyiftem. Their fweeping tails, which extend fo many thoufand miles, feem adapted to fuch a purpofe. And as many of thofe particles of light, are driven to a vaft diftance, it is neceffary they fhould go to the utmoft limits of the fyftem, to make fuch a collection.

Suppefe a body fit for this, detached from the neighbourhood of the fun, it fhould be light, porous and fpongy. And fuch a body would be propelled by the violence of the rays, with great velocity to a great diftance. The farther it goes, the fewer rays frike upon it, and their force likewife is diminifhed. The Comet then flowly fweeps his tail over the wide expanfe, beyond the orbit of Saturn. There its cells are filled with the matter it was fent to collect; but becoming heavier, the other fcale begins to preponderate, and he flowly returns toward his center. His collection increafes as he defcends, which adds to his weight and fwiftnefs, and he comes down, if very heavy, almoft in a ftrait line; if lefs fo, in a larger curve, till he is near the fun, where having emptied himfelf, and being evenly balanced with the repelling
repelling rays. he moves round in the fegment of a circle, till being continually lighter, he is no longer a balance for the repelling rays, and fo is driven forward thereby, and runs the fame circle as before.

What a violent blow is here given to the whole fabric of modern aftronomy! And how can any reafonable man fubfribe thereto, till this difficulty is removed ?
9. There is no need to fpeak particularly of thofe other qualities, hardne/s, foftne/s; firmne/s, fluidity; brittlene/s, toughne/s; roughne/s, fmoothne/s, denfty, rarity; regidity, flexibility, comprefJibility, elaflicity. What each of thefe is, we know well, without any elaborate definition. And in general we know, that they all arife from the various figure, fituation and texture of the particles whereof bodies confift. But farther than this we know not. What particular fhape, texture, or fituation, is requifite in each cafe, is a matter of mere conjecture.
10. Thofe of which we are not able to give any rational account, have often been termed Occult Qualities. Among thefe is ufually ranked that Jympathy, which is obferved in things diftant from each other. So onions in the granary fprout, while others fprout in the garden. So nothing is more common, than that if you throw a mulbery or ftrawbery at a woman with child, the child has the mark of one or the other, on the fame part which was fruck with it. And thefe marks grow green, yellow and red every year, juft as thofe fruits do in the garden. And when the feafon
feafon of them is paft, thefe fubfide, and vanifh away. So women ftartled by a fudden fight of the moon, have flamped the figure of the moon on their children. And this figure increafed or decreafed juft as the moon did. Oppofite to this, is that amazing antipathy, which fome things appear to have naturally for each other. In. ftances of which are found, not only in men, but in animals, if not in plants alfo.

Before we attempt to account for any of thefe things, we fhould take care to be well affured of the fact. For many of them are generally believed and vehemently afferted, which yet never had any being. Hence others run into the oppofite extreme, roundly denying whatever they cannot account for. The middle way is beft. Firf, be fure of the fact. Then, try if it can be accounted for on allowed principles. And if it can, the qualities in queftion, are to be termed Occult no longer. But there will fill remain many fecrets in nature, which we are in no wife able to account for. Indeed to penetrate the inmof receffes of nature, is above the condition of humanity. We muft therefore neceffarily allow, that there are in this fenfe many Occult Qualities: nay, we are furrounded with them on every fide: infomuch that there is fcarce any thing in the univerfe, that has not fome qualities, which the wifeft man on earth is not able to account for.
11. I have now finifhed what I propofed. I have given as fhort and plain an account as I could, of all that is certain in Natural Philofophy : In order to direct the whole to its proper end, I have now only to add a few Reflections.

If we caft our eyes up to the firmament, let us ferioully afk ourfelves, What power built over our heads that vaft and magnificent arch, and Jpread out the heavens like a curtain? Who garnifhed thefe heavens with fuch a variety of refplendant objects, all floating in the liquid ether, all regular in their motions? Who painted the clouds with fuch variety of colours, and in fuch diverfity of fhades and figures, as it is not in the power of the fineft pencil on earth to emulate? Who formed the fun of fuch a determinate fize, and placed it at fuch a convenient diftance, as not to fcorch or annoy, but to cherifh all things with his genial heat? For a fucceffion of ages he never failed to rife at his appointed time, or to fend out the dawn as his forerunner, to proclaim his approach. By whofe fkilful hand is it directed, in its diurnal and annual courfe, to give us the grateful viciffitude of night and day, and the regular fucceffion of the feafons? That it fhould always procced in the fame path, and never once ftep afide: that it fhould go on, in a fpace where there is nothing to obftruet, but turn at a determinate point: that the moon fhould fupply the abfence of the fun, and remove the horror of the night ; that it fhould regulate the flux and reflux of the fea, thereby preferving the waters from putrefaction, and at the fame time accomodating mankind with fo manifold conveniences: that all the innumerable hofts of heaven, fhould perform their revolutions with fuch exactnefs, as never once to fail, in a courfe of fix thoufand years, but conflantly to come about in the fame round to the hundredth part of a minute : this is fuch an inconteftable proof of a Divine Architect, and of the care and wifdom wherewith he governs the
verfe, as made the Roman Philofopher conclude, "W hoever imagines, that the wonderful order and incredible conftancy of the heavenly bodies and their motions, whereon the welfare and prefervation of things depend, are not governed by an ir.telligent Being, is himfelf deftitute of underftanding. For fhall we, when we fee an artfully contrived engine, fuppofe a dial or fphere, immediately acknowledge that it is the refult of reafon and underftainding: and yet, when we behold the heavens, fo admirably contrived, moved with fuch incredible velocity, and finifhing their anniverfary revolutions, with fuch unerring conftancy, make any doubt of their being the work not only of reafon, but of an excellent, a Divine reafon ?"

But if from that very imperfect knowledge of aftronomy which his time afforded, even the heathen could be fo confident, that the heavenly bodies were framed and moved by a wife and underftanding mind: what would he have faid, had he been acquainted with our modern difcoveries? Had he known the immenfe greatnefs of that part of the world, which falls under our obfervation ? The exquifite regulation of the motions of the planets, without any deviation or confufion: the inexpreffible nicety of adjuftment, in the velocity of the earth's annual motion; the wonderful proportion of its diurnal motion about its own axis; the denfities of the planets, exactly proportioned to their diftances from the fun : the admirable arder of the feveral fatellites, which move round their refpective planets; the motion of the Comets equally regular and periodical, with that of the other planetary bodies; and laftly, the prefervation of the feveral planets and Comets, from fall-

Vol. IV.
ing
ing upon, or interfering with each other? Certainly could argument avail, Atheifm would now be utterly afhamed to thew its head, and forced to acknowledge, That it was an Eternal and Almighty Being, it was God alone, who gave to each of the celeftial bodies, its proper magnitude and meafure of heat, its duenefs of diftance, and regularity of motion: or in the language of the prophet, who eftablifhed the world by his widdom, and firetched out the heavens by his underfanding,

If from the firmament we defcend to the orb on which we dwell, what a glorious proof have we of the Divine Wifdom, in this intermediate expanfion of the air, which is fo wonderfully contrived, to anfwer fo many important ends at once? It receives and fupports clouds, to water the earth. It affords us winds, for health, for pleafure, for a thoufand conveniences: by its fpring, it minifters to the refpiration of animals, by its motion, to the conveyance of founds, and by its tranfparency, to the tranfmiffion of light, from one end of heaven to the other. Whofe power made fo thin and fluid an element, a fafe repofitory for thunder and lightning? By whofe command and out of whofe treafuries, are thefe dreadful, yet ufeful meteors fent forth, to purify the air, which would otherwife flagnate, and confume the vapours that would otherwife breed various difeafes? By what fkilful hand are thofe immenfe quantities of water, which are continually drawn from the fea, by a natural diftillation made frefh, fent forth upon the wings of the wind, into the moft diftant countries, and diftributed in fhowers over the face of the earth ?

Whore

Whole power and wifdom was it that hanged the earth upon nothing, and gave it a fpherical figure, the moft commodious which could be devifed, both for the confiftency of its parts, and the velocity of its motion? Who was it that weighed the mountains in fcales, and the hills in a balance, and difpofed them in their moft proper places, both for fruitfulnels and health? Who diverfified the climates of the earth, into fuch an agreeable variety, that, remote as they are from each other, each has its proper feafons, day and night, winter and fummer? Who was it that cloathed the face of it with plants and flowers, fo exquifitely adorned with various and inimitable beauties? That placed the plant in the feed, in fuch elegant complications, as afford at once both a pleafing and an aftonifhing fpectacle? That painted and perfumed the flowers, that gave them the fweet odours which they diffufe through the air for our delight, and with one and the fame water dyed them into different colours, furpafling the imitation, nay, and the comprehenfion of mankind? For can the wifeft of men tell,
"Why does one climate and one foil endue The blulhing poppy with a crimfon hue, Yet leave the lilly pale, and tinge the violet blue."

Who replenifhed the earth, the water, the air with fuch an infinite variety of living creatures, and fo formed, that of the innumerable particulars wherein each creature differs from all others, every one is found upon examination, to have its fingular beauty and peculiar ufe. Some walk, fome creep, fome fly, fome fwim. But
C_{2} èvery
every one has all its members and its various organs accurately fitted for its peculiar motions. In fhort, the flatelinefs of the horfe, and the feathers of the fwan, the largenefs of the elephant, and the fmallnefs of the mite, are to a confiderate mind equal demonfration of an infinite wifdom and power. Nay, rather the fmaller the creature is, the more amazing is the workmanhip. When in the mite, for inftance, we fee an head, a body, legs and feet, all as well proportioned as thofe of an elephant, and confider withal that in every part of this living atom, there are mufcles, nerves, veins, arteries, and blood, every particle of which blood is compofed of various other particles: when we confider all this, can we help being loft in wonder and aftonifhment? Can we refrain from crving out, on this account allo, O the depth of the riches both of the wildom, and knowledge of God! How unjearchable are his works, and his ways of creation and providence paft finding out!

Natural indinct is another thing in animals, no lefs wonderful than their frame : and is indeed nothing elfe than the direction of an all-wife and all-powerful mind. What elfe teaches birds to build their nefts, hard or foft, according to the conftitution of their young? What elle makes them keep fo conftantly in their neft, during the time of incubation, as if they knew the efficacy of their own warmth, and its aptnefs for animation? What elfe caufes the falmon every year to come up a river, perhaps hundreds of miles, to caft its fpawn, and fecure it in banks of fand, till the young ones are excluded? To go no farther, can we behold the fiders net, the filk worms web, the bees cells, or the ants granaries, without being

(53)

being forced to acknowledge the Infinite Wifdom, which directs their unerring fteps, and has made them fit to be an emblem of art, induftry and frugality to mankind ?

If from the earth and the creatures that live upon it, we caft our eyes upon the water, we foon perceive that had it been more or lefs rarefied, it had not been fo proper for the ufe of man. And who gave it that juft configuration of parts and exact degree of motion, which makes it fo fluent, and yet fo flrong as to carry, and waft away the moft enormous burdens? Who has infructed the rivers to run in fo many winding ftreams, through vaft tracts of land, in order to water them the more plentifully? Then to difembogue themfelves into the ocean, fo making it the common center of commerce : and thence to return through the earth, as air to their fountain heads, in one perpetual circulation? Who replenifhed thefe rivers with fifh of all kinds, which glide through the limpid ftreams, and run heedlefsly into the fifhers net, for the entertainment of men? The great and wide fea is a very awful and fupendous work of God. Whofe hand makes it ebb and flow with fuch exactrefs? A little more or lefs motion in the fluid mafs, would diforder afl nature, and a fmall increafe of a tide, might ruin whole kingdoms. Who then was fo wife as to take exact meafures of thofe immenfe bodies, and who fo ftrong as to rule at pleafure the rage of that furious element? He who hath placed the fand for the bound of thefe, by a perpetual decree that it cannot $p a / s$. So that though the waves thereof tofs themfelves, they cannot prevail, though they roar, they cannot pafs over it.
C_{3}
If

(. 54)

If from the world itfelf we turn our eyes more particularly on man, whom it hath pleafed the Lord of all to appoint for its principal inhabitant, no underfanding furely can be fo low, no heart fo flupid and infenfible, as not plainly to fee, that nothing but infinite wifdom, could in fo wonderful a manner have falhioned his body, and breathed into it a reafonable foul, whereby he teacheth us more than the beafts of the field, and maketh us wijer than the fowls of heaven.

Should any of us fee a lump of clay rife immediately from the ground, into the compleat figure of a man, full of beauty and fymmetry, and endowed with all the powers and faculties, which we perceive in ourfelves, yea, and that in a more eminent degree of perfection, than any of the prefent children of men: fhould we prefently after obferve him perform all the offices of life, fenfe and reafon; move as gracefully, talk as eloquently, reafon as jufly, and difcharge every branch of duty, with as much accuracy as the moft accomplifhed man breathing, how great muft be our aftomifhment! Now this was the very cafe in that moment when God created man upon the earth.

But to imprefs this in a more lively manner upon the mind, let us fuppofe the figure above mentioned, rifes by degrees, and is finifhed part by part in fome fucceffion of time. When the whole is completed, the veins and arteries bored, the finews and tendons laid, the joints fitted, the blood and juices lodged in the veffels prepared for them, God infufes into it a vital principle. The image moves, it walks, it fpeaks. Were we
to fee all this tranfacted before our eyes, we could not but be aftonifhed! A confideration of this made David break out into that rapturous acknowledgment, I will give thee thanks; for I am fearfully and wonderfully made! Marvellous are thy works, and that my foul knoweth right well. Thine eyes did fee my fubftance yet being imperfect, and in thy book were all my members written.

Thus which way foever we turn our eyes, whether we look upward or downward, without us, or within us, upon the animate or inanimate parts of the creation, we find abundant reafon to fay, O Lord, how manifold are thy works! In widdor? haft thou made them all.

Let us obferve a little farther the terraqueous globe. How admirably are all things thereon chained together, that they all aim at the ultitmate end, which God propofed in all his works! And how vaft a number of intermediate ends are fubfervient to this! To perpetuate the eftablifhed courfe of nature, in a continued feries, the Di vine Wifdom has thought fit, that all living creatures fhould conftantly be employed in producing individuals; that all natural things fhould lend an helping hand, toward preferving every fpecies, and laftly, that the deftruction of one thing fhould always conduce to the production of another.

This globe contains what are called the three kingdoms of nature, the foffle, vegetable, and animal. The foffile conftitutes the cruft of the earth, lying beneath the vifible furface. The vegetable adorns the face of the globe, and draws much of
its nourifhment from the foffile kingdom. The animal is almof wholly fuftained by the vegetable kingdom. If we go deeper into the earth, the rule which generally obtains with regard to the flrata thereof is this. The upper parts confift of rag.ftone, the next of flate, the third of marble filled with petrefactions, the fourth of flate again, and laftly, the loweft which we are able to difcover; of free ftone.

That the fea once overfpread a far greater part of the earth, than it does at prefent, we learn not only from geographers, but from its yearly decreafe, obfervable in many places: partly occafioned by the vaft quantities of fhells and all kinds of rubbilh, which the tides continually leave on the fhores. Hence mof thores are ufually full of wreck, of dead, teflaceous animals, of flones; dirt or fand of various kinds, and heaps of other things. Rivers likewife, efpecially thofe which have a rapid ftream, wear away whatever they touch, particularly foft and friable earth, which they carry and depofit on diftant, winding fhores: whence it is certain the fea continually fubfides, and the land gains no fmall increafe.

Water retained in low grounds occafions marfhes. But what a wonderful provifion has nature made, that many of thefe even without the help of man, fhall again become firm ground ? More and more moffy tumps are feen therein. Some of thefe are brought down by the water, from the higher grounds adjoining, and others are produced by putrifying plants. Thus the marth is dried up, and new meadows arife. And this is done in a fhorter time, whenever the/phaguum, a kind
a kind of mofs, has laid the foundation. For this in procefs of time, changes into a porous. kind of mold, till almoft all the marfh is filled with it. After this the rufh begins to frike root, and together with the cotton-graffes, conflitutes a turf, wherein the roots get continually higher, and thus lay a firm foundation for other plants, till the whole marfh is covered with herbs and grafs, and becomes a pleafant and fruitful meadow.

I fhall add only one reflection more, with regard to the Scaie of beings. As the microfcope difcovers almoft every drop of water, every blade of grafs, every leaf, flower, and grain of earth, to be fwarming with inhabitants: a thinking mind is. naturally led to confider that part of the fcale of beings, which defcends lower and lower, from himfelf, to the loweft of all fenfitive creatures. Among thefe fome are fo little above dead matter;, that it is hard to determine whether they live or no. Others that are hifted one ftep higher, have no fenfe befide feeling and tafte. Some againhave the additional one of hearing: others of fmell, and others of fight.

It is wonderful to obferve, by what a gradual progreffion the world of life advances, throughan immenfe variety of fpecies, before a creatureis found, that is complete in all its fenfes. And among thefe there are fo many different degrees. of perfection in the fenfes which one animal enjoys above another, that though each fenfe in different animals, comes under the fame common. denomination, yet it feems almoft of a different nature. If after this, we attentively confider, the inward endowments of animals, their cunning. C 5.
and:
and fagacity, and what we ufually comprehend under the general name of inftinct, we find them rifing one above another, in the fame imperceptible manner, and receiving higher and higher improvements, according to the fpecies in which they are implanted.

The whole progrefs of nature is fo gradual, that the entire chafm from a plant to man, is' filled up with divers kinds of creatures, rifing one above another, by fo gentle an afcent, that the tranfitions from one fpecies to another, are almoft infenfible. And the intermediate fpace is fo weit hufbanded, that there is fcarce a degree of perfection which does not appear in fome. Now fince the fcale of being advances by fuch regular feps as high as man, is it not probable, that it ftill proceeds gradually upwards, through beings of a fuperior nature? As there is an infinitely greater fpace between the Supreme Being and man, than between man and the loweft infect.

This thought is thus enlarged upon by Mro Lock. "That there fhould be more fpecies of intelligent creatures above us, than there are of fenfible and material below. us, is probable from hence, that in all the vifible and corporeal world, we fee no chafm, no gaps. All quite down from man, the defcent is by eafy fleps : there is a continued fcries of things that in each remove differ the leaft that can be conceived from each other. There are fifhes that have wings, and are not ftrangers to the airy regions. And there are birds which are inhabitants of the waters, whofe blood is as cold as that of filhes. There are animals fo near a-kin both to birds and beafts, that they are

(. 59)

in the middle between both. Amphibious animals link the terreftrial and aquatic together. Seals live either on land or in the fea. Porpuffes have the warm blood and entrails of an hog. There are brutes that feem to have as much knowledge and reafon, as fome that are called men. Again: the animal and vegetable kingdoms are fo clofely joined, that between the loweft of the one, and the higheft of the other, there is fcarce any perceptible difference. And if we go on, till we come to the loweft and moft inorganical parts of matter, we fhall find every where, that the feveral fpecies are linked together, and differ in almoft infenfible degrees.

Now when we confider on the other hand, the infinite power and wifdom of the Creator, does it not appear highly fuitable, to the magnificent harmony of the univerfe, and the infinite goodnefs of the architect, that the fpecies of creatures fhould allo by gentle degrees afcend upwards from us, (as they gradaally defcend from us downwards) toward his infinite perfection? And if fo, is it not probable, there are far more feecies of creatures above then beneath us? Since we are infinitely more remote from the all-perfect Creator, than from the loweft of all the works of his. hands?

But here our thoughts are loff. We may conjecture a little; but we know nothing. However, it is enough, that we know the only true God, and $\mathcal{F e}$ us Chrift whom he hath fent."

This.

(60)

This reflection upon the fcale of beings, is purfued at large, by one of the fineft writers of the age, Mr. Bonnét of Geneva, in that beautiful work, "The Contemplation of Nature." When I firf read this, I defigned to make only fome extracts from it, to be inferted under their proper heads. But upon farther confideration, I judged it would be more agreeable, as well as profitable to the reader, to give an abridgement of the whole, that the admirable chain of reafoning may be preferved, and the adorable Wifdom and Goodnefs of the great Author of nature, placed in the ftrongefl light.

INTRODUCTION.

IRaife myfelf up to the Eternal Reason; \mathbf{I} ftudy his laws, and I adore him. I contemplate the univerfe with a philofophic eye. I fearch into the relations which by this immenfe chain confitute one whole. I fop a while to examine fome links of it, and, fruck with thofe marks of power, wifdom, and goodnefs which I difcover therein, I faintly attempt their defcription.

Of the FIRST CAUSE.

Tobe felf-exiftent, endued with Almighty Power, and to will with Infinite Wifdom, are the adorable Perfections of the Firf Caufe.

The univerfe is effentially derived from this Caufe. In vain do we endeavour by other means to account for it. We may every where oblerve order and ends; the effects of an Eternal, Self-Existent Reason.
2. What mind can fathom the depths of this abyfs? What thought can comprehend that Power which calls things that are not as though they were? God commands the univerfe to be: the aniverfe is inftantly produced.

A fingle act of his will produced the univerfe; the fame act preferves it.

But you afk, Why is not man as perfect as an angel? You mean to fay, no doubt, Why is not man an angel? You may as well enquire, Why a ftag is not a man? But the exiftence of a ftag fuppofes that of herbs to nourifh him. Would you ftill further have had thefe herbs to have been fo many men? Their prefervation and increafe would have depended on the earth, the water, the air, and the fire : would you prefume
to infift in your enquiry, Why the conflituent parts of thefe elements were not fo many dwarfs?

Confefs your error, and acknowledge that every being is endued with a perfection fuited to the ends of its creation. It would ceafe to anfwer that end, the very moment it cealed to be what it is. By changing its nature, it would change its place, and that which it occupied in the univerfal hierarchy ought fill to be the refidence of a being refembling it, otherwife harmony would be deAroyed.

In the affemblage of all the orders of relative perfections, confifts the ab/olute perfection of this whole, concerning which God faid, That it was good.

This immenfe fyftem of co-exiftent and fucceffive beings, is no lefs one in fucceffion than in co-ordination: fince the firf link is conne ℓ ed with the laft by the intermediate ones. Prefent events make way for the moft diflant ones. The germ which expanded itfelf in Sarah's womb, was the preparatory caufe of the exiffence of a greaz people and the falvation of nations.
3. The heavens declare the glory of God, and the firmament fheweth his handy-work. That fublime genius, who expreffed himfelf with fuch loftinefs of fentiment, was neverthelefs unapprized that the flars which he contemplated were in reality funs.* He anticipated the times, and firft fung that majeftic hymn, which future and more enlightened ages fhould chaunt forth to the praife of the founder of worlds.

This

[^1]This affemblage of vaft bodies is divided into different fyftems, the number of which perhaps exceeds the grains of fand, which the fea cafts on its fhores.

Each fyftem then has its center, either a flar or fun, which fhines with its own light, and round which revolve various orders of opake globes, that reflect with greater or lefs luftre the light they borrow from it; which renders them vifible to us.

Thefe globes, which feem to wander among the heavenly bodies, are thofe planets, the principal of which have the fun for the common center of their periodical revolutions; whilf the others, which are called fecondary, move round one principal planet, which they accompany like fatellites, in its annual revolution.

Venus and the earth have each of them their fatellite. One will undoubtedly be fome time or other difcovered in Mars. Jupiter has four, Saturn five, and a ring or luminous atmofphere which feems to perform the office of a number of fmall moons: being fituate fo far from the fun, he would have received too faint a light from it_{2}, if his fatellites and ring did not augment it by reflection.

We have difcovered twenty-feven planets; which at prefent compoie our folar fyftem; but we are not certain that there are not more. Their number has received a great increafe by the invention of telefcopes: more perfect inftruments, and more accurate obfervers, may probably make farther
farther additions to them. The fatellite of Venas difcovered in the laft century gives room to hope for ftill greater fuccefs.
4. The comets alfo are now found to be planetary bodies, whofe !eng routes our aftronomers calculate, foretel their diftant returns, and determine their place, appearances, and tract. Upwards of thirty of thefe bodies at prefent acknowledge the empire of our fun, and the orbits which fome trace round are fo extenfive, that they do not complete their courfe till the end of a long feries of years, and even many ages.

The fars are innumerable; and the confellations, which antiquity reckoned to be but few in number, amount to thoufands.

If the diameter of the great orbit which our planet defcribes round the fun, is more than fixty millions of leagues, yet this vaft circumferencevanifhes into nothing, and becomes a mere point, when made ufe of to meafure the diftance of the fixed ftars.

How great then muft the real bulk of thefe luminous fpots be, that are perceivable by us at fuch enormous diffance! The fun is fuppofed about a million of times greater than the earth, and an hundred and ten times greater than all the planets. put together.
5. Whilf the planets perform thefe revolutions round the fun, by which the courfe of their years. is regulated, they effect another among themfelves, which determines the alternatives of theirdays and nights.

But

But how do thefe vaft bodies remain fufpended in fpace? What fecret power retains them in their orbits, and enables them to circulate with fo much regularity and harmony ? Gravity, that powerful agent, is the univerfal principle of this equilibrium and thefe motions. It penetrates in tothe inmoft parts of all bodies. By virtue of this force they tend towards each other in a proportion relative to their diftance and bulk. So that the planets tend towards the common center of the $/ j \mathrm{jfem}$, and they would be inflantly precipitated into it, if the Creator, when he formed them, had not endued them with a centrifugal motion, by which they are continually kept at a due diftance from the center. Each planet, in conftant fubferviency to thefe two forces, defcribes a curve in confequence thereof. By this means the fame force which determines the fall of a fone, is the ruling principle of the heavenly motions: wonderful mechanifm! whofe fimplicity and energy give us unceafing tokens of the ProFOUND WISDOM of its AUTHOR.

The globe of earth, which is externally divided into land sand feas, nearly level in their furfaces, is formed within, at leaft to a certain depth, of beds of heterogeneous matter, that are almoft parallel, more or lefs denfe, and of a finer or coarfer texture.

The furface of the earth abounds with great inequalities. In one part of it we behold vaft plains interfected by hills and vallies. In another long chains of mountains, which lift their frozen heads to the clouds; and betwixt them deep vallies. From the bofom of thele mountains rivers fpring,
fpring, which after having watered divers countries, and produced ponds and lakes in feveral places by enlarging their beds, at length difcharge themfelves inte the fea, and refore to it what it had loft by evaporation.
6. The fea prefents us with iflands fcattered round its coafts, with fands, rocks, currents, gulphs, and forms, and with that regular and admirable motion whereby its waters rife and fall twice in twenty-four hours.

The lands and feas are every where replenifhed with plants and animals, whofe infinitely varied fpecies refort together in every place. Men divided into nations, peoples, and families, cover the furface of the globe. They fathion and en rich it by their various labours, and build habitations from pole to pole, correfponding with their manners, genius, foil, climate.

A rare, tranfparent, elaftic fubftance encompaffes all parts of the earth to a certain height : this fubftance is the atmofphere, the repofitory for the winds, the immenfe refervoir of vapours and exhalations, which being fometimes collected into clouds of a greater or leffer confiftence, adorn our element by their forms and colours, or aftonifh us by their flafhes and violent noife; and at other times melting into dews, mifts, rain, fnow, hail, yield back to the earth what was exhaled from it.

[^2]lefs than ours, always appears to us with the fame afpect, becaufe it performs its revolution precifely in the fame face of time that it revolves round the earth.

It has its gradual and periodical increafe and decreafe of light, according to its pofition with refpect to the fun, which enlightens it and to the earth, whereon it reflects the light of that fun.

The difk of the moon is externally divided into luminous and obfcure parts. The former feems analogous to lands on our globe, and the latter to our feas.

In the luminous parts there have been oblerved fome places brighter than the reft, which caft a thade from their fide, which has been meafured, and the tract afcertained. Thefe parts are mountains much higher than ours, in proportion to the fize of the moon, and whofe tops the fun has been feen to gild when that planet is quartered; the light defcending by little and little to the foot of thefe mountains, they appear at that time entirely bright. Some are by themfelves, others from very long tracts.

Venus has, like the moon, her fpots, and mountains. So have Mars and Jupiter. Thofe in Jupiter form large belts, which make confiderable motions, like the occan's overflowing the lands, and afterwards leaving them dry on his retreat.

Mercury and Saturn are little known to us; the rft becaule it is too near the fun, the fecond becaufe it is at too great a diffance.

(68)

Lafly, The fun himfelf has fpots, which feem to move regularly, and whofe fize equals, and very often exceeds that of fuch as are feen in the greatef planets.
8. Pure fpirits, immaterial and intelligent fubftances: extenfive and folid fubftances; mixed beings, formed by the union of an immaterial fubflance and a corporeal; are the three general claffes of beings which we have any conception of in the univerfe.

In the univerfe all is combination, affinity, connexion. There is nothing but what is the immediate effect of fomewhat preceding it, and determines the exiftence of fomething that fhould follow it.

The divine mind has fo clofely conneeted every part of his work, that there is not one which has not a relation to the whole fyftem. A mufhroom, a mite, are as effential parts of it as the cedar or elephant.

So that thofe minute productions of nature which unthinking men judge to be ufelefs, are not mere particles of duft on the wheels of the machine of the world; they are fmall wheels intermixed with the greater.

There is nothing then by itfelf. Every being has an activity peculiar to it, determined by the rank appointed for it in the univerfe. A mite is a very fmall moveable creature, which acts in concert with others, whofe activity extends to much greater diftances. The fpheres thus enlarging themfelves more and more, this amazing progreflion .rifes by degrees from the vortex of amber
amber to the folar vortex; from the fphere of a mite to that of an angel.
9. The elements act recriprocally on each other according to certain laws which refult from their relations; and thefe relations unite them to minerals, plants, animals, and to men. This laft, as the principal trunk, fpreads his branches all over the globe.

Thefe fpecies and individuals have relation to the bignefs and folidity of the earth. The folidity. and fize of the earth have relation to the place fhe occupies in the planetary fyftem.

The fun gravitates on the planets; the planets on the fun, and on each other. All gravitate on their neighbouring fyftems; thefe on more diftant ones; and the balance of the univerfe remains in equilibrio, in the hands of the Antient of DAYS.

The human foul, by being united to an organized body, maintains an intercourfe with all nature.

From thefe general principles proceeds the connettion of caufes and effects, of effects and caufes.

From hence alfo arifes that indiffoluble union which forms, of paft, prefent, future, and eternity, one intire individual whole.

The beauty of the world is founded in the harmonious diverfity of the beings that compofe it, in the number, extent, and quality of their effects, and in the degree of goodnefs arifing therefrom.

CHAP.

C H A P. II.

Of the relative Perfelion of Beings.

1. $\begin{gathered}\text { Errestrial beings may naturally be } \\ \text { ranged under four general claffes: }\end{gathered}$
I. Brute and inorganized Beings.
II. Organized and inanimate Beings.
III. Organized and animate Beings.
IV. Organized, animate, and reafonable Be ings.

All beings are perfect, confidered in themfelves; they all anfwer one end. The determinations or qualities proper for each being, are the means relative to this end. If thefe determinations fhould change, they would no longer have a reference to their end, and there would be no more wifdom.

But thofe means which are of a more exalted nature anfwer a nobler end. The Being appointed to fulfil this end, is enriched with proportionable faculties.

Beings whofe relations to the whole are more varied, more multiplied, and more copious, poffefs a higher degree of relative perfection.

As there are two general claffes of fubftances, bodies and fouls, there are likewife two general claffes of perfection, the corporeal perfection, or that which is peculiar to bodies; and the /piritual perfection, or that which is peculiar to fouls.

Thefe two perfections are reunited in every organized animated being, and they correfpond with one another.

From

From their reunion proceeds that mixed perfection which anfwers to the rank every being holds in the fyftem.
2. Of all the modifications of matter, the moft excellent is organization.

The moft perfect organization is that which produces moft effects with an equal or fmaller number of diffimilar parts. Such amongft terreftial Beings is the human body.

An organ is a fyftem of folids, whofe ftructure, arrangement, and action, have motion for their ultimate end, either inteftine or loco-motive, or feeling.

A Being, which is barely formed by a repetition of fimilar parts, enjoys the loweft degrees of corporeal perfection. Such probably is the atom or elementary particle.

The faculty of generalizing ideas, or abftracting from a fubject what it has in common with others, and expreffing it by arbitrary figns, conftitutes the higheft degree of firitual perfection; and therein confifts the difference between the human foul and the foul of brutes.

The foul which is only endued with fenfe occupies the loweft degree in the fcale. This perhaps is the perfection of the foul of the mufcle.
3. The reciprocal action of folids and fluids is the foundation of the terreftrial life.

To nourifh our felves, to grow by our food, to beget individuals of our own fpecies, are the principal ends of the terreftrial life.

If the action of the organs is not accompanied with a fenfe of this action, the organized being enjoys only a vegetative life. Such is the cafe of the plant.

If the action of the organs is joined with a fenfe of that action, the organized Being enjoys a vegetative and fenfitive life. This is the condition of the brute.

Finally, if reflection is joined to feeling, the Being enjoys at the fame time a vegetative,, Senfitive and reflective life. 'Tis man alone, upon earth, that unites thefe three kinds of life in himfelf.

The corporeal and intellectual faculties may be carried to fo high a pitch of perfection, in the moft exalted order of mixed Beings, that we are able to form but faint ideas of then.
4. Between the loweft and higheft degree of corporeal and fpiritual perfection, there is an almoft infinite number of intermediate degrees. The refult of thefe degrees compofes the univer/al chain. This unites all beings, conneets all worlds, comprehends all the fpheres. One sole Being is out of this chain, and that is HE that made it.

A thick cloud conceals from our fight the nobleft parts of this immenfe chain, and admits us only to a flight view of fome ill-connected links, which are broken, and greatly differing from the natural order.

We behold its winding courfe on the furface of our globe, fee it pierce into its entrails, penetrate into the abyfs of the fea, dart itfelf into the atmofphere, fink far into the celeftial fpaces, where we are only able to defcry it by the flafhes of fire it emits hither and thither.

(. 73)

But notwithfanding our knowledge of the chain of Beings is fo very imperfect, it is fufficient at leaft to infpire us with the moft exalted ideas of that amazing and noble progreffion and variety which reign in the univerfe:
5. There are no fudden changes in nature; all is gradual, and elegantly varied. There is no being which has not either above or beneath it fome that refemble it in certain characters, and differ from it in others.

Amongt thefe characters which diftinguifh Be ings, we difcover fome that are more or lefs general. Whence we derive our diffributions into cláfles, genera, and fpecies. But there are always between two clafles, and two like genera, mean productions, which feem not to belong more to one than to the other, but to connect them both.

The polypus links the vegetable to the animal. The flying fquirrel unites the birds to the quadruped. The ape bears affinity to the quadruped and the man.

But if there is nothing cut off in nature, it is evident that the diftributions we make are not her's. Thofe we form are purely nominal, relative to our neceffities and the bounds of our knowledge. Thofe intelligences which are fuperior to us, difcover perhaps more varieties between two individuals which we range under the fame fpecies, than we do between two individuals of diftant genera.

So that thefe intelligences fee the fcale of Be ings all compofing one fingle confequence, which Vol. IV.
has for its firft term an atom, and for it lafts the moft exalted feraph.

We may then fuppofe in the fcale of our globe as many fteps as we know there are fpecies. The eighteen or twenty thoufand fpecies of plants which compofe our herbals, are therefore eighteen or twenty thoufand fleps of this celeflial ladder.

And there is not a fingle plant amongft thefe, which does not perhaps nourifh one or more fpecies of animals. Thefe animals harbour or provide nourifhment for others in their turn. They are fo many little worlds comprized in others that are fill fmaller.

Simple produces compound. The molecule forms the fibre, the fibre the veffel, the veffel the organ, the organ the body.
The fcale of nature then is conftrutted by paffing from that which compofes it, to that which is compofed by it, from the lefs perfect to the greater.

But while we view it in this light, and in a very general manner, we are not to forget that our method of conception is not the rule of things. We are only to take a tranfient furvey of the exterior parts of Beings.

$$
\mathrm{C} \text { H A P II. }
$$

General view of the gradual progreffion of Beings.

1. FROM the immutability of feecies amidft the perpetual motion that reigns in the univerfe, is deduced the indivifibility of the firft principles of bodies: and the indivifibility of thefe principles would demonftrate the fimplicity of their nature, if God had not power to render the highly compounded particles incapable of feparation.

The nature of elementary atoms, their forms, relative proportions, and the manner whereby they effeet the formations of bodies, are branches of knowledge that furpafs the reach of the human mind.

So that we cannot determine whether there are as many fpecies of elements as of bodies; or whether the fame elementary particles, varioully combined, give birth to different compounded fpecies.

We are likewife ignorant what it is that effentially diftinguifhes one body from every other; thofe we call effential characters, are only the ultimate refult of the firft principles.

O how interefting would the fight be, were we permitted to penetrate into thefe principles! A new world would difclofe itfelf to our view ; na$\mathrm{D}_{2} \quad$ ture
ture then become tranfparent, would no longer conceal her way from us: her laboratories and workfhops would then be thrown open. Here we fhould fee her collecting the principles of metals; there behold her preparing the colour of the rofe. Farther, we might trace her footfteps into the wonders of light and electricity. In other places fhould obferve her iketching the out-lines of a plant or animal. Aftonifhed at the fight of this admirable work we fhould never be weary of contemplating the infinite diverfity of preparations, combinations, and motions, by which it is infenfibly brought to its perfection.

Ye celeftial fpirits who affifted at the creation of our world, you enjoy thefe pleafures! Being more favoured than us by the MASTER of nature, you penetrate into what efcapes our notice, and fee with what difficulty we creep from one truth to another, as we obferve the efforts of an ape to imitate a man.
2. Obferve three principal kinds of compofitions in terreftrial bodies. 1. That of fluids. 2. That of rude or un-organized folids. 3. That of organized folids.

The firf genus, which is the moft fimple, feems to confift in a bare contact of homogencous particles, which tend towards each other; but the leaft force divides them.

The fecond, which is more eompounded, is formed of the union of different particles into a folid mafs.
3. The

The third, fill more compounded, is formed of the intermixture of an infinite number of parts, fome fluid, and others folid.
3. The fmall refiftance which fluids make to the force that divides them, their inclination to a level, the quicknefs and eafe wherewith they move, penetrate, and feparate folids, ferve to indicate that they are of all bodies the moff fimple, fubtle and active.

Fire feems to be a fluid which unites thefe qualities in the moft eminent degree. It is evident from a number of experiments, and particularly from thofe made by elealricity, that fire is a fluid diffufed into all bodies, in various proportions. Sometimes it barely fills their pores; at others, is intimately united to their conflituent parts, and compofes inflammatory matter.

Air and water are likewife contained in the compofition of a prodigious number of matters of different kinds. Sometimes they feem to change their nature, and to undergo various transformations; but thefe transformations are only imaginary. They refume their primitive fate, as foon as the caufes which obfcured them ceafe to act.
4. Pure earth is the bafe or foundation in the compofition of folids. The chemift meets with it in every body he analyfes. Being fixed and unalterable, it will refift the moft violent fire; and this immutability of elementary earth, by convincing us of the fimplicity of its nature, fhews likewife that it is the firft ftep of the fcale of inactive folids.

From a mixture of pure earth with oils, futthurs, fats, \&c. proceed the various fpecies of more or left compounded earths, which are the proper nourifhment of one part of organized bodies.

Bitumens and Sulphurs, which are chiefly formed of inflammable matter and earth, rem to lead us from pure earth to metallic fubftances, in which we difcover the fame effential principles, only differently combined.

The inaherability of gold from the molt violent fire, its maleability, and prodigious ductility, equally prove the homogeneoufnefs, extreme finenefs, and frit union of its parts.

Other metals are ranged after gold, according to the order of their compofition, or the flronger or weaker combination of their principles. Platina immediately follows gold: and filver that. Silver alfo refits the a\&tion of fire ; but is lefs malleable and ductile than gold, and diffoluble by a much greater number of diffolvents.

Copper appears after filver, and has a great affinity to that metal. It is itfelf fucceeded by tin , lead, and iron.

Thofe compounds, which differ from metals only by their not being malleable, bear a great refemblance to them, and are called demi-metals. Such are antimony, bifinuth, Spelter.

Vitriols, produced by the union of metallic particles with a coagulated acid, feer to be the paffage from metallic fubflances to /alts.

Salts

Salts, which always affect determinate and conftant figures, indicate thereby the invariatlenef3 - and fimplicity of their principles, whofe fundamentals are water and earth.

When they are diffolved by water, or vola:tilized by air, they become one of the principal caufes of the growth of vegetables, as they are of fermentations, whofe effects are fo various and extenfive.

The regularity and uniformity of the different kinds of chryfallization, fufficiently prove that they are to be attributed to falts, which being diffolved and conveyed by a liquid, and united to foreign matters, compofe thefe pyramidal maffes.

Stones, whofe fpecies are fo numerous, prefent us with maffes of every form, colour, fize, and conjifence, according to the diverfity of liquids, eafth, fulphur, metallic parts, falts, places, and other circumftances which contributed to their formation.

Some of them are perfeetly tranfparent; and thefe feem to be the moft fimple. Others are more or lefs opake, as their principles are more or lefs heterogeneous, or more or lefs mixed.
5. The apparent organization of leafed fones, or fuch as are divided into layers; as flates, that of fibrous fones, or thofe compofed of filaments, as the amianthus, feem to conflitute the paffage from rough to organized folids.

We muft however allow, that this tranfition is not fo happily effected, as thofe we obferve in divers other claffes of terreftrial beings.

$$
\mathrm{D}_{4} \quad \text { Organized }
$$

Organized folids are divided into two general claffes; vegetable and animal.

It is not eafy to determine precifely the diflinction between thefe two clafles. We cannot clearly difcern where the vegetable terminates, or the animal commences.

Neither the greater or lefs degree of fimplicity in organization, nor the method of production, nourifhing, increafing and multiplying, nor the locomotive faculty, fufficiently enables us to diftina guifh between thefe two orders of beings.

There are fome animals whofe fructure appears as fimple as that of plants.

What the feed and germ are to the plant, theegg and embryo are to the animak.

The plant and animal increafe in equal propora tion by an infenfible expanfion occafioned by nutrition.

The matter received in both of them by inward fufception, is there fubject to analogous preparations. Ont part ferves as a cloathing to the effence of the plant or animal ; the reft is evacuated.

There is in plants as well as animals a diffinction of fexes; and this diftinction in them is followed by the fame effential effects that accompany the latter. Several kinds of animals multiply by flips and fprigs; and there are fome, that, like plants, pafs their whole lives without changing their fituation.
If there is any one character, peculiar to the animal, it is that of being furnifhed with nerves.
6. The
6. The plant which feems to occupy the loweft place in the fcale of vegetables, is a fmall unformed mafs, in which the eye can only perceive a kind of marbling, without any diftinet part. This plant is the truffle, the feeds of which are difcovered by the microfcope.

At a fmall diftance from thefe, is the numerous family of mufhrooms and agarics, which would be taken for different kinds of excrefcences, were it not that the eye, by the affiffance of a glafs, can difcover flowers and feeds in their folds or cavities.

Liverworts, equal in the number of their fpecies to mufhrooms, nearly refemble them. They cleave to the furface of flones, dry wood, trees, \&c. fometimes like brown fpots, at others in pieces of a circular form, of a grey, or yellow colour, compofed of fmall hells or nobs, or notched like fringe, lace, \&c. The feeds are contained in fmall capfules, invifible to the naked eye, as are likewife the flowers.

Mofes feem to be a fpecies between the mulhrooms and liverworts. They delight in fhade and moifture, and cling to various forts of bodies. The filaments which iffue from them are often of a cotton-like nature, and bear flowers and feeds.
7. Plants are of three very diftinct forts.

The firft, which are tor the moft part of a fmall fize, delicate conflitution, inactive, and abounding in humours, live but a fhort time; a year is commonly the term of their life.
The fecond, which are for the mon part of a
D 5
gigantre
gigantic fize, robuft conftitution, hard, and not fo full of humours, live many years, and even for feveral ages.

The third bear a mean proportion between the firft and fecond.

Herbs are the firft, trees the fecond, and Jhrubs the third.

Thefe three kinds which are fpread over the face of the earth, live promifcuoufly therein; but there exifts in the different claffes, an almof infinite diverfity of fizes, forms, colours, and inclinations.
They all in common pafs their lives in a flate of immoveablenefs. Fixed to the earth by various forts of fibres, they derive their principal nourihment from it ; and with them, to live is to expand themfelves.
8. The roots, falk, branches, leaves, flowers, and fruits, comprize all that is mofl remarkable in the external parts of plants.

The roots, by means of their different kinds of hinges, tuberoficies, and ramifications, keep the plant fixed to the earth, while their pores imbibe an exceeding fine flime, which the water liquefies, and carries with it.

From the root fprings the flalk, to which the plant partly owes its ftrength and beauty. -Being fometimes fhaped like a pipe; it is fortified with knots fkilfully difpofed. As it is fometimes too weak to fupport itfelf, it contrives means to twift itfelf about a folid prop, or to faften to it by means of the little hands it is furnifhed with. Otherwife it appears a ftrong pillar, bears its proud

(8)

head aloft in the air, and braves the efforts of forms and tempefts.

The branckes fhoot forth, like fo many arms, from the trunk and ftalk, on which they are diffributed with great regularity. They are divided and fub-divided into many fmall boughs, and the fub-divifions obferve the fame order as the principal divifions.

The leaves, that charming ornament of plants, are difpofed round the ftalk and branches with the fame fymmetry. Some are fimple, others compounded; or formed of various foliage. One fort is plain; another indented. Some of them are very thin, others hard, foft, plump, fmooth, rough, or hairy.

The flowers, whofe enamel is one of the princio pal beauties of nature, are not lefs diverfified than the leaves. Some have only a fingle leaf, others feveral. Here it appears like a large veffel opening itfelf gracefully; there it forms a grotefque figure in imitation of a muzzle, head piece or cowl. Farther fill, it is a butterfly, a flar, a: crown, a radiant fan. Some are difperfed on the plant without any art ; others compofe nofegays, globes, tufis of feathers, garlands, pyramids.

The greater part of them are furnifhed with one or more cups, fometimes fimple and plain, at others confifing of feveral pieces, or properly cut.

From the center of the flower proceeds one or feveral little pillars, either fmooth or channelfed, rounded at top, or terminating in a point, called
D. 6
piftits,

(84)

piftils, which commonly encompafs other fmalfex pillars called famina. Thefe carry on the upper part of them a fort of fmall bladders full of exceeding fine powder, every grain of which, viewed through a microfcope, appears of a very regular figure, but varied, according to his fpecies. In fome they are fmall fmooth globes; in others, they are thick fet with prickles like the covering of a chefnut, and fometimes they refemble fmall prifms, or fome other regular body.

But how thall we exprefs their finenefs, the lively appearance, delicacy, and variety of thadowings, which accompany, in many fecies of flowers, the fweetnefs and agreeablenels of the perfume?

The flowers are fucceeded by the fruits and feeds. Magnificent decoration! precious riches. which repair the loffes occafioned to plants by the intemperatenefs of feafons, and the neceffives of men and other animals.

All fruits and feeds have this in common, they inclofe under one or more coverings the germ of the future plants. Some have only fuch coverings as immediately infold the germ, whofe outfide is of the flrongeft contexture; and among thefe, there are fome that are provided with wings, tufts, or plumes of feathers, by means of which they are conveyed in the air or water, by which they are tranfported and fown in different parts: Others are better cloathed, being lodged in fheaths or pods, inclofed in a kind of box, having one or more partitions. A third fort, under a moft delicious fruit, which is rendered fill more agreeable

(85)

by its beautiful colour, contain a fone or kernel. Others are inclofed in fhells which are either armed with prickles, abound with a bitter juice or adorned with very fine hair.

The outfide of fruits and feeds do not afford lefs variety than the leaves and flowers; there is hardly any figure whatever which they do not furnifh a reprefentation of.
9. The infide of plants is compofed of four orders of veffels, viz. the ligneous fibres, utricuit, or little bags, the proper vajes, and the trachea or air-veffels.

The ligneous fibres are very fmall channels depofited according to the length of the plant, and confift of little pipes placed near each other. Sometimes thefe veffels are parallel, and at others are feparated, leaving between them intervals or oblong fpaces.

Thefe fpaces are filled by the utriculi, a kind of membranous bladders, horizontally difpofed, and which communicate with each other.

The proper vafes are a kind of ligneous fibres which principally differ from the reft by their juice, which is of a deeper colour, or thicker.

In the middle of them, or round a great number of ligneous fibres, are fome veffels which are not fo narrow, compofed of a filvery elaftic blade, formed fpirewife, like a fpring; thefe are arteries. They feldom contain any thing but air.

Thefe four orders of veffels, which are difperfed through all the parts of the vegetable in proportion
tion to the functions of each, compofe, at leaft in trees and fhrubs, three principal beds. the bark, the wood, and the pith.

The bark, or rind, which is the outer covering of plants, and is fmooth, even, and thining in fome, and rough, channelled, and bairy in others, is formed of the wideft fibres that are the leaft prefled together, and which admit within them the moft air.

The uinod, which is placed under the rind, has narrower and more contracted pipes, its utricles lefs replenifhed or dilated; and this only has arteries.

The pith, which is fituated at the heart of the plant, is little more than a collection of utricles, which are greater and more capacious than thofe of the bark and wood. They diminifh, and dry up, as the plant advances in age.

The fimplicity of the organization of vegetables is the principal fource of their different methods: of multiplication.

A plant pufhes out buds from all points of its. furface, thefe buds themfelves are plants: being cut, and laid in the ground, they take root there, and become intire plants, like that of which they were before only a part.

The fmalleft branch or leaf may give birth to fuch a whole plant.

Suckers taken from different plants, and. ingrafted in the ftalk or branches of another plant, incorporate

(87)

incorporate themfelves with it, and being united thereto, form one organical body.
10. The timorous fenfitive plant flies the hand that approaches her; the clofes herfelf again with the utmoft fpeed; and this motion bearing fo great a refemblance to that of animals, feems to conftitute one of thofe connections whereby the vegetable and animal kingdoms are united.

A little above the fenfitive, in a kind of calix, at the bottom of the water, is a fmall body, exaftly refembling a flower. It draws back and entirely difappears when I offer to touch it. It comes out of the calix, and opens itfelf on my retiring to a diftance from it.

While I was endeavouring in vain to account for this, I difcovered by the fide of it another body of the fame form, but larger, and not lodged in an inclofure. It was fupported by a fmall ftalk, whofe lower extremity joined to a plant, whilft the other, inclining towards the ground, was divided into feveral little branches.

I immediately believed it to be a parafite plant; and in order to be more fully convinced of it, I cut it in half between its two extremities.

It foon fprouted out again, and appeared the fame as before. I ftood awhile to confider it. I faw the little branches move, and extend themfelves to feveral inches in length. They are extremely fine, and fpread themfelves on all fides.

A little worm came and touched one of thefe branches: it prefently twifted itfelf about the worm, and by contracting itfelf, brought it to the upper
upper extremity of the ftalk. There I perceived a fmall aperture, which enlarged itfelf in order to receive the worm. It was received into a long cavity that inclofes the ftalk: being there diffolved and digefted before my eyes; I afterwards faw the remainder go out again at the fame opening.

The next moment, this fingular production feparated itfelf from the plant, and began to walk. The branches after having performed the office of arms, are likewife employed by it inftead of legs.

After having made thefe obfervations, I could not help acknowledging, that what I took for a parafite plant, was a real animal. I then took a view of the piece I had cut off from it, and perceived, to my furprize, that it had grown, and was tecome a compleat one like the other.

But my furprize was greatly increafed, when at the end of fome weeks I found thefe animaks were transformed into two fmall very bufhy trees.

From the trunk, which I knew to be the body of the animal, fprung feveral branches on ail fides of it; from thefe branches, fmaller ones fprouted forth, and from thofe, fmaller fill. They all move different ways, and fretch out their branches, while the trunk continues fixed to a prop. This furprizing affemblage forms only one entire body; and the nonrifhment it receives by one of its parts, is fucceffively communicated to all the reft. In fhort, this collection of bodies divides itfelf; each piece feparates itfelf from the others, and lives diftinctly frem them.

Amazed at thefe wonders, I part one of thefe animals length-wife, about the middle of the body, 1 am

(89)

I am prefently in poffeffion of a monfter with two heads.
I repeat the operation a great many times on the fame fubject, and by this means I give birth to an hydra, more aftonifhing than that of Lerna.

I part feveral of thefe animals tranfverfely, and lay the feparated pieces end to end. They graft or unite themfelves to each other, and compofe only one intire animal.

To this prodigy I find a new one fucceed. I turn one of thefe infeets, as we do a glove, putting the outfide within; and vice ver $/ a$. He does not fuffer the leaft alteration from that: he lives, grows, and multiplies.

Thefe animals which multiply by flips and fhoots, that we ingraft and turn infide out, \cdot are polypus's.

They are of very different fpecies. Many of them never fhift their place. Some divide themfelves length-wife, and thus make very pretty nofegays, whofe flowers are in clufters.
11. There is a wonderful variety in the confruction of animal machines. There are fome whofe number of parts is very fmall; others on the contrary, are very much compounded. In fome there are only two or three pieces alike; others exhibit to us a much greater number. In fhort, the fame parts are differently difpofed or combined in different machines.

The perfection of the machines in nature confifts, as in thofe of art, in the number of parts, and diverfity of effects. That is accounted the mof perfęt, which with the fmalleft number of parts, produces the greateft variety of effects.

But

But there is, with refpect to ourfelves, a canfiderable difference between the natural and artificial machines; for whereas we may judge of thefe by an exact comparifon of their ftrength and produce, we can only form our opinion of the others by their confequences.

After this manner we are enabled to judge of the perfection of the human body, from the diverfity and extent of the operations of man, rather than from an infpection of his organs, of which we have only a partial view. And if corporeal perfection corsefponds with fpiritual, as there is reafon to believe it does, man, as he is fuperior to other animals by underftanding, fo he likewife is by organization. Whence we may infer, that thofe animals, whofe ftructure moft nearly refembles that of men, ought to be confidered as the moft elevated in the fcale.
12. Of all animals that are known to us, the polypus is one whofe flructure feems to be the moff fimple, and to come neareft that of plants. This extraordinary animal feems to confift altogether of ftomach. His body and arms are compofed of one and the fame bowel, whofe compofition is perfectly uniform. The beft microfcopes only difcover in them an infinite number of fmall grains, which are tinged with the nourifhment the animal feeds upon?

Can thefe grains be fo many utricles? Can they receive the aliment by immediate conduits, prepare it and tranfmit it to other veffels appointed to convey it into the channels of circulation? Is there a circulation in the polypus?

The different kinds of veffels which the firf conjecture fuppofes, and which their finenefs or tranfparency may render invifible to us, muft be lodged in the thick part of the texture of the polypus. We are induced to think fo from the experiment of turning it infide out, which being effected, does not caufe any change in the vital functions.

But of what fervice can that property be to the polypus, which it cannot make ufe of without the affiftance of man? I mean the operation of turning the infide outwards.

I anfwer, that this property is one of the confequences of an organization peculiarly neceffary to the polypus. The Author of nature never intended to create an animal capable of being turned as we do a glove: but he defigned to form an animal whofe principal vifcera were lodged in the thickeft part of the fkin, and which had power in a certain degree to efcape various accidents to which the nature of its life unavoidably expofed it. Now, what naturally follows from this organization is, the being enabled to endure this fhifting without ocçafioning its death.
13. Thofe animals whofe ftructure appears lefs fimple than that of the polypus, multiply like him by flips.

Thefe worms, which have a fomach, inteftines heart, arteries, veins, lungs, and organs of generation. If we look narrowly into the circulation of their blood, we thall perceive its continuance with the fame regularity in all thofe parts which have been feparated from the reft by cutting.

Thefa

Thefe worms bring us to treat of inferts.
14. Here we are introduced into a kingdom of animals, the moft extenfive and diverfified of any on the face of the globe. That province of this vaft empire which is feen on the furface of vegetables, is fufficient of itfelf to attra\&t the curiofity of a traveller, either from the prodigious number of its inhabitants, or the fingularity and diverfity of their forms.

Thefe are pigmies, the greateft part of which are fo minute, as not to be diftinctly feen without the help of a microfcope. They bear the general name of Infects, and this name was given to them on account of the incifions of various depths, by which the bodies of feveral of them are divided.

The charafter which feems effentially to diftinguifh infects from other animals, is, that they have no bones. The analogous parts with which fome fpecies of them are provided, are placed on the outfide of their bodies, whereas in other animals the bones are always on the infide.

Life, in infects, does not refult from a mechanifm as compounded, as in the animals of a larger fize. In them, the number of different kinds of organs is fmaller: but fome of thefe organs feem more multiplied.

Confidered in their exterior form, infects may be divided into two claffes. The firft comprehends infects improperly fo called, whofe body is contimsed; thefe bear the general name of worms. The fecond clafs comprehends infeets properly

(93)

fo termed, whofe body is divided by certain incifions or contraftions.

In the greater part of infects of this clafs, the incifions feparate the body into three principal parts, the head, the fomach, the belly: this divifion has a relation to that obferved in great animals. Some of the infects of the firft clafs are without legs: others are furnifhed with them. All the infects of the fecond clafs have legs; but fonfe are winged, others not.

There is fuch a diverfity in infects, that it may be queftioned if there is not united in them every variety to be met with throughout the animal world. And what renders this variety fill more furprizing is, that it does not extend merely to the whole fpecies, but likewife to individuals. The fame infect has at one time organs that are not to be found in him at another. The fame individual which in his youth belonged to the firf clafs, in a more advanced age take up his rank in the fecond. From thence arife the difficulties attending a proper diftribution of thefe little animals.
15. The bodies of almoft all infects are formed of a collettion of rings, fet in each other, which by contracting or dilating, lengthening or fhortening, contribute to all the motions of the animal.

The head, in many fpecies changes its form in an inftant. It contracts and dilates itfelf, lengthens and fhortens, appears and difappears, at the pleafure of the infect. The flexibility of its folds enables it to make thefe motions. In other fpecies, he head is in one conftant pofition, and bears a greater
greater refemblance to that of the larger animals by the hardnefs of its covering, which is fcaly.

The mouth is fometimes difcovered to be a fimple circular aperture: but it is generally furnifhed with hooks, or a kind of pick-ax; with teeth, or two indented fhells which they move horizontally; with a trunk, a very compact inftrument, which ferves to extract and liquefy, and raife up alimentary juice; or with a fling, which is an organ arralogous to the trunk, and endued with the fame effential functions,

Several fpecies have two of thofe infruments united in them, fometimes the teeth and the trunk, and fometimes the trunk and the fling. Many fpecies of infects are deprived of the ufe of fight. With them the feeling or fome other fenfe, fupplies the defects of eyes.

The eyes of infects are of two kinds; the /mooth ones are always few in number; the rough commonly amount to feveral thoufands, and are fixed on the fides of the head, in the form of two femicircular maffes. In both of them they are utterly immoveable; and their number compenfates in fome meafure the want of mobility 'it is therefore lefs a mark of perfection than of imper fection. Many fpecies have at the fame time two fmooth eyes and two rough ones.

Hearing feems to be denied to infects: at leaft the exiftence of this fenfe in them is very doubtful.

The cafe is not the fame with refpect to fmelling. Divers infects have it in an exquifite man-

95)

ner, but the feat of it is not known. May it not be fituate in thofe two moveable horns called the antennæ, whofe ufe we are yet anacquainted with ?

The legs of infects are fcaly and membraneous. Thofe are moved by the affiftance of divers articulations, while thefe, which are more pliable, are turned every way without difficulty. Thefe two forts of legs are often united in the fame worm. Some of them have feveral hundred legs; but do not on that account walk fafter than fuch as have only fix.

The wings, which are two or four in number, are fometimes formed of a fimple and more or lefs tranfparent gauze, and fometimes covered with little fcales differently figured; in fome they are compofed of feathers, as in birds, in others they are uncovered, or inclofed in cafes. In many fpecies the male is winged, and the female not.

On the fides or extremities of the body are little oval apertures, fhaped like the ball of the eye, and fufceptible of the fame motions. Thefe are fo many mouths for the purpofe of refpiration.
16. The interior part of infects contains four principal vifcera; the fpinal marrow, the intefinal bag, the heart and the tracheal arteries.

A blackifh thread, which is extended the whole length of the belly from the head to the hinder part, and knit together at certain diffances, is the the . Pinal marrow of infects, or the principal trunk of the nerves.

The knots placed from one fpace to another, feem fo many particular brains, appointed to diftribute
tribute the nervous frings to the neighbouring parts, from the action of which the feeling and motion proceed. The firf of thefe knots conftitutes the brain, properly fo called.

On the medullary thread is placed the intefinal bag, which is equal to it in length. It is a long gut, in which are contained the afophagus, the flomach, and inteftines,

Along the back, and parallel to the inteftinal bag, there runs a long and thin veffel, in which may be perceived, through the fikin of the infect, atternate contractions and dilatations. This is the heart, or that part which performs the functions of $i t$.

The arterial veffels of infects perfectly refemble thofe of plants. There is in every part of them the fame ffructure, colour, elafticity, deftination, and difperfion through the whole body.
17. Worms, whofe bodies are lodged in a cruftaceous or flony pipe, feem to conflitute the connection between infects and Ihell-fifh.

There are notwithftanding fome fhell animals, whofe ftructure with refpect to its fimplicity, feems to vie with that of the polypus.

Of this number is the pond mu/cle, wherein we can difcover neither fpinal marrow, arteries, veins, nor lungs.

Does the fcale of nature branch out as it advances? May-infects and fhell-filh be two paralle branches of this great Atem ? May the frog and the lizard, which bear fo near a refemblance to infects, be a ramification of them? We are not able at prefent to anfwer thefe queftions.

Such is the gradation between beings, that they often differ from each other by flender fhadow-
ings; and fuch is the narrownefs of our capacities, that none but the plain and more friking marks attract our notice.
18. The agreeable diverfity in the figures of fhells, helps us to judge of the variety fubfifting in the organization of thofe animals who are the inhabitants and architects of them. Some confift of one intire piece; others of two or more. Some are formed in imitation of a trumpet, a /crew, a tiara, a dial. Others refemble a helmet, a club, a Jpider, a comb. In this, it is a kind of flefhy cale; in another it is a fhip, wherein the failor is at the fame time rudder, maft, and fail.

Animals that have fhells, and infects with fcales, feem to have an affinity to each other by a common character; both of them have their bones placed on the outfide. We may in effect confider the fhell as the bone of the animal which occupies it; fince he brings it into the world with him, and adheres to it by different mufcles.

But it is certain, moft fhells are formed of the flony juices, which tranfude from the pores of the animal.

The bones, as well as the fhells of infects, grow and are nourifhed by veffels which pafs through their fubftance.

Shell-fifh form two great families, that of the concha, or larger kind, whofe fhell is made up of two or feveral pieces; and that of fnails, whofe fhell confifts of one fingle piece, turned for the moft part \{pirally.

The ftructure of the firf feems much more fimple than that of the laft. The conchr have Vol. IV.

(98)

neither head, horns, norjaws; one can only obferve in them air-vents, a mouth, an anus, and fometimes a fort of foot. The greateft part of fails, on the contrary, have a head, horns, eyes, a mouth, an anus, and a foot. The round and flefhy head is at the anterior and upper part of the animal. It contains a brain, compofed of two little globes, whole apparatus is of fuch a moveable nature, that it is transferred from the hinder to the fore part at the pleafure of the fnail. The horns, which are two or four in number, placed on the fides of the head, are a kind of pipes, fufceptible of various motions, and which the animal can draw into his head by the help of a mufcle which the Grand Obferver has ordained to perform the functions of the optic nerve. In fome fpecies of fnails the eyes are placed at the extremity of the horns, as at the end of the fhank of a pair of fpectacles. In others at the bafe, or towards the middle. They are black and brilliant, pretty much refembling the form of a very fmall onion. We can only difcover their tunic, which is called the uvea; but they have the three humours belonging to our eye. The mouth, which is commonly a fmall chink like a furrow, is furnifhed in many fpecies of them, with two cartilaginous jaws placed on each other, whofe inequalities or clefts \mp. rform the office of teeth, fome fpecies have real teeth, like thofe of a fea-dog, which are extremely fmall.

The fhell-fifh that have no jaws, have a flefly or mufcular pipe, which fupplies the place of a fnout.

Snails are not provided with feet; but they have one foot of a particular make, which is nothing more

(99:)

more than a colledion of a great number of muf. cles, whofe motions imitate thofe of the waves of the fea. A pretty thin membrane lines the infide of the fhell, and fometimes the outfide. It is a kind of mantle, furnifhed with trachea or airvents, which feparate the air from the water, at the origin of which are perceived little gills deftined to the fame ufes. The heart, which is fituated near the furface of the body, has a fenfible motion, whereby it rifes and falls alternately. In the conche it is underneath the flomach.
19. Animals with fhells bear an affinity to filhes. Reptiles feem to take place between or next to them, being united to thelled animals by the $/$ lug, and to the fifhes by the water- -erpent .

In reptiles, animal perfection begins to increafe in a fenfible manner. The number of their organs, their confirmation and exercife, give them on this account a greater analogy with the mechanifm of thofe animals we efteem the moft perfeel. The organs of vifion, hearing, and circulation, furnifh examples fufficient to indicate this. This analogy is augmented in fifhes.

The eel, by its formation, and creeping ffhes by their method of moving, connẹ̣ fifhes with the water-ferpent.
20. Fifh are like reptiles, for the moft part covered with fales, whofe figures and rich colours. help to make a diftin@tion between the fpecies.

There is a great variety in the form of fifhes. Some are long and flender; others are broad and Es. fhort.
fhort. We fee among them flat, cylindrical, triangular, fquare, and circular. Some are armed with a great horn. Others wear a long fiword, or a kind of faw. A third fort are furnifhed with pipes, through which they throw out the remainder of the water they have fwallowed. Wings are to birds of the fame ufe as fins to fifhes. Some have two or three: others have a greater number. The head of fifhes, like that of reptiles, is joined clofe to the body. The mouth, which is commonly furnifhed with two or more rows of teeth, is fometimes placed on the back, as are the eycs. The lungs, which are formed of feveral blades or vafcular leaves, are often placed at the furface of the body. They are known by the name of gills. But let us avoid anatomical defcriptions, which would carry us too far. We fhall now confine ourfelves to fome of the principal varieties, and to the fources of thofe relations that are moft friking.
21. I fee the flying fifh dart itfelf into the air from the bottom of the water, having fins refembling the wings of a bat. Herein it has an affinity to birds. But I fee a great animal advancing towards the fea-fhore, having a head and fore-part like a lion, and the hind-part refembling that of a fifh. It has no fcales: and is borne on two paws that have toes with fins to them. 'Tis called the Jea-lion. He is followed by the fea-calf, and the hippopotamus or fea-horfe, and by all in general of the cetaceous kind. The crocodile and tortoife prefent themfelves to my view in their turn; and I now find myfelf among quadrupeds. Without prefuming to account for the ways of nature, we will at prefent place birds between fifhes and fourfooted
footed animals. In this order aquatic birds are ranged immediately under the flying-fiih. Amphibious' birds, or fuch as live both on land and in the water, will occupy the fcale next in courfe, and by this means open a communication between the terreftrial, aquatic, and aërial regions.

To this new manfion there is added a new decoration. To fcales fucceed feathers, which are clofer compacted and more varied: a bill takes place of teeth : wings and feet are to them infteadof fins: lungs formed within, and of a different ftructure, caufe the gills to difappear: a melodious fong follows a profound filence. Between the cormorant and fwallow, the partridge and vulture, the humming bird and oftrich, the owl and peacock, the raven and nightingale, what a furprizing variety is there of fructure, proportion, colour, and fong!
22. Hairy birds having projecting ears, a mouth furnifhed with teeth, and whofe body is carried on four paws armed with claws, are they birds in reality? Are quadrupeds, that fly by the affiftance of great membraneous wings, really fuch? The bat and flying-Squirrel are thefe frange animals, which are to proper for eftablifhing the gradation that fubfifls between all the productions of nature. The oftrich, with the feet of a goat, which rather runs than flies, feems to be another link which unites birds to quadrupeds.

The clafs of quadrupeds is not inferior in variety to that of birds. Thefe are two perfpectives of a different tafte, but which have fome analogous points of view. Carnivorous quadrupeds anfwer E 3
to birds of prey. Quadrupeds that live on herbs or feeds, anfwer to birds that feed on the fame kind of aliment. The /creech-owl among birds is the fame as the cat among four-footed animals. The beaver feems anfwerable to the duck. Quadrupeds may be divided into two principal claffes. The firft comprehends quadrupeds with a folid foot. The fecond comprizes quadrupeds whofe feet are furnifhed with claws or toes. Amongft quadrupeds of the firft clafs from the flag to the hog, and thofe of the fecond, from the lion to the moufe, what a diverfity of models, fizes, and motions, do we obferve!

By what degrees does nature raife herfelf up to man?

How will the rectify this head that is always inclined towards the earth? How change thefe paws into flexible arms? What method will fhe make ufe of to transform thefe crooked feet into fupple and fkilful hands? Or how will the widen and extend this contracted ftomach? In what manner will fhe place the breafts, and give them 2 roundnefs fuitable to them?

The ape is this rough draught of man; this rude fketch ; an imperfect reprefentation, which neverthelefs bears a refemblance to him, and is the laft creature that ferves to difplay the adminable progreffion of the works of God!

(103)

x x

C H A P. IV.

Continuation of the gradual Progreffon of Beings:

${ }^{\prime}$ THE relations which the plant bears to thofe beings that furround it, and from whence it derives its fubfiftence, are purely corporeal, or comprehended entirely within the Sphere of the properties of bodies. The animal, which is more excellent, is allied to nature by other connections, and by fuch as are of a more exalted kind. Like the plant, it vegetates: like her, it receives that nourifhment from without, which promotes the growth of it ; and, like her, it multiplies. But to thofe different actions, are fuperadded feeling, or the perception of what paffes within him. This fenfe of feeling is connected with feveral others, which are produced various ways; and they are all accompanied either with pleafure or pain.

Agreeable fenfations inform the animal of the relations which certain bodies have to its prefervation or welfare: difagreeable or' painful fenfations advertife him of qualities which are hurtful. He is then the center to which divers objects are directed: he' draws near fome, and keeps at a diftance from others. The nerves, or that clufter of fmall fibres which extend themfelves from the brain to all parts, like fmall cords, constitute the immediate organ of feeling.
2. Does
2. Does fpiritual perfection always anfwer to corporeal in animals? If this be true, how comes it to pafs, that the fimple oftrich appears inferior in point of underftanding to the lion pi/mire, which is placed fo much beneath it in refpect to ftructure?

Let us not miftake. The marks of underfanding exhibited to us in fome infects are furprizing, inalimuch as we do not expect to meet with them in thofe animals we fcarce think capable of feeling. Our imagination is warmed, and we afcribe to throfe infects more genius than they really have.

On the contrary, we form high expectations from larger animals; fo that we are very apt to degrade them, as foon as we perceive they fall beneath the idea we entertained of them. There are fome however, whofe mind does not difplay itfelf by friking marks, but by a great number of lefs fenfible ones, which, being united, form a degree of underflanding fuperior to that of the moft induftrious infect. Such, without doubt, would appear to be the cafe of the oftrich, were She better oblerved. We reproach her, with indifference towards her eggs. It is affirmed, that fhe leaves the care of hatching them to the fun. This reproach is turned into a commendation, with regard to the oftriches of Senegal, fince an exact obferver has beftowed on them the attention they require. In thefe fcorching climates, the fun fufficiently heats in the day-time an oftrich's eggs that are hid in the fand. The warmth of the mother would be then unneceffary, or even hurtful to them: fhe would keep the fun from them, whofe rays are more active and efficacious

(105)

cacious. But the nights in Senegal are very cool : and the eggs would be in danger of growing cold. Then the mother never fails to procure them heat, by fitting upon them during that time.

At the Cape of Good-Hope, where it is not fo hot as at Senegal, the oftrich fits night and day, like other birds. The young ones peck in a few hours after they are hatched; but they are not able to walk till feveral days afterwards: the dam takes care to place near them fuch food as is proper for them.

Lafly, it is to be remarked, that there is a kind of fociety among large animals. Their memory retains faithfully a certain number of figns and founds. Their foul is affected by a variety of perceptions: fight and hearing alone furnifh an abundant fource to them. Infects afford us but very imperfect images of this. The lion pi/: mire is ignorant of every thing but the fnare he has laid, and the prey he expects in confequence of it. His eyes, which are motionlefs and unmeaning, differ widely from ours; nor is he affected by any found.
3. Thofe are undoubtedly the mof perfét animals, whofe fphere of underfanding extends to the greatef number of objects. Thefe are various in their operations, can fhift about, and compafs their ends by different ways.

The polypus only knows how to lengthen and contraft his arms. The./pider fpreads a net with a geometrical regularity. The falcon and dog E_{5}
purfue their prey with fagacity. The ape prefumes to imitate man.

Has God created as many 〔pecies of fouls as of animals? Or is there only one fpecies of foul in animals, differently modified according to the diverfity of organization? This queftion is abfolutely impenetrable by us. All we can fay concerning it, is this: if God, who has always acted by the moft fimple means, has thought proper to vary the fpiritual perfection of animals merely by organization, his Wisdom has fo ordained it.
4. At the fummit of the fcale of our globe is placed man, the mafter-piece of the earthly creation.

Not to dwell on the excellent conffruction of his body, let us confider man as an intelligent being. Man is endued with reafon: he has ideas; he compares thefe ideas together; judges of their relations or oppofitions; and acts in confequence of this judgment. He alone, of all animals, enjoys the gift of Speech; he cloaths his ideas with fuch figns as he thinks proper; and by this admirable prerogative he forms a connection between them, which renders his imagination and memory an ineftimable fund of knowledge. By this means man communicates his thoughts, and brings all his faculties to a ftate of perfection: by this he attains to all arts and fciences: and by means of this, all nature is fubject to him.

Sometimes, with a flrong and harmonious voice, he celebrates, in a poem, the virtues of a hero. At others, by a flroke of the pencil, he changes
changes a dull canvas into a charming perfpeCtive. Here we fee him, with the chiffel and graver in his hand, animating the marble, and giving life to brafs. There, with the plummet and fquare, erefting a magnificent palace. Now we behold him, by a microfcope of his own invention, difcovering new worlds amidf invifible atoms, or penetrating the fecret exercife and motion of a particular organ. At other times, by changing this microfcope into a telefcope, he pierces into the heavens, and contemplates Saturn and his moons. Returning home, he prefcribes laws to the celeftial bodies, defcribes their paths, meafures the earth, and weighs the fun. Afterwards he dives into the nature of beings, examines their relations, and the admirable harmony refulting from them, and by an attentive view of their various perfettions, he fees an inmenfe chain formed, comprehending the whole.

In another ftation, man is occupied in fuch arts as contribute to the fupply of his neceffities, or conveniences. His reafon condefcends to every thing. The earth, cultivated by his care, teems every year with new productions. Hemp and flax diveft themfelves of their bark to furnifh him with cloathing. The fheep abandons for his ufe his rich fleece, and the filk-worm fpins for him her precious woof. The yielding metal is moulded in his hands. The fone foftens in his fingers. The largeft and ftrongeft trees fall at his feet, and receive from him a new being. All the animals are fubject to his laws; even the fiercef of them infult not his crown with impunity. He makes fome ferve for food; others he harneffes to his chariot; and others he condemns to till his lands.

Many of them he appoints to be his porters, humters, guards, and muficians. In fhort, man plows his adventurous way acrofs the vaft ocean, and by navigation unites the two extremities of the globe.
5. The Excellence of human reafon thines likewife with a new luftre, from the eftablifhment of focieties. In them, virtue, honour, fear, and intereft, varioully employed or combined, prove the fource of peace, happinefs, and order. All the individuals, being mutually interwoven together, move in a regular and harmonious manner. Under the fanction of the laws, the king, prince, and magiftrate, by exercifing a lawful authority, promote virtue, fupprefs vice, and fpread around them the happieft effects of their adminiftration. In fociety, as in a pure and fertile climate, talents of different kinds fpring up and unfold themfelves. From that, the mechanical and liberal arts flourifh. Lafly, fociety perfeets friendihip, that faithful companion of life, which adminifters confolation in our fufferings, and gives a relifh to our pleafures.

[^3]the moft lively gratitude, the Ineffable Goodness that created him.

In confequence of thofe eminent faculties wherewith man is enriched, God condefcends to reveal himfelf to him, and to lead him as it were by the hand in the paths of happinefs. The various laws he has received from the Supreme Wisdom, are fo many lights placed at proper diftances on his road, to guide him from time to eternity.

Enlightened by this Celestial Guide, man advances in the glorious race that is fet before him, and feizes the crown of life, and adorns with it his immortal brow.
7. Such is man in the highef degree of earthly perfection. But mankind have their gradations, as well as the other productions of our globe. There is a prodigious number of continued links between the moft perfect man and the ape.

If you take a furvey of all nations of the earth; if you confider the inhabitants of the fame kingdom, province, city, or town; nay, do but examine with attention the members of the fame family, and you will imagine you fee as many fpecies of men as you difcern individuals.

To the Lapland dwarf, let the giant of Madagafcar fucceed. Let the flat-faced African, with his black complexion and woolly hair, give place to the European, whofe regular features are fet off by the whitenefs of his complexion and beauty of his hair. To the filthinefs of a Hottentot, oppofe the neatnefs of a Dutchman. From the cruel Anthropophagite pafs to the humane Frenchman.

Place

Place the fupid Huron oppofite the profourd Englifhman. Afcend from the Scotch peafant to the great Newton. Defcend from the harmony of the BOUGH to the ruftic fongs of the thepherd. Put in the fame fcale the lockfmith conftructing a jack, and Vaucanson forming his automatons. Reckon up the number of fleps from the fmith that caufes the anvil to groan, to Reaumur anatomizing fire.

Do thefe tarieties arife from any real difference there is between human fouls, independently in the organization of the body?

We fhall not think fo, if we pay a due attention to health and ficknefs, to conflitution and manner of living, to climate, and education.

You may perceive what a multitude of confeguences a mathematician derives from a very fimple principle: place this fame principle in the hands of a man of the lower clafs, it will remain barren, and not be productive of the fmalleft truth.

May not the number of juft confequences which different minds deduce from the fame principle, ferve as a foundation for conftructing a pfychrometer upon; and may we not prefume that one time or other we fhall be enabled to meafure fpirits as we now do bodies?

But the fcale of the creation does not terminate at man. Another univerfe commences there, whofe extent, perhaps, compared to that of this, is as the fpace of the folar vortex to the capacity of a nut.

There fhine the Celestial Hierarchies, like glittering Stars.

There

There from all parts the angels, archangels, foraphim, cherubim, thrones, virtues, principalities, dominions, powers, calt forth their radiant beams.

In the centre of thefe cuguft /pheres, fhines glorioully the Sun of Righteousness, the East above, whence all the other fars borrow their light and fplendor.

Ye planetary worlds! celefial hierarchies! you fink into annihilation in the prefence of the Lord: your exifence is by him: he is thatheis: HE alone poffeffes the plenitude of being,you enjoy but the reflection of it. Your perfections are ftreams; the Infinitely perfect Being is an ocean, an abyfs, which the cherubim prefume not to look into.

If we enjoy a very fenfible pleafure on feeing colletted, in one place, the principal productions of nature, how great muft the ecflafy of celeftial fpirits be, when they furvey thofe worlds which God has thick fown in the vaft expanfe, and when they contemplate the immenfity of his works!

O! the delightful employment thofe fuperior intelligences are exercifed in, when they compare the different œconomies of thefe worlds, and weigh in the balance of reafon each of thefe globes!

But all celefial intelligences, doubtlefs enjoy not thefe advantages in the fame degree. There may be fome perhaps to whom is granted the knowledge of one world only: others may know feveral : others a much greater number.

How immenfe muft that Mind be, which beholds with a fingle glance the fum of all beings, and which by fathoming the /pirits of all orbs, dif-
cerns in an inftant and without confufion, the refult of all the ideas that have, do now, and will hereafter occupy them!

Ye inhabitants of the earth, who have received reafon fufficient to convince you of the exiftence of thefe worlds, will you for ever be denied entrance into them? Will the Infinitely good Being, who fhews them to you at a diftance, always refufe you admitance into them? No; fince you are called to refide e're long among celeftial hierarchies, you will like them fly from planet to planet: you will eternally advance from perfection to perfection, and every inflant of your duration will be diftinguifhed by the acquifition of farther degrees of knowledge. Whatever has been with-held from your terreftrial perfection, you will obtain under this œconomy of glory: you will know even as you are known.

Man is fown corruptible, he will rife incorruptible and glorious; thefe are the words of the apoftle and philofopher: the covering of the feed perifhes; the germ fubfifts, and affures man of immortality.

Man therefore is not in himfelf what he appears to be. What we difcover of him here below is only the grofs foldage under which he crawls on the earth, and which he muft fhortly caft off.

The brain is a fmall organical machine, deftined to receive the impreffions made on the different parts of the body, and to tranfmit them to the foul. It is by means of this that the foul acts on varibus points of the body, and adheres to nature.
The extremities of all the nerves, radiate to the feat of the foul : it is in fome meafure the
center of this admirable collection, the threads of which are fo numerous, fine, delicate, and full of motion.

But the nerves are not ftretched like the frings of an inftrument of mufic. Animals that are intirely glutinous, are notwithftanding very fenfible.

We then admit there is a fluid in the nerves, whofe fubtilty prevents our feeing it; and which ferves both for the propagation of fenfible impreffions, and mufcular motion.

The inftantaneoufnefs of this propagation, and fome other phænomena, indicate that there is a certain analogy between the nervous fluid and fire or light.

We know that all bodies are impregnated by fire. It abounds in aliment. It is extracted from it by the brain, from whence it paffes into the nerves.

The feat of the foul, the immediate organ of feeling and thought, can be no other than a compofition of this vital fire. The brain which we fee and feel, muft therefore only be the cafe or covering of the ethereal machine, which conflitutes the real feat of the foul.

It may indeed be the germ of that/piritual and glorious body, which revelation oppofes to the animal and vile.

The refurrection, then, will only confift in a prodigioully rapid unfolding of this germ, which lies hid in the brain.

Thefe fenfes are the foundation of thofe relations which the animal body bears to terreftrial bodies. The feat of the foul, or the little ethereal machine that conflitutes it, has parts correfponding
ponding with the groffer fenfes, fince it receive's motions from thence, and tranfmits them to the foul. Thefe parts, by the opening of the germ, will acquire a degree of perfection incompatible with the prefent fate of man. But this germ may likewife contain within it new. fenfes, which will difclofe themfelves at the fame inftant, and by multiplying in an almoft infinite degree the relations of man to the univerfe, will aggrandize his fphere, and render it equal to that of juperior intelligences.

An organized body, formed of elements analogous to thofe of light, will, we may reafonably fuppofe, fland in need of no repair. The /piritual body will preferve itfelf by the mere energy of its mechanifm.

And if light or zether do not gravitate at all, man in a glorified ftate will be enabled to tranfport himfelf at pleafure into every point of fpace, and will fly from planet to planet, with the fwiftnefs of lightning.

The fenfes, as they will then be brought into fubjection to the foul, will no longer rule over her. Separated for ever from flefh and blood, there will remain in her none of thofe earthly affections which refulted from them. Tranfported into the regions of light, the human underftanding will prefent no ideas to the will but thofe of the higheft good. It will then have no other than lawful defires, and God will be their conftant and ultimate end. It will love him from gratitude; fear him from a principle of love; and will adore him as the Supremely Amiable Being, and as the Eternal Source of life, perfection, and happinefs.

CHAP.

C H A P. V.

Of the various relations of terreftrial Beings.

1. \mathbf{W}^{E} have feen, that all is relation in the univerfe, but we have only hitherto taken a diftant view of this fruitful truth. We may now approach nearer to it, and beftow our attention on the moft interefting particulars.

The union of fouls to organized bodies, is the fource of the moft abundant and moft wonderful harmony that exifts in nature. A fubftance without extenfion, folidity, and form, is united to an extended, folid, and formed fubftance. A fubftance that thinks, and which has a principle of action in it, is united to a fubftance void of thought and purely paffive. From this furprifing connection there fprings a reciprocal commerce between the two fubflances, a kind of action and re-action, which conftitutes the life of organized animated beings. The nerves, being varioully agitated by objects, communicate their motions to the brain, and to thefe impulfes the perceptions in the foul correfpond, which are totally diftinct from the caufe that occafions them.

The rays which proceed from an objęt frike my optic nerve, I have a perception that points out to me the prefénce of the object. They affect this nerve in a violent manner; I have a fenfation, which I exprefs by the term of pain.

The diverfity of fenfes by which the foul receives the impreffion of objects, produces a diverfity in her perceptions and fenfations. The fentiments
fentiments occafioned by the motion of the nerves of light, differ abloiutely from thofe that are produced by that of the nerves of hearing. The fenfe of feeling has no likenefs to that of tafte. Thefe are different modifications of the foul, which correfpond to different qualities of the objects.

But how can the nerves, which do not feem fufceptible of a greater or lefs degree of bulk, length, compofition, or tenfion, or of quicker or flower vibrations, occafion in the foul fuch a prodiginus variety of perceptions as we experience? Is there fuch a relation between the foul and the machine to which it is united, as for certain perceptions to correfpond continually with the nerves of a determinate fize, fructure, and tenfion? Are there nerves appropriated to different corpufcles, to the impreffion whereof various perceptions are attached ? Are the pyramidal form of the papilla of the tafte and feeling, the winding ravities of the ear, the different refrangibilities of the rays of light, fo many proofs of the truth of this ? Be this as it may, we are fufficiently convinced that the fame fenfible fibre is not liable at one and the fame time to a multitude of different impreffions. But this fibre is not only deflined to tranfmit to the foul the impreffion of the object; it muft alfo preferve the remembrance of it; for a thoufand inftances prove that the memory is connected with the brain; how then can it be imagined that the fame fibre flould at once retain a multitude of different determinations? Nay, how can two fuch different fubftances as the foul and body aft reciprocally on each other? At this queftion let us humbly caft our eyes downwards, and acknowledge this is one of the great myfteries of the creation, which we are not permitted
mitted to be acquainted with. The various attempts that have been made by the mof profound philofophers, to explain it, are fo many monuments raifed to convince us both of the extent and weaknefs of the human mind.
2. The foul, being modified by impreffions more or lefs ftrong, re-acts in her turn on the nervous fyftem, maintains the motions there, and renders them more active or durable. From thence arife the pafions, thofe fecret inclinations, thofe refllefs appetites, which deftroy the equilibrium of the foul, and impel her towards certain objects. Thefe are admirable inftruments fet to work by the wife Author of nature; which, like favourable winds, caufe the animated machines to float on the ocean of fenfible objects!

The re-action of the foul on the nervous fyftem, fcems alfo to be the principal fource of divers fenfations we experience, feveral of which come under the denomination of infinct or moral fenfe.

Objects do not Arike immediately on the foul. She only receives impreffions by interpofed mediums. The fenfes are the mediums. The action of objects, then is modified by them in a determinate relation to nature, or to the conftitution of each medium. The aptnefs, either greater or lefs, wherewith fenfible fibres yield to impreffions from without, tranfmit them to the foul, and renew the remembrance of them there, together with the quality, and abundance of the humours, conflitutes the temper. In animals, temper governs all. In man, reafon regulates the temper: and the temper; when under due regulation, facilitates, in its turn, the exercife of reaton.

The paffions receive nourifhment, grow, and become fiong like the fibres which are the feat of them. Learn then your temper, if it be vicious, you are to corred it; not to deftroy it, for you would thereby deftroy the machine itfelf; but fkilfully to divert its courfe, and carefully to avoid every thing that may contribute to add new ftrength to it, and fwell the waters of fuch a dangerous torrent.
3. The fenfes, are not only intended to raife in the foul, perceptions of every kind; they likewife revive memory in her. A perception which is prefent to the memory does not effentially dif. fer from that which the objeet excites. This produces perception by means of fenfible fibres appropriated to it, and on which its action is difplayed. The recollection of perception then depends on a motion which operates in thefe fibres, independently of the objett, For whether the organ receives its motion from inteftine caufes, or from the objeCt, the effect is the fame with regard to the foul, and perception is inflantly prefent to her.

Experience proves, that if any feries of perceptions whatever affeets the brain for a certain time, it thereby contrakts an habit of re-producing it in the fame order. It is likewife certain that this habit appertains to the brain, and not to the foul. A burning fever, a ray of the fun, or a violent commotion may deftroy it, and fuch caufes influence only the machine.

All perceptions derive their origin from the fenfes, and the fenfes tranfmit to the feat of the foul, the impreffions they receive from obje Cts. But

But objects act on the organ by impulfion only. They imprefs then certain motions on the fenfible fibres. So that a perception, or a certain feries of perceptions, are connected with one or divers motions which operate fucceffively on different fibres.

And fince the reiteration of the fame motions, on the fame fibres, effects in them an habitual difpofition to produce them afrefh in a conftant order, we may infer from thence, that the fenfible fibres are fo conftructed as to produce in them changes or determinations more or lefs durable, which conftitutes the precious ground-work of the memory and imagination.

But the fenfible fibres are nourifhed like all the other parts of the body: they affimilate or incorporate with themfelves alimentary matter: they grow, and whilft they receive nourifhment, they continue to perform their proper functions. So that nutrition conduces to preferve to the fibres thefe determinations, and caufes them to take root there; for as the fibres increafe, they acquire a greater degree of confiftence. We may hence difcover the origin of cuftom, that powerful queen of the fenfible and intelligent world. The memory, by preferving and recalling to the foul the fogns of perceptions, by affuring her of the identity of the perceptions recalled, and of thofe which have already affected her, by connecting prefent perceptions with the antecedent ones, forms in, the brain a fund of knowledge, which increafes in richnefs every day.

The imagination, being infinitely fuperior to a Michael Angelo or a Raphael, delineates in the foul, a faithful image of objects; and from divers reprefentations
reprefentations which it compofes, forms in the brain a cabinet of pictures, every part of which moves, and is combined with an inexpreffible variety and fwiftnefs.

The brain of man, then, may be confidered as fo many mirrors, wherein different portions of the univerfe are painted in miniature. Some of thefe mirrors exhibit but a fmall number of objefts; while others reprefent almoft the whole of nature. What is the relation between the mirror of the mole and that of a Newton! What images were there in the brain of a Homer, a Virgil, or a Milton! What mechanifm muft that have been which could execute fuch wonderful decorations! That mind, which could have read the brain of a Homer, would have there feen the Iliad reprefented by the various exercife of a million of fibres.
4. Of all the fenfes, the fight is that which furvifhes the foul with the quickeft, mof extenfive, and moft varied perceptions. It is the fertile fource of the richeft treafures of imagination, and it is to that principally that the foul owes the ideas of beauty, of that varied unity which ravilhes it.

But by what fecret mechanifm are my eyes made capable of communicating to me fuch lively, varied, and abundant perceptions? How do I difcover with fo much eafe and quicknefs every object that furrounds me.

Three humours of different denfity, each lodged in a tranfparent capfule, divide the infide of the globe of the eye into three parts. On the bottom
is fpread a kind of cloth, or very fine membrane, which is only the expanfion of a nerve, whofe extremity terminates immediately at the brain. A black fkin lines the whole infide of the globe. At the fore part of it is a round orifice, which contracts or dilates itfelf according as the light is more or lefs ftrong. Six mufcles, which are placed on the outfide of the globe, move different ways, and the rapidity of thofe motions is excef five,

What need is there of thefe humours, this cloth this tapeftry, this aperture which contracts and dilates itfelf? The light comes to us from the fun in a right line: but thefe rays become crooked, when the denfity of the mediums through which they pafs increafes or diminifhes. 'This is called the refraction of light.

To the property of refracting light, joins that of reflecting from the body it enlightens. There iflue then luminous ftreaks from all points of the objects, which bear the image of thefe points.
The humours of the eye are the lens of the camera obfcura; the cloth or retina are the pafteboard. The black fkin which hangs within the ball performs the office of a fhutter that excludes the light; it extinguifhes the rays whofe reflection would render the image lefs diftinct; the ball, by contracting or dilating itfelf in proportion to the ftrength of the light, moderates the action of the rays on the retina : the nerve placed behind this, communicates to the brain the various concuffions it receives. to which divers perceptions correfpond.
5. Such are the admirable relations which WISDOM has placed between our eyes and the Vol. IV.
light : thofe which it has eftablifhed between light and the furfaces of different bodies, whence colours proceed, are not lefs worthy our attention.

A ray which falls on a glafs prifm, divides into feven principal rays, each of which bears its proper colour. The oblong image which this refraction produces, affords leven coloured fripes, difributed in a regular order. The firft, reckoning from the upper part of the image, is red; the fecond, orange; the third, yellow; the fourth, green; the fifth, blue; the fixth, indigo; the feventh, violet. Thefe ftripes do not glare: but the eye paffes from one to the other by gradations or fhades.

The rays which bear the higheft colours, as the red, orange, and yellow, are thofe that refrate or curve the leaft in the prifm. They are alfo fuch as refled the firf, on inclining the infrument.

From thence it follows, that each ray has its fixt degree of refrangibility. Make one of thefe rays pafs through feveral prifms at the fame time; it will afford you no new colours: but it will confantly retain its primitive colour, which is an invincible proof of its immutability. Prefent a lens to feven rays divided by the prifm, you will reunite them into a fingle ray, which will afford you a round image of a fhining white. Take only five or fix of thefe rays with the lens; you will have but a dulky white. Only re-unite two rays; you will make a cotour, that will partake of both. A fream of light then is a clufter of feven rays, whofe re-union forms white, and the divifion of which produces feven principal and immoveable colours!

What is now the fource of that infinite diverfity of colours, which embellifhes every part of our abode ?
abode? The particles which compofe the furface of bodies, are fo many little prifms varioully inclined, which break the light, and reflect different colours. Gold divided into very thin plates appears blue, when oppofed to broad day light. The greater or lefs thicknefs of the plates contributes then to the diverfity of colours. Whence proceeds that beautiful azure which tinges the canopy of lreaven? The ground of the heavens is black; this ground viewed through the body of air which furrounds us, muft appear blue to us. Whence proceeds this fmiling verdure which adorns our fields? The lamellae of the furface of plants are difpofed in fuch a manner, that they remit only green rays, whill they afford a free paffage to others. If green pleafes our fight, it is becaufe it holds precifely a medium between the feven principal colours. But who can remain infenfible of the care which nature has taken to depart from uniformity in this cafe, by multiplying in fo great a degree the Thades of green ? You admire this magnificent rainbow, which delineates at large to you the colours of the prifm : the beauty and vivacity of its fhades ravifh you: you fufpect that nature muft have been at a vaft expence to compofe this rich girdle. Some drops of water, on which the light breaks and reflects indifferent angles, are the fole caufe of it.

You are fruck with the fplendid gilding of fome infects: the rich fcales of fifhes attract your notice: Nature, who is always magnificent in defign, and frugal in execution, produces thefe brilliant decorations at a fmall charge: fhe only applies a brown thin fkin on a whitifh fubflance: this fkin performs the office of varnifh to our gilded Ikins; it modifies the rays which iffue from
the fubfance it covers. The gloffy green of the leaves of plants is owing to the fame art. They owe their luftre and thades to a fine, fmooth, tranfparent, gloffy, and whitifh membrane which cloaths a fubflance that is always of a rough green, and of a Atronger or fainter dye. It is this green modified by this membrane, which conftitutes the colour peculiar to leaves of every feecies.

It is apparently the fame with regard to the enamelling of flowers, and perhaps likewife to the colouring of fruits. This is a new branch of optics, which were it dived into as it deferves, might be attended with fome interefting confequences.

The dirett light of the fun, or that of the day only, tinges the leaves, as it colours that of fruits. Leaves, whilf they are inclofed within the bud, are whitifh or yellowifh. They preferve this colour, if obliged to grow in a tube of blue paper, where the air and heat may have free accels. The plant then ftars, as the gardeners term it, fending forth an exceffively long and flender ftalk, and the leaves unfold themfelves but very imperfeetly. The light is in a continual and very rapid motion: it acts perpetually on the furface of bodies, which it penetrates more or lefs. By its fmall reiterated Ar rokes on leaves, it modifies the furface of them by little and little, and infenfibly difpofes it to reflect the green colour.

Colours then in objects are only a certain difpofition of parts totaliy diftinct from the perceptions which they caufe in the foul. It is the fame with refpect to all our perceptions and fenfations. The fenfes, by prefenting to us bodies under different appearances, thew us their various qualities;
lities; and to thefe qualities different ideas in thefoul correfpond. We conclude from hence, that the fame objects do not affect all fenfible beings in an equal manner. It is even doubtful whether two individuals of the fame fpecies have precifely the fame perceptions in prefence of the fame objects.

Were we to contemplate the world by the organs of all thofe fenfible beings which inhabit it, we fhould perhaps fee as many worlds as we fhould employ glaffes. What difference would there appear in the mulberry-tree, examined through the organs of a filk-worm, from our conception of it! What diverfity between the famina viewed through the eyes of bees, and thole which the botanif obferve! How extenfive would be the knowledge of that being, who could 'fe acquainted with all thefe different imprefliop!
6. Fire, which is difperfed through all nature; offers to \sqrt{s} an infinity of properties : let us confine ourfelves to give an account of tha mof interefting. Fire being fubtle, elaftic, and continually agitated, penetrates all bodies. It warms, dilates, burns, melts, calcines, vitrifies, volatilizes, and diffipates them, according to the nature of their compofition or principles. This fubtle element becomes vifible only by borrowing a body. It fecretly unites itfelf to an inflammable and unknown fubflance, and provided with this body, unites itfelf to other bodies, and enters into their compofition. It is by means of the fame union that it becomes fenfible in electrical experiments. fometimes in the form of luminous tufts, fometimes in that of crowns, flafhes, fparks, and that
it fulminates, burfts, frikes, pierces, burns, inflames.

By a gentle agitation fire enlivens all organized bodies, and conducts them by degrees to their perfect growth. It foments the branch in the bud, the plant in the grain, the embryo in the egg. It gives fuitable preparations to our food. It fubdues metals to our ufe, over the formation of which it prefides. By that we are enabled to give matter, all thofe forms which our neceffities or conveniencies require. To that we are indebted, in a particular manner, for that tranfparent matter, which being fretched out into thin leaves, or fafhioned like tubes, vafes, globes, lenfes, furnifhes us with various inftruments, and enriches us with new eyes, which help us to difcover the fmalleft objects, and bring nigh to us the mof remote.

From the action of fire on earth, fulphur, oils, and falts, the various fpecies of fermentations and mixtures refult, which are the objects of the refearches of the chymift, and the foul of the three kingdoms. Being concentered by lenfes or mirrors of every kind, it acquires a frength greatly fuperior to that of the hotteft of our actual fires, and. in an inftant reduces green wood to alhes, calcines fones, melts and vitrifies metals.

Being excited, collected, condenfed, modified, extracted, directed, and applied by electrical machines, it becomes the fruitul fource of a thoufand phænomena, which art diverfifies every day. Sometimes, when extracted from a globe of glafs, it runs with an inconceivable rapidity along an iron wire, and caufes light bodies, placed at a league diftance from the globe, to feel the impreflion of it. Applied by the fame means to paralytic limbs,

(~127.)

it reftores life and motion to them. Being prefent in all parts of the atmofphere, it collects itfelf in formy clouds, from whence it is again extracted byart; and a Le Monnier, equal to the fabulous. Jupiter, holds the thunderbolt, and difpofes of it at his pleafure. It is likewife fire that communicates to air and water, when reduced into vapours, that prodigious force which renders them capable of fhaking the earth, and breaking the hardeft bodies.

Laftly, it is fire, that by penetrating fluids, preferves to them their fluidity. As it is exadt itfelf, in putting itfelf in equilibrio, it paffes from thofe bodies where it is moll abundant to thofe where it is leaft fo, and carrying with it the moft volatile particles, it depofits them on the furface of the latter, where they appear in the form of vapours, exhalations or mifts.
7. The air, by its fluidity, thinnefs, weight, and fpring, is next to fire the moft powerful agent in nature. It is one of the great principles of the vegetation of plants, and of the circulation of liquors in all organized bodies. It is the receptacle of the particles which exhale from different matters; and had we eyes fufficiently piercing, we fhould fee in it the abridgement of all the bodies that exift on the furface of our globe. From vapours and exhalations which it carries in its bofom, and difperfes into all parts, are produced aqueous and fiery meteors, which are fo ufeful, but fometimes dreadful.

The air does not only receive bodies : it even enters into their compofition. When divefted of its eláticity, it unites itfelf to the particles which compofe them, and augments their bulk. But F_{4}
being
being more unalterable than gold, it refumes its former nature, when thefe bodies change or are diffolved. Being difturbed in its equilibrium, it fwells the fails of our fhips, and conveys to our countries thofe rich fleets that caufe plenty. Becoming impetuous, it caufes tempefts and hurricanes; but even this impetuofity is not withourt its ufe; the air by this means divefts itfeff of noxious vapours, and the waters being flrongly agitated, are preferved from a fatal corruption.

Lafly, the air is the vehicle of founds and odours, and under thefe new relations it is effentially allied to two of our fenfes. The partial vibration which commotion excites in a fonorous body, communicates itfelf to all the globules of air that immediately incompafs this body. Thefe globules caufe the like vibrations in thofe contiguous to them: and this exercife continues in the fame manner to greater diftances than we are able to determine. A fine and elaflic membrane, fpread at the bottom of the ear like the parchment of a drum, receives thefe concuffions, and conveys them to three fmall bones placed end to end, that communicate them in their turn to certain bony and winding cavities, lined on their infide with neryous filaments, which join to the brain by a common trunk. The greater or lefs degree of fwiftnefs of thefe vibrations produces feven principal tones, analogous to the primitive colours. From the combined relation of various tones, harmony proceeds.

The infinitely fmall particles that are continually detached from the furface of odoriferous bodies, float in the air, which tranfports them every where, and applies them to the nervous membranes
branes that are diffributed in the infide of the nofe. The concuffions which thefe corpufcles occafion therein, pafs afterwards to the brain by the lengthening of the nervous filaments.
8. All climates have their productions $:$ all parts. of the earth their inhabitants. From the frozen regions of the bear, to the burning fands of the torrid zone, all is animated. From the top of themountains to the bottom of the valleys, every thing vegetates and refpires. The waters and the air are peopled with an infinite number of inhabitants. Plants and animals are themfelves little worlds that nourifh a multitude of people, as different from each other in their figure and inclinations as the great people are which are fcattered over the furface of our globs. What am I Gaying? The fmalleft atom, the leaf drop of liquor are inhabited. Wonderful harmony, which by thus: fuiting different productions to different places, leaves none abfolutely defert!
9. A reciprocal commerce connetts at terreftrial beings. Inorganized beings anfwer to organized as to their center. The latter are defigned for each other. Plants are allied to plants. Animals to animals. Animals and plants are linked together by their mutual fervices. Behold how clofely this young ivy entwines infelf round this majeftical oak. It draws its fuftenance from it, and its life depends on that of its benefaEtor. Ye great ones of the earth, ye reprefent this oak. Refufe not your fupport to the indigent; fuffer them to approach you, and to obtain from you fuf. ficient to relieve their neceffaties.

Confider this caterpillar thick fet with hair; the birds dare not touch it: notwithftanding which, it ferves them for food: by what means? a fly pierces the living caterpillar. She lays her eggs in his body. The caterpillar remains alive. The egrs hatch. The young ones grow at the expence of the caterpillar, and are afterwards changed into flies, which ferve for fuftenance to the birds.

There are continual wars betwixt animals; but things are fo wifely combined, that the deftruction of fome of them occafions the prefervation of others, and the fecundity of the fpecies is always proportionable to the dangers that threaten individuals.
10. All is metamorphofis in the phyfical world. Forms are continually changing. The quantity of matter alone is invariable. The fame fubftance paffes fucceffively into the three kingdoms. The fame compofition becomes by turns a mineral, plant, infect, reptile, fifh, bird, quadruped, man.
The organized machines are the principal agents of thefe transformations. They change or diffolve all matters that enter within them, and that are expofed to the ation of their fecret fprings. They convert fome into their own fubflance; others they evacuate under divers forms, whicis render thefe matters proper for entering into the compofition of different bodies. Thus animals that multiply prodigioufly, as fome fpecies of infects, have perhaps for their principal end that of metamorphofing a confiderable quantity of matter, for the ufe of different componnds. By that means the vileft matters give birth to the richeft productions; and from the bofom of patrefaction
trefaCtion there iffues the fineft flower, or the moft exquifite fruit?

The Author of Nature has left nothing ufelefs. What is confumed of the duft of the ftamina in the generation of plants, is very trifling. if compared with the quantity eachr flower furnifhes. Wisdom itfelf then has created the induftrious bee, that makes ufe of the fuperfluous part of this duft with fuch art and œconomy, as could not be too much admired in the molt fkilful geometticians.

The earth enriches us every day with newgifts, whereby the would at length be exhaufted, if what fhe fupplies us with were not reftored to her. By a law, which we do not pay a proper attention to, all organized bodies become uncompounded and infenfibly change in the earth. Whilft they fuffer this kind of diffolution, their volatile parts pafs into the air, which tranfports them every where. So that animals are buried in the atmofphere as well as in the earth and water: we may even doubt whether that portion which. the air receives be not the moft confiderable in. bulk. All thefe particles difperfed here and there, foon enter into new organical wholes, deftined to the fame revolutions as the former. And this circulation, which has fubfifted from the beginning of the world, will continue as long as it endures.

E 0
CHAP.

"

C H A P. VI.

Of vegetable oconomy.

'THERE is no fource of phyfical relations that is more abundant than the ceconomy of organized bodies. Let us caft an eye on what it offers to us of the mof interefting nature. Our plan does not lead us to dive into a fubject that exhaults the fagacity of a philofopher.

Organical aconomy, taken in the mof extenfive fenfe, is that fyftem of laws according to which the vital functions operate in organized bodies.

Confidered in a lefs view, organical œeconomy prefents us with two claffes of objects. The firt comprehends the fructure, arrangement, and exercife of the different parts of organized bodies. The fecond comprizes the various effects that refult from organization.
2. The plant vegetates, is nourifhed, grows, and multiplies. The faline, unctuous, and fubtle flime, which the water feparates from the coarfe earth, and keeps in a diffolved flate, is the principal nutriment of plants. The different fpecies of manure only contribute to the fertikizing of land, in proportion as they introduce into it a great quantity of a fpongy powder or active falt. If a natural philofopher fucceeds in raifing plants. and
and caufing them to bear flowers and fruits in other matters than earth, for inflance, in the powder of rotten wood, deal, faw-duft, very fine fand, mofs, cotton, paper, fponges : the reafon is, becaufe feveral of thefe matters either change infenfibly in the ground, or attually contain earthy parts, or the water which moiftens them is itfelf charged with thefe particles, which the organs extract, prepare, and affimilate.

After having been admitted into the body of the root by the extremity of the fibres, the nutritious juice rifes into the ligneous fibres from the trunk or ftalk, and paffes into the utricles that adhere to them. It is there prepared and digefted: It afterwards enters into the proper vefels, under the form of a coloured fluid, more or lefs thick, which we may conjecture to be with refpett to the plant, what the chyle or blood is to the animal. Being filtred by finer or more winding pipes, it is at laft conveyed to all the parts, whereto it unites itfelf, and increafes their bulk.

The extreme finenefs of the canals for the /ap, which renders them in fome meafure capillary pipes, the action of the air on the elaftic lheaths of the air-vents, and the impreffion of thefe laft on the ligneous fibres they contain, or by which they are comprized, the heat that rarefies the fap, and above all that which, by acting on the furface of the leaves, draws thither the fuperfluous nutritious juice, and occafions the evaporation of it, feem to be the principal caufes of the afcent of this fluid in plants. The quantity of nutriment, which a plant derives from the earth is in proportion to the number and fize of its leaves; the fmaller or fewer in number the leaves are, the lefs
lefs it draws. The nutrilion of vegetables is likewife effected immediately by their leaves. They do not only ferve for raifing the fap, preparing it, and difcharging its fuperfluity; they are moreover a kind of roots that pump from the air the: juices they tranfmit to the neighbouring parts.

The dew, which rifes from the ground, is the principal foundation of this aereal nourifhment. The leaves prefent to it their inferior furface; which is always furnifhed with an infinite number of fmall pipes that are always ready to abforb it: And that the leaves may receive no prejudice in the exercife of this function, they are difpofed with fuch art on the falk and branches, that thofe that immediately precede do not cover fuch as fucceed them. Sometimes they are placed alternately on two oppofite and parallel lines. Sometimes they are diftributed by pairs, that crofs each other at right angles. Sometimes they are ranged on the angles of poliggons circumfcribed on the branches, and fo difpofed that the angles of the inferior polygon correfpond with the fides of the fuperior. At other times they afcend the whole length of the falk and branches on oneor more parallel /piral lines.

Ye fceptics, can you inform me why plants are difpofed with fo much art? You will perhaps deny that plants imbibe the dew by their inferion furface! But what would you fay, were one to inform you, that among leaves exactly refembling. each other, and taken from the fame tree, fuch as have been fleeped by their inferior furfaces in -veffels of water, have continued green for the fpace of whole weeks, and even months; whilf thofe that have been placed, by way of experi:

135)

ment, with their upper furface in the water, pexifhed in a few days?

Herbs that are always immerfed in the thickeft beds of dew, and that grow much fafter than trees, have their leaves formed in fuch a manner, that they pump in the moifture nearly alike by both furfaces, fometimes more copiounly by the upper one.

Obferve laftly, that the inferior furface of the leaves of trees is commonly lefs fmooth and gloffy and of a paler colour than the oppofite fuiface. This remarkable difference between the two fides of the leaf, fufficiently indicates that they havedifferent ules.
3. By a mechanifm which is very fimple, the root forces itfelf into the earth; the branches fhoot out on each fide : the leaves expofe their fuperior furfaoe to the open air, and their inferior furface to the earth, or the inner part of the plant. Sow a feed the contrar way; you will obferve the radicle and little flalk to bend backwards; the former in order to reach the earth, and the latter to gain the air. Keep a young ftalk inclined; its extremity will grow upwards. Bend the branches of all forts of plants; caufe the inferior furface of their leaves to turn towards the fky ; you will foon perceive that all thefe leaves will turn back again, and refume their former pofition: which motion will be executed with a quicknefs proportionate to the heat of the fun, or fupplenefs of the leaves. Sow different kinds of feeds in a clofet or cellar: carry thither fome finall twigs having their extremity fteeped in veffels full of water. The leaves of the
the young plants and thofe of the twigs, will incline their upper furface to the windows or airholes.

Confider the leaves of divers fpecies of herbaceous plants; of the maliow for inflance; you will remark that they follow the courfe of the fun. In the morning you will fee them prefent their upper furface to the eaft; towards the middle of the day this furface will face the fouth: in the evening it will be turned to the wefl. At night or in rainy weather thefe leaves will be horizontal, their inferior furface booking towards the earth.

Trace likewife the leaves of the acacia; as foon. as they are heated by the fun, ycu will obferve alk their foilages draw together by their upper furface. They will then form a kind of gutter turned towards the fun. In the night, or in moif weather you will fee the foilage turned the contrary way, and contract themfelves by their inferior furface. They will then form a gutter that will face the earth.
4. Do not feek for circulation in plants; as they are more fimple than animals, every thing in them is performed with leff apparatus.

In the day-time the action of the heat on the: leaves, draws to them in abundance the nutritious juice. The fimall excretory veilels, that appear in the forms of globules, pyramids, filaments, feparate the more aqueous or grofs parts of the juice that rifes from the root. The air contained in the tracher of the ftalk and branches, by dilating itfelf more and more, preffes the ligneous fibres, and by that means accelerates the courfe
of the fap, at the fame time that it caufes it to penetrate into the neighbouring parts.

When night approaches, the inferior furface of the leaves begins to perform one of its principal functions. The little mouths it is provided with open themfelves, and receive the vapours that float in the atmofphere. The air of the tracher is confined within them; their diameter is leffened: the ligneous fibres being lefs preffed, enlarge themfelves, and admit the juices conveyed to them from the leaves. Thefe juices join themfelves to the refidue of that which had arifen in the day-time, and the whole mafs tends towards the roots.

This feems to be exactly the mechanifm to which the motion of the fap may be reduced. You now fee more clearly the defign of the direction of the leaves, and of their admirable reverting. The inferior furface being intended for imbibing the dew, fhould face the earth, from whence this vapour rifes gradually at fun fet. But when I fay that the principal office of this furface, at leaft in trees and fhrubs, is to receive the dew, I would not infer that the oppofite furface is incapable of it: that may perhaps abforb vapoürs that are more rare.

Experiments that are well made feem to prove, that the inferior furface of the leaves of trees ferves Jikewife for infenfible perficiration. Thofe leaves in which this furface was endued with a matter impenetrable by water, drew in and tranfpired much lefs, in an equal time and with the fame management, than leaves of the fame fize and likenefs, whofe inferior furface had not been endued with fuch a varnifh. It feems to have refutted from the fame experiments, that there is
but little perfpiration by the upper furface. We may thence infer that one of its principal functions is, to ferve for a fhelter or defence to the lower furface: and that no doubt is the ufe of the gloffy varnifh obfervable on the fuperior furface. All which agrees with the almoft fpontaneous motions and directions of the leaves, and with their fymmetrical diffribution round the falks and branches.
5. The plant being inclofed in miniature within the fruit or feed, is there encompaffed with a quantity of flour, which after being diluted by the water that has penetrated the inclofures, ferments and furnifhes the germ with its firf nourifhment. Being moiftened by the delicate milk, in proportion to its weaknefs, it grows from day to day. In a fhort time its coverings become incommodious; it endeavours to diveft itfelf of them, and pulhes forth a little root, which proceeds to feek for more nourifhing juices in the earth. The little ftalk appears in its turn. As it is deftined to live in the air, it pierces the earth, and darts perpendicularly into the aereal fluid. Sometimes it carries along with it the remains of the teguments that had enwrapped it in the germ fate; at other times it is accompanied by two leaves, which are very different from thofe of a mature age; thefe are the feminal leaves, whofe principal ufe is probably to refine the fap.

Though it is divefted of its fwadling-clothes, if we may fo term them, the young plant is not at full liberty. It is not in a condition to be expofed fo early to the impreffions of the air and fun. All the parts remain for a fhort time folded together, nearly as they were in the feed. But the root
by extending and ramifying itfelf more and more, conveys to the veffels a confiderable quantity of fap, which foon opens all the organs.

At its firf appearance the plant is almoft gelatinous. It affumes by little and little a greater degree of confiffence by the incorporation of the juices which flow to it from all parts. That part of the falk next the root increafes in bulk, extends itfelf, and hardens firft of all. As the hardening augments, the extenfion diminifhes. At length it entirely ceafes in this part, and continues in that which immediately follows. Such is the nature of the progreflion obferved in the whole plant.

Wood, whofe hardnefs is fometimes equal to that of ftone, is formed of a fucceffion of concentric layers, that are detached every year from the infide of the rind, and harden as they advance in age.
6. Vegetables multiply by feed, hoots, and /lips. The piftil and famina are to plants what the organs of generation are to animals. The former inclofes the feed; the fine powder of the latter foecundates it. Both fexes are frequently united in the fame fubject: and thofe fecies are real hermaphrodites. Others bear the piftil on one branch, and the ftamina on another. A third fort are like the greater part of animals, diftinct males and females. The former are furnifhed with a piftil, and the latter with ftamina. This is all we know with regard to the generation of plants.

When the ftamina are cut off, the feed remains unfruitful. The fame thing happens when any one that has piftils has not in its neighbourhood another
another provided with ftamina. The pifill is always fo difpofed as to be able to receive the duft of the flamina. Its top is perforated with holes proportioned to the diameter of the grains of this duff, and its infide is divided into feveral canals, whofe diameter diminifhes the nearer they approach to the bottom. At the bafe of the piftil the feed is depofited. Every grain of the duft of the ftamina is a box, wherein floats, in a kind of very thin vapour, an infinite multitude of other very minute grains. This box opens itfelf to the moifture, and difcharges a fmall mift of globules or grains.

The fhrinking of the trunks indicates that the containing globules do not reach to the bottom of the piftil: but the contained globules or grains are fet at liberty by the attion of the moifture which the trunk imbibes, which, by opening the little box that inclofes them, permits them by this means to penetrate to the ovary.
7. Vegetables multiply by Jhoots. They pufh forth from the circumference of their root feveral fuccours, which become plants themfelves, and propagate their fpecies in like manner. The branches and young fhoots may likewife be confidered as ingrafted on the principal plant making one body with it. The germs which are difperfed within the planr, infold themfelves there without any fenfible fecundation, and reach to the furface of the bark. They appear there in the form of a fmall oblong and rounded body, compofed of feveral parts, ranged in a very regular manner, and Thaped like tubes, fhells, \&c. This little body is the bud, which like the feed, inclofes the
young plant under feveral coverings, all the parts of which are compleated with abundance of art.

The little flalk fhoots forth a fimilar bud at its upper extremity. This bud opens, and produces a fecond ftalk, grafted on the firft, which it lengthens. This new falk produces a third; the third a fourth, and fo on fucceffively. When the tree has attained its full growth, it is compofed of a feries of fmall trees, placed end to end. It is the fame with refpect to branches and boughs, all having one and the fame life, and forming only one organical whole.

Bulbous plants, inftead of young fhoots, fend forth fuckers. The bulb, which is formed of feveral membranes, or coats placed on each other, contains, in like manner as the feed and bud, a plant in miniature. The fucker is a fmall bulb that fhoots out on the fides of the principal one, and which is defigned to fucceed or replace it. Sometimes this replacing is performed with fuch quicknefs and circumflances as are very furprizing. Whilft the principal bulb is wafting, the fucker thickens and fpreads itfelf, and in a fhort time becomes the principal bulb.

We may compare this bulb to a fpecies of earth, that exhaufts itfelf in order to furnifh fuitable juices to the young plant, It may alfo be looked upon as a placenta, that filtres and prepares the nutritious juice. The leaves of fome herbaceous plants form fpherical maffes that are pretty compact , and feem to perform the office of a bulb. The head of a cabbage fpends and waftes itfelf in order to contribute to the unfolding of the minute ftalk it contains. Place one of thefe heads on a veffel

(142)

veffel full of water, and it will exhibit to you the fame phenomena as the bulb of a flower.
8. The branches that bend down from certain trees to the earth, take reot there, and become themfelves young trees. Human indufty carries this kind of multiplication to a much greater extent. By means thereof, a fingle branch or root, divided into feveral parts, becomes fo many individual plants. What do I fay? It can even caufe a tree to be produced from the fmalleft fhred of a leaf. Such is the multiplication from llps.

The organs effential to life being difperfed throughout the whole body of the fubject, the flip that is detached from it, and planted in the earth, is of itfelf capable of forming new productions; it has every thing neceffary for the unfolding of the radicles and buds. Thus a fingle leaf takes root, and vegetates by its own ftrength.

There is another kind of multiplication that is very remarkable, which confifts in planting cne or more flips, not in the earth, but in the trunk or branches of a living tree. This is grafting; the firlt idea of which may perhaps have been owing to the accidental union of two branches or two fruits.

The next caufe of the union of the graft with its fubject, is in the intercourfe of the fap-veffels with each other; and this intercourfe depends ultimately on the relation of their parts, and particularly on that of their confiftence, and the liquors contained in them. By the affiftance of a graft the gardener caufes the wild ftock to produce the fineft fruits, he gives youth to trees, and gathers plumbs from the almond tree, and pears

143)

from the afh. Filtration, and the preparation of the juices of the fubject by the veffels of the graft, occafion thefe produations. The roll which is always formed at the infertion, and is compofed by the interweaving of a prodigious number of fibres, is one of the principal inftruments of thefe preparations. The more or lefs perfect analogy of the juices proper to the fubjed with thofe that are peculiar to the graft, favours in a greater or lefs degree the unfolding of the latter. The nearer or more diftant relation between the time in which the fap in the fubject continues, and that in which the graft has been accuftomed fo to do, contributes likewife more or lefs to the fuccefs of the operation.
9. The body of the plant is in a continual \&ate of motion. It always tends to produce, either the bark, a bud, or a root. Make an incifion in a tree; the wound will cicatrife. A greenifh roll will in a fhort time be feen at the top of the wound, afterwards on the fides, and at length towards the bottom. This roll is a new rind, which is about to cover the wood again, without uniting to it. Obferve what paffes with refpeet to this; you will perceive in it certain diftinct and glutinous nip. ples, and fmall reddiif fpots difperfed here and there, which you will find to be a growing bark. A matter that is partly tranfparent, whitiih and mucilaginous will feem to raife up this bark. All thefe glutinous fubftances will thicken, increafe in length, and become ftronger, and in a little time what was at firft of a glewy nature will be herbaceous, cortical and ligneous. The cicatrice will at length entirely clofe itfelf, and reftore the communication between all the veffels.

The

The wood does not only differ from the bark by its denfity, but it has likewife organs that are not to be met with in the latter. It feems to be peculianly poffeffed of air-veffels. When a new rind feems to convert itfelf into wood, this converfion is only in appearance. Nature does not create more air-veflels than are fuited to one intire plant. But a multitude of fibres that are deflined to become wood, pre-exift under the new rind, and unfold themfelves with it and by it, as we fee the butterfly unfold itfelf in and by the caterpillar. Whilft wood is nothing more than a mucilaginous drop, it is not on that account the lefs wood, than when, being transformed into a pillar, it is made to fupport the enormous weight of an edifice.

In the union of the graft with its Jubject, we likewife perceive a glutinous fubftance to fpring from each of them, which fpreads, ramifies, and is formed into a ball in both, becoming by degrees herbaceous, cortical, ligneous, and compofes above the infertion a roll which entirely covers it. So that the whole body of the plant is furnifhed with Imall' fibres on the infide, which only wait for favourable circumftances to difplay themfelves. Thefe circumftances are a wound, an incifion, or a fimple ligature. Thefe fibres are the elements of cortical or ligneous beds, which by fpreading themfelves on all fides, furnifh the neceffary repairs. The wound, incifion, and ligature, occafioning the nutritious juices to flow towards thefe invifible fibres, expand them, and render them perceptible to us.

What

What thefe fibres perform in the regeneration of the bark or wood, the germs effect in the reproduction of a branch or young fhoot. The fibres of the bark or wood do not unite themfelves into bunches, in order to compofe a bud or branch in miniature. This branch is already completely formed in its germ: it there polfeffes the elements of all the beds, whether cortical or ligneous, which it will hereafter exhibit under different proporsions.

C H A P. VII.

Of Animal ©conomy.

$1 . T$H E nerves, which extend themfelves into all parts from the brain, are diftinguifhed into feveral principal divifions, that are more or lefs numerous, or more or lefs extended. Each divifion reaches to the part for which it is deftined, and whofe fructure correfponds with the functions appointed for it to exercife.

Feeling, fight, hearing, tafte, and fmell, are five kinds of fenfes, which contain under them an almof infinite number of fpecies. The fhaking which the mediate or immediate impreffion of objects produces on the nerves, gives birth to thofe different kinds of fenfations, which may all be reduced to feeling, of which they are properly only modifications. The organs of the fenfes are the inftruments of thefe modifications. The number, extent, and delicacy of the /enfes, conftitute the degree of animal perfection.

The nerves, which feem to refemble the flrings of a mufical inftrument, are not fretched like them. Some animals are endued with an exquifite fenfation, that are themfelves little otherwife than a thick jelly: how then can we admit of elaftic frings in this jelly? While the fotus is altogether gelatinous, it regulates at that time its members. With what amazing fwiftnefs then mult the impreffions of objects communicate them-

Selves
felves to the foul! and with what wonderful celerity muft the members obey the will! Thus we are led to fuppofe in the nerves a very fubtle and elaftic fluid, whofe motions, being analogous to thofe of light or ele\&trical fluid, produce all the phronomena of fight. The animal /jirits are this fluid, which the brain extracts and prepares, and continually conveys into the nerves, and by the nerves into all parts, which it nourifhes, moves, and animates.
2. An animal had in vain received fenfes, by means of which it can diftinguifh between what is ufeful or hurtful, if it were not enabled to give itfelf any motion for the attaining the one, and avoiding the other. It is therefore furnifhed with organs that procure to it this faculty. Thefe organs are the $m u /$ cles, which by the dilatation and contraction, and by the lengthening and fhortening of the fibres that compofe them, communicate to all parts the motions, which are fuited to the wants of the animal.

It is evideht from experiments, that the nerves contribute to the exercife of the mufcles. The fpirits which they difperfe therein, infinuate themfelves into all the veficles, dilate them, and by that means put the organ into action.

One property of the mufcular fibre (whofe effects are diverfified a thoufand ways, the caufe of which is concealed from us) is that, by virtue whereof it contracts itfelf on the touch of any body either folid or liquid. This is called irritability. By means of this, different parts of the animal continue to move, after they have been feparated from their intire body; and the heart when detached from the breaft, performs a num-

G 2 ber
ber of pulfations, which ceafe as foon as the blood in the cavity is evacuated.
3. From that part which gives admittance to the food to that from whence iffue the remains of the groffer aliment, there is one continued canal, which is formed, differently in different parts of its extent. There are three principal parts diftinguifhed in it, the afophagus, the fomach, and the inteflines. All thefe are formed of various membranes laid on each other, and which are themfelves compofed of fibres differently interwoven. The mufcles, wherewith one or feveral of thefe membranes are furnifhed, imprefs divers motions on the organ, the principal of which, called the perifaltic motion, bruifes the aliment, and forces it from place to place.

The afophagus receives the groffer nourihment, and tranfmits it to the fomach, that prepares it: it afterwards paffes into the intefines, where it undergoes new preparations. From thence it enters into fome very fmall veffels, that convey it to thofe of circulation, where it affumes the name of blood.

Whilf the moft delicate part of the aliment is fubject to all thefe preparations, the groffer part is evacuated by different ways. Sometimes the animal difcharges it as a fediment; fometimes, being transformed into a fubtle liquor, it is carried to the furface of the fkin by an infinite number of very fine veffels, whofe exterior apertures are fometimes fo fmall, that a grain of fand is capable of covering feveral thoufands of them.
Other veffels, which, like them, communicate with the furface of the fkin, pump in the vapours that float in the air, and convey them into the blood.
4. Circulation is that perpetual motion by which the blood is conveyed from a point internally to the extremities, and flows back ayain from the extremities to the fame point. The point frome whence the blood fprings, is called the heart. Is has two motions, one of contraction, or fy/tole, by means of which it forces out the blood contained in its cavity; the other of dilatation, or dinficile, by which it receives the blood again.

Two kinds of veffels join to the heart: the arteries, which convey the blood to the extremities; and the veins, which carry it back from the extremities to the heart.

The arteries have, like the heart, their fyfole and diaftole, and divide and fubdivide themfelves, as do the veins, into an infinite number of branches which diminith in diameter in proportion to their diftance from their origin. The perpetual motion of circulation prevents the corruption and extravafation of the nutritious fluid, rectifies it more and more, and difpofes it infenfibly to renew the nature of the animal.
5. Re/piration comprehends two alternate motions; one of in/piration, which gives admittance to the air within; the other, of expiration, which expels it, filled with the vapours of the animal.

The lungs are the principal infrument of refpiration. They are principally formed of a collection of cartilaginous and elaftic velfels, which after being divided and fubdivided into a prodigious number of branches, meet in different parts, and terminate at one or more common trunks, called trachece, or air-veffels, whofe aperture is on the outfide of the body. The ramifications of the air-veffels are connected with the veffels of
circulation, and accompany them in their paffage through the lungs.
6. The blood is that rich fund from whence nature derives that diverfity of materials the employs with fo much art in the construction of her wonderful edifice. This, as it goes from the heart, meets, here and there on its paffage, with certain organical, and as it were knotted maffes, in which it is deprived of part of its principles.

We cannot yet penetrate the true mechanifm of Secretions: we can only faintly perceive, that they may operate by a gradual diminution of the veffels which proportions them to the fmallnefs of the particles that are to the feparated. They may likewife bear forme affinity to the configuraion of the fe particles, and favour the extraction of them by means of the flackening which their folds and various circumvolutions occafion to the circulation. Thus it is, that by caufing the aliment to pars through an infinite number of trainers, nature is enabled to affimilate it to the animal, and incorporate it into his flefh. This is then neither chyle nor blood; it is a much more refined liquor, and known by the vague name of lymph.

We cannot fufficiently admire the prodigious apparatus of veffels which perform the fecretions of different kinds. The kidneys, the liver, the pancreas, \&c. are labyrinths in which the mont confummate anatomift is bewildered. We can only difcover an inconceivable mats of white tubes, of an extreme minutenefs, folded together in thoufands of different ways, which do not admit of any injection, though adhering to the bloodvelfels
veffels, and being placed end to end by imagination, would have formed a chain of feveral leagues in length. This is all that art has dificovered in the fecretary organs. But what a number of interefting particulars do thefe minute hollow cylinders contain, which have efcaped our notice and inftruments! What varieties fhould we not difcover in their ftructure, functions, and exercife, were we permitted to defcend to the bottom of this abyfs, which conceals from us one of the greateft myfteries of nature! All the animal liquors are more or lefs mixed, and thefe finall tubes no doubt fufficiently diverfify themfelves to feparate the various molecules that muft neceffasily enter into the compofition of every liquor. What then mult be the ffructure and finenefs of thofe that filtre this fo fubtile fluid, compared to æther or light, whofe operations are diverfified almoft to infinity!
7. If we knew how a fingle fibre grows, we could tell how the animal grows; for his whole body is only an affemblage of fibres differently formed and combined. Growth always operates by nutrition. This incorporates into the fibre molecules of an heterogeneous nature, which extend in every part. The fibre incorporates into itfelf the heterogeneous molecules according to its own nature. A fibre is not itfelf compofed of other fibres: thefe of fill other thbres: of which there would be no end. But the fibre is formed of molecules or elements, whole nature, proportions, and arrangement refpectively determine the /pecies of the fibre, and adapt it to fuch or fuch a function. Thus the elements of the fibre ultimately effect affimulation, which by uniting with the nutritious molecules, G 4
that

25)

that have an affinity with them, give them at the fame time an arrangement like that which they. have in the fibre. The extenfion of the fibre fuppofes that its clements may feparate more or. lefs from each other; but this feparation hath its bounds, and thefe bounds are thofe of the growth. In proportion as the fibre grows, it acquires more folidity; for the number of incorporated molecules increafes every day, fince it only grows by the fucceffive incorporation of molecules of a foreign nature. The more the folidity augments, the more the fupplenefs diminifies. There are more molecules, more coherence, and more attraction under the fame foldage. The fibre then tends to a flate of hardnefs, and the laft term of its hardening is the laft term of its growth. When therefore the fibre has acquired its full growth, it is a little organized whole, compofed of its elementary molecules and of att fuch as nutrition has incorporated with them during the time of their growth. If then we could feparate from the fibre all thofe molecules which it has affimulated, we thould reftore it to its primitive flate. This may be applied to all organized bodies. They are, if we chufe to term them fo, net-work. A fecret force impels the aliment into the melhes. It increafes them in bulk, and fupplies them by little and little. It likewife infinuates itfelf into the elements of the folid mafs itfelf. The net-work Aretches, thickens, and at length becomes hard.
8. We may eafily comprehend, that all the parts of an animal have fuch frict and indifloluble connexions between them, that they muft neceffarily have always co-exifted together. The arteries imply veins; both of thefe imply nerves;
thie latter the brain ; this the heart; and all of them fuppofe a multitude of other organs.

In the germ of a chick there is at firft perceived a vital point, whofe conflant motion attracts the atteution of the obferver. The alternate and quick contractions and dilatations of the living point, fufficiently indicate that it is the heart. But this heart feems to be without any covering, and to be placed on the outfide of the body. Infead of appearing in the form of a minute pyramidial mafs, it bears the refemblance of a femicircle. The other vifcera appear fucceffively, and rangethemfelves after each other, round the living fpeck. We cannot as yet difcover any general. folding; all is tranfparent or nearly fo; and we only perceive by little and little thofe teguments. which are appointed to cover all the parts.

In its firft beginnings the animal is almoft intirely fluid. It alfumes by degrees the confiftence of a jelly.. All the parts have at that time fituations, forms, and proportions that differ greatly from: thofe they will afterwards acquire. Their minutenefs, foftnefs, and tranfparency, ferve to ftrengthenthe illufion. We perfuade ourfelves that abowel: is naked, becaufe the tranfparency of its coverings. prevents our feeing them.

Would you have a fhort and eafy demonftration of this? When the lungs of the chick are firft perceivable, their fize is but the thoufandth part of an inch. It would have been vifible at the fourth part of thefe dimenfions, were it not endued with the moft perfect tranfparency. The liver is much greater at its firf appearance ; its tranfparency alone renders it invifible. It is the fame with refpect to the kidnies; whilf they do not even appear to exift, they feparate the urine. G. 5 .

The

The heart forces the blood into the arteries fooner than we could imagine, and it can only be perceived by the growth of the embryo, which is never more accelerated than at the very beginning.

Many other faets concur with thefe to eftablifh the pre-exiftence of organical wholes. We are now fenfible that many infects multiply, like plants by $/ l i p s$. We cut them into pieces, and each piece regenerates, and becomes a perfect animal. Earth worms are ranked in the number of thofe infects that are re-produced from their disjoined parts; and being very large, the phrnomena of their regeneration is very perceptible. ©The piece that is cut off never acquires any growth; it always remains as the fection left it; only it falls away in a greater or leffer degree. But after fome time there appears a very finall whitifh pimple at its extremity, which encreafes by degrees in bulk and length. There are foon difcovered rings, which are at firft very fmall and very clofe. They fpread themfelves infenfibly every way. New lungs, a new heart, a new ftomach difclofe themfelves, and with them a number of other organs. This piece, which is newly produced, is extremely flender, and altogether difproportioned to the part on which it grew. We may imagine that we fee a worm growing, that is grafted at the end of this flump, endeavouring to lengthen it. This little vermiform appendage unfolds itfelf flowly. At length it equals in thicknefs the piece from which it was cut, and exceeds it in length. It can no longer be diftinguifhed from it but by its colour, which is fomewhat fainter.

Here then is a new organical whole, which grows from an antient one, and conflitutes the fame
fame body; there is an animal flip that grows, and expands itfelf on the fump of an animal, as a vegetable flip does on the trunk of a tree. Remark that the flefh of the piece cut off does not in the leaft contribute to the formation of the part regenerated; the flump only nourifhes the bud; it being the foil in which the latter vegetates. The part then that is re-produced palfes through all the degrees of growth, by which the intire animal itfelf had before paffed. It is a real animal, which pre-exifted in a very minute form in the great animal that ferved it for a matrix.

Vegetable productions exhibit to us the fane confequences. If a tree be topped, that does not lengthen the trunk of it; but it fends forth a multitude of buds, in each of which a little tree is comprized; for the bud or branch that fprings from it is a tree that is grafted on the trunk that nourifhes it.

Every feed in like manner comprizes a plant in miniature. On a very flight infpection, we may very eafily difcover the ftalk, leaves, and root of this little plant. But the curious rife much higher, and diftingüifh in a bulbous root or growing bud thofe flowers that do not blow till the enfuing year.

When the evolution commences in an organized whole, its form differs fo prodigioully from that which it will afterwards affume, that we fhould be apt to miffake it, were we not to accompany it in all its progrefs. Obferve how the parts of a plant are folded together, ent wined, and concentred in the feed or bud. Is this that majeftic tree which will e're long overfhadow a large fpace of ground? This the flower that will fo gracefully difplay itfelf? This the fruit that wid
affume fuch a regular figure? You can now only perceive an unformed mafs of knotted filaments; yet this little chaos may already contain in it a world, where all is organized and fymmetrical.

You have feen frogs in their firft ftate. They appear at that time to confift only of a large head and a long tail. Such is the chick when it begins to expand itfelf. A very flender tail ftretched in a ftrait line is joined to a large head; and the tail contains all the rudiments of the compofition; nay, is the very compofition itfelf; and the tranfparent fluid in which it floats, conflitutes the whole of thofe foft parts with which it is afterwards covered.

The fame revolutions therefore, which occafion the heart of the chick to be transformed from its femicircular fhape to that of a pyramid, bring the chick itfelf to a flate of perfection. If we were permitted to penetrate to the foundation of the mechanifm whereby thefe fuccelfive changes are effected, what a degree of certainty would our knowledge of animal øconomy acquire? We fhould contemplate in an egg the myfteries of the two kingdoms, And how greatly would our admiration of that adorable wisdom be increafed, which by the fimplen means ever attains the moft noble end?
9. Thus the more we afcend to the origin of organized teings, the more we are perfuaded of their having pre-exifted before their firft appearance; not fuch as they firft appear to us, but more difguifed; and were it poffible for us to trace them fill higher, we fhould undoubtedly find them ftill more difguifed, and fhould be at a lofs to conceive how they could afterwards acquire that form under which they prefent themfelves to our yiew.

We

We can then form no idea of the primitive fate of organized beings; that flate which I conceive to be given them by the hand of him who has ordained all things from the begimning.

The forms of vegetables and animals, which are fo elegantly varied, are, in the fyftem of this admirable pre-ordination, only the laft refults of that multitude of fucceffive revolutions, they have been liable to, and which perhaps commenced at their firft creation. How great would be our aftonifhment, could we penetrate into thefe depths and pry into the aby fs! We fhould there difcover a world very different from ours, whofe frange decorations would infinitely embarrafs us. The ftate, in which we conceive all organized bodies to have been at firft, is the germ ftate; and the germ contains in miniature all the parts of the future animal or vegetable. It does not then acquire organs which it had not before; but thofe organs which did not hitherto appear, begin now to be vifible. We do not know the utmoft limits of the divifion of matter; but we fee that it has been divided in a prodigious degree. From the elephant to the mite, from the globe of the fun to a globule of light, what an inconceivable multitude of intermediate degrees are there! This animalcule enjoys the light; it penetrates into its eye; it there traces the image of objects; how extremely minute muft this image be! And how much more minute muft that of a globule of light be, when feveral thoufands, and perhaps millions enter at the fame time into this eye! But great and fmall are nothing in themfelves, and have no reality but in our imagination. It is poffible, that all the germs of the fame were originally joined or linked into each other, and that they are only unfolded from generation to generation
generation, according to that progreffion which geometry endeavours to affign them.
10. A barren egg has a yolk as well as a fruitful egg. And a ray of light has lately fprung, which has greatly brightened the fhades in which the myftery of generation is yet involved.

Beffow your whole attention on this; you wilf then difcover an important truth. A membrane cloaths the infide of the yolk of an egg: and this membrane, which is only a continuation of that which cloaths the lender inteftine of the chick, is common to the ftomach, pharynx, mouth, fkir, and epidermis. Another membrane enfolds the yolk externally, and this membrane is only a cortinuation of that which covers the inteftine; it unites with the mefentery and peritoneum. The arteries and veins that gently move in the egg, derive their origin from the mefenteric arteries and veins of the embryo. The blood which circulates in the yolk receives the principal of its motion from the heart.

The yolk then is effentially a dependance of the inteftines of the embryo, and together with that compofes one and the fame organized whole. So that at its primary period, it is in fome meafure ans animal with two bodies; the head, trunk, and extremities, compofe one of thefe bodies; the inteftines and yolk the other. At the end of the incubation the fecond body connects with the firt, and both together form only one.

But fince the yolk exifts in eggs that have not been fecundated, it neceffarily follows that the germ exifted before fecundation. This confequence is felf-evident: you have lately feen that the yolk is an effential part of the chick: you have obferved the ftrict communication between
them
them. The chick then has never exifted without it. The membranes and veffels of the former are only a continuation of the membranes and veffels of the latter. And what a number of other thing are there which are common to both, and which prove that they have never exifted feparately! The chick then was entire in the egg before fecundation. It does not therefore owe its origin to the liquor furnifhed by the cock, but was fketched in miniature in the egg previous to, it. Confequently the germ belongs folely to the female. Such is the grand conclufion which immediately flows from facts.
11. The yolk has its liquors, which are conveyed to it by the arteries belonging to it. They circulate, and without veins there is no circulation. But the arteries and veins of the yolk take their origin from the mefenteric arteries and veins of the fuetus : the heart of this latter therefore is the principle of that circulation which is performed in the yolk. At the time of fecundation the foetus does not weigh the hundredth part of a grain. The yolk at that time weighs a dram. It has veffels proportioned to its fize, Now if the germ exiffed intire before fecundation, that which we ftile generation is not'the fame thing with it ; but is only the beginning of an evolution, which will by degrees bring to open day fuch parts as were before hid in impenetrable darknefs.

But the germ cannot be unfolded in an egg which has not been fecundated, and incubation would only accelerate its corruption. What does it then want to enable it to continue to grow? It has all the organs neceffary for evolution. It has even already attained to a certain degree of growth,
growth, for eggs grow in young pullets; their: ovaries contain them of all fizes. The germ gr. ws there likewife. Why cannot it enfold itfill more than it does? What fecret force retains it within the limits of invifibility?

Growth depends on the impulfion of the heart.A greater degree of growth, depends on a greater impulfion. This degree of impulfion, confequintly is wanting is the heart of the germ that has not been fecundated.

This demonfrates a certain refiftance in theparts of the germ. As it grows this refiffance augments in proportion. Some refift more thant others; the bony parts, or fuch as will hereafter. become fo, mere than the membranous, or thofe. that muft always remain fo.

The heart of the germ then hath need of a determinste ftrergth to furmount this refiffance. Its frength is in its irritability, or in the power it has of contracting itfelf on the touch of fome liquid. Wherefore to augment the irritability of the heart, is to augment its impulfive force.

Fecundation, without doubt, increafes this. force, and that can alone increafe it ; fince it is only by the intervention of it that the germ paffes. over the narrow limits that retaired it in its firle ftate.
12. The fecundating liquor then is a true fimulus, which being conveyed to the heart of the germ, excites it in a powerful manner, and communicates to it a new activity. Herein confifts. what we call conception. Mction being once impreffed on the little moving body, is there preferved folely by the energy of its admirable mechanifm.

(161)

But it is not fufficient that the heart fhould acquire a force fufficient to furmount the refiftance of Solids; it is likewife neceffary that the fluid which it conveys to them, and which thould nourifh them, be proportionable to the exceeding finenefs of the veffels. Such a blood as ours would not circulate in them. The blood of the embryo is at firft a whitilh liquor; it grows yellow by degrees, and afterwards red. The more the impulfion of the heart dilates the veffels, the more grols heterogeneous, and colouring particles they admit.

The prolific liquor then is not a mere ftimulus; but is likewife a nutritious fluid appropriated to the extreme delicacy of the germ. It has already difcharged the functions of a nutritious fluid in the fecundating individual; has caufed its comb, fpurs, \&c. to grow, and given flrength to all his parts.

Being conveyed by the arteries to all the parts, it unites itfelf to the nature of each. From thence proceeds growth, which we do not pay a fufficient attention to.

It is not long before the chick lofes the firft form. Wings, thighs, legs, and feet, fpring out from its long tail. Every thing is formed and difpofed on a new model. The little animal, which before was ftretched out in a tlrait line, becomes more and more curved. It is fucceffively cloathed with mufcles, tendous, flefh, and feathers, and in eighteen or twenty days is a perfect chick.
13. If the chick pre-exifted in the hen, it is probable the horfe pre-exifted in the mare. This would be more than probable, if it could be demonftrated
monflrated that the young of viviparous animals are enclofed in eggs; and that all the difference between viviparous and oviparous may be reduced to this, that the former are hatched in the belly of their mother, and the latter after their illuing from it.

On the two fides of viviparous females there is a body refembling a bunch of grapes, whofe berries are bladiers full of a limpid liquor. There are the ovaries. They communicate with the matrix by two canals which they call tubes. The prolific liquor penctrates into the matrix, and paffes through the tubes into the ovarie. Thus fecundation is performed. Foetus's have more than once been found in the ovaries itfelf. Nay more, there has been found in a veficle of the ovary a complete fætus k etched in miniat ure.

The velicles of the ovary are real eggs, which after fecundation defcend through the tubes into the matrix, and are there in fome meafure brooded on. In a fhort time they fend forth fmall roots, which convey the nourifhment to the embryo. The fupplenefs of their membranes admits of their extending, and making way for the growth of the little animal. It is truc, the groziing of eggs is not familiar to us; but the hiftory of infects furnifhes us with many examples of it. It even exhibits to us infects that are at one time viviparous, and another oviparous. The young were in that cafe at firft lodged in eggs; fometimes the mother lays her eggs; and at another brings forth living young ones, which were hatched from thefe eggs whilft they were yet in the matrix.

It is therefore the fame with refpect to the veficles of the ovary, as the eggs of the hen; a
germ
germ pre-exifts in them, but its tranfparency conceals it from us; fecundation renders it vifible.
14. But if an afs cover a mare, there will be produced from this commerce an animal that will not properly be a horfe, but a mule. Neverthelefs a horfe was delineated in miniature in the egg of a mare: how then was it transformed into a mule? Whence did it acquire thefe long ears and flender tail fo different from thofe of the horfe? Diffection encreafes the difficulty; that informs us that this kind of transformation does not only affect the exterior part of the animal, but the interior likewife. The voice of the mule is very like that of the afs, and does not at all refemble the neighing of a horfe. The organ of the afs's voice is an inftrument that is very much compounded. A drum of a fingular ftructure, lodged within the larynx, is the principal part of this inftrument. This drum does not exift in the horfe, but is found in the mule.

The liquor furnilhed by the male confequently penetrate the germ, fince it there produces fuch great changes. But thele relations of the prolific liquor to the male that furnifhes it, mult necelfarily depend on the organs that prepare it.

There are then in thefe organs veffels that feparate the molecules relative to different parts of the great whole. Thefe molecules are carried to the correfponding parts of the germ, fince thefe parts are modified by the action of the prolific liquor. Therefore it incorporates itfelf with the germ, and is the firft aliment of it, as I faid above.

The

The organs of generation in the afs have then a relation to his ears and larynx; for they prepare a liquor which modifies the ears and larynx of the little horfe inclofed in the egg. The prolific liquor creates nothing, but it may change what already exifts. It does not engender the chick, which exifted before fecundation.

Growth depends on nutrition ; the latter, on incorporation. At the fame time that a part grows, it requires folidity. An excefs of growth in a part, then, fuppofes a fuper-abundance of nutritious juices, or fuch as are more active. The exceflive growth which the ears of the horfe acquire by the influence of the liquor of the afs, indicates that this liquor contains more molecules appropriated to the unfolding of the ears than that of the horfe or that the molecules of the firft are more active than thofe of the fecond.

The extreme fofmefs, I fhould rather fay fluidity of the germ, renders every part of it extremely modifiable. Thofe changes which you cannot conceive in an adult, depend here on the flightef caufes.

But if the fecundating liquor modifies the germ, this latter in its turn, modifies the action of that liquor. By virtue of its organization, it tends to preferve its primitive ftate, refifts more or lefs every new arrangement, and never gives way without always retaining fomething of its primitive form.
15. Every organical production, which has more or lefs parts than the fpecies require, or conftructed otherwife, is a monfter. The mule, which doth not engender, is therefore a monfer.

The object of inquiry in a celebrated difpute was, whether certain monfters were fuch originally or by accident?

It is evident, that the mule is not a monfer from its origin. Monfters do not exhibit fo much conftancy and uniformity. Does an egg of which the mule is formed offer itfelf in the ovary of the mare juft at the inftant in which the ais fecundates it?

Two branches, fruits or leaves, graft themfelves accidentally, and afterwards compofe but one and the fame whole. Art performs other more extraordinary engraftings, in all of which there is nothing originally monftrous.

That which happens between two fruits that ingraft themfelves, or are ingrafied by force, may happen in the matrix between two eggs, or in an egg between two germs. Two fæetus's that are united only by the fpine, perfectly refemble two fruits that are grafted by contact. An egg fometimes contains two yolks; confequently it then contains two germs. How eafy a matter is it for them to ingraft themfelves together as they unfold? We have feen a chicken with four feet. which undoubtedly proceeded from a like union. The germs, which are firft fluid, and for a confiderable time gelatinous, are very penetrable. If they come in contact, they will mix together in part. Similar organs, which at leaft half penetrate each other, will fubfift in the other moiety. We fee clearly this reciprocal penetration in a human foetus having two heads on a fingle body. This monfter was evidently formed of two moieties of the fotus connected together.

If their gelatinous flate renders germs very penetrable, it favours with much greater reafon their union
union by grafting, or that of fome parts to each other, either of the fame germ or two or more germs. The graft is united to its fubject only by gelatinous or at leaft by herbaceous fibres. Such fibies are proper for forming new productions, and for connecting and intermingling together. Two polypus's unite together much more eafily than two rinds; they are abundantly fofter.
16. Accidental grafts may give birth to monfters which we fhould term inexplicable, by this principle. But you have not forgot, that all organical parts have forms and fituations in the germ which differ prodigioully from thofe they will have in the unfolded foetus. Recal to mind the chick in its firf form, its heart in that of a femicircle and you will comprehend that thofe conjunctions which appear impofflele to you in the foetus, may be eafily affected in the germ.

The analogy of parts likewife favours their union. This analogy refults from that of the elements. Two membranes are more difpofed to unite than a membrane and a bone; and fimilar parts of the fame organ, than parts of different organs.

Lafty, evolution is not uniform in all parts of the germ : they grow unequally, and this inequality of growth may influence the effects of contact, preflure, adhefion, \&c. Thus a monfter that is produced with fuperfluous members, may derive them from a germ that has perifhed, and of which only thefe members remained. We plainly fee how many caufes may deftroy fuch or fuch a part, and produce a monfter by defect.

But all monflers by exce/s might not owe their origin to the union of two germs. Certain parts may grow exceffively by the concurrence of particular circumftances, and augment the number of fimilar parts in the fame individual. A fubject with twenty-fix ribs is really a monfter by excefs. It has been proved, that fupernumary ribs are entirely owing to the unnatural developement of a bony appendage of the tranfverfe apopyfis of one of the vertebra. The caules which operate in the like unfoldings, act nearly as the liquor of the afs on the ears and larynx of the horfe.

As fupernumerary ribs unfold themfelves, fo two or three ribs unite themfelves into a fingle one, and thefe kind of cafes are not rare either in the vegetable or animal kingdom. Such parts as almoft touch each other, are very apt to unite: two drops of jelly, and of the fame jelly, unite very eafily.
17. The principles I have laid down concerning the generation of animals, are likewife applicable to that of plants. What the prolific liquor is to the former, the duft of the famina is to the latter. There is a wonderful analogy betwixt thefe two claffes of organized bodies. The feed, which fo nearly refembles the egg, does therefore in all probability contain a germ, which exifted in an invifible manner before fecundation, and which makes it fenfible to us. It appears firft of all like a greenifh or yellowifh fpeck. It has been thought that a grain of the ftamina duft has been parceived in this fpeck. The germs have on this account been placed in this duft, and introduced themfelves into the feeds, which were deftined to receive and nourifh them. But can we difcover the germ in the egg before fecundation
tion? Notwithftanding which it pre-exifts there. It is highly probable that it likewife pre-exifts in the feed, and that its minutenefs together with the tranfparency of its parts, conceals it from our fight Will a philofopher argue, that becaufe a thing is invifible to us, it does not therefore exif?
18. An exact obferver has taken a good method to clear up the myftery of the generation of plants. He confidered what has refulted from the fecundation of divers fpecies, by the duft of different fpecies. He hasfeenmules that have beenwell defrribed proceed from it. Thefe mules, when combined with other fpecies, have produced new ones. The refemblances have always been in a direct proportion to the $d u f$. The changes and alterations have always been fenfible. The female has had fome fuperiority. The priviledge of fecundity has adhered more exactly to what came from her, than to that which proceeded from the male. Do not thefe curious obfervations themfelves indicate, that in vegetables, as well as in animals, the germ originally belongs to the female?

CHAP.

C H A P. VIII.

 Of animal Oeconomy, confedered in Infects.'TH E fketch I have lately drawn of animal œconomy, affords a flight idea of what constitutes the effence of life in moft animals. We fhall now treat of the principal varieties which the organization of different fpecies prefent us with. Infects, hitherto little known, exhibit fome fingularities in this refpect, to which we Shall confine ourfelves by way of preference, in order to avoid fuch details as might carry us to too great a length.

We have already feen in fome meafure the diferent parts contained in the compofition of thefe little machines: we will now contemplate their exercife and various effects.
2. The mechanifm of re/piration is very oblcure in infects. We only know that in them it differs greatly from that in thofe animals which are moft known to us. But we judge with greater certainty concerning this difference by the comparifon of the organs, than by that of their exercife. When a drop of greafy liquor is applied to one or feveral ftigmata of an infect, the correfponding parts become paralytic. The interception of the air in one part is followed by that of liquors or fpirits. When we ftop up all the figmata, the infect dies immediately. If we afterwards open them, we Thall perceive the infide to revive. The air which

Vol.IV.
H
then
then penetrates the open orifices of the trachex, evidently produces this kind of refurrection.

The trachex or air-veffels are divided and fubdivided in a prodigious degree. May they not refemble fo many fieves, which by feparations fuitably contrived, are capable of furnifhing to each part an air of a more or lefs fubtle nature, as occafion requires. There are commonly reckoned to be nine fligmata on each fide of the body: but fometimes they are more in number, at others fewer. The fame infect has fome that are of greater or lefs importance to it, or whofe functions are more or lefs neceffary. In feveral fpecies, the principal figmata are placed behind: in others at the head. Inftead of fligmata, they are pretty frequently obferved to have little tubes of different lengths.
3. The circulation of the blood is performed in infects with great regularity. We trace it by our fight, in fome fpecies of long and tranfparent worms. We may fee the heart, or principal artery, contract and dilate itfelf fucceffively in every part of its extent. It feems to be compofed of a great number of little hearts, placed end to end, that tranfmit the blood to each other.
We are yet ignorant in what manner the blood is conveyed into the grand artery. Its principal ramifications, and the canals analogous to veins, are equally unknown. We are only certain, that in many feecies, for the moft part of the creeping fort, the principle of circulation is towards the hinder part, whereas in others it is towards the head. It is very probable that the grand artery fhoots forth, from both fides of it, feveral branches that are invifible by reafon of their extreme fine-
nefs or tranfparency, and that diftribute the blood to every part. Other branches are without doubt connetted with them, and conduct the refidue of the blood to the principal trunk of veins, which is imagined to be perceived on the oppofite fide of the heart. The blood of infets is a fubtle liquor tranfparent, commonly without colour, and though it be not in the leaft inflammable, refifts, in fome fpecies, a degree of cold fuperior to that of our fevereft winters.
4. The organs of generation, in mof infects, are placed at the extremity of the belly. That which characterifes the male, confifts principally of one or two fpecies of flefhy horns which are turned different ways, and are generally drawn within the body, but emitted from thence at the pleafure of the infect. The hind part of divers males is alfo furnifhed with hooks, by means of which they faften on that of the females. In the interior part are lodged different veffels, which are connected with the principal organ of generation, and feparate the fecundating liquor from the mafs of blood. At the end of the aperture formed in the female, there is joined a kind of canal, which, in many infects, fends forth feveral branches, called tubes or ovaries. Thefe are fpecies of very fine inteftines, in which the eggs are ranged in a row, alnooft like the beads of a chaplet.

The eggs neareft the aperture are the largeft, or in a more advanced ftate. They gradually diminifh according to their diftance. At length they become altogether invifible.

In the common paffage where the ovaries terminate, there is inferted, in fome fpecies, a very

Thort canal, which communicates with an oblong cavity, that is confidered as analogous to the matrix. In this cavity the liquor of the male is depofited.

Amongft viviparous animals the œconomy of the tubes changes. Sometimes the young are ranged in bunches. At others they form a kind of cord twifted fpirally, whofe length, width, and thicknefs exactly, correfpond in number to the length and thicknefs of the young that compofes it. The young of fome viviparous infects, before they are brought forth, tear the membrane or ovary that inclofes them: they are, to ufe the expreffion on this account fubject to a two-fold birth.

The eggs of infects are of two kinds: fome are membranous, like thofe of tortoifes and reptiles: others are cruftaceous, as are thofe of birds. But whereas in large animals the fpecies comprized under thefe genera differ only from each other by a flender variety, amongft infects thefe varieties are fo great, that one animal does not differ more from another, than one of their eggs does from another. Some of them are round, elliptical, lenticular, cylindrical, pyramidal, flat. Some are quite fmooth, others grooved or channelled. In fhort, what is more extraordinary, there are fome eggs that grow after they are laid. We eafily judge that they are entirely membranous. The fupplenefs of their membranes admits of their extenfion. They have pores that imbibe the juices of the plant where they are depofited. Thefe are minute plácentice that tranfmit the nourifh. ment to the embryo.
5. The diftinction of infects into viviparous' and oviparous does not only take place in fpecies of different claffes, but likewife in fpecies of the fame

(173)

fame germs. There are fome two-winged flies that are viviparous, and others that are ovipurous.

Add to this, that fome fpecies are viviparous at one time, and oviparous at another. The vine-fretter furnilhes an example of this.

All great animals that are known to us, are diftinguifhed into males and females, and propagate the feccies by copulation. The fame order prevails amongft infects; but all the fecies are not fubject to it, and, of thofe that are, feveral afford us fome very remarkable fingularities. In divers fpecies, the male is winged, and the female not. The glow-worm, which is fentenced to crawl during its whole life time, is fecundated by an infect having four wings.

Sometimes this friking fingularity is joined with others that are ftill more furprifing. Every where elfe we obferve a certain proportion betwixt the male and female; here this proportion vanifhes entirely. The female is a coloffus, on which the male walks as on a fpacious fpot. The ardor and agility of the malc are exceffive. He is almoft in continual motion. The female on the contrary, moves but feldom, and that heavily. She fometimes fpends the greatelt part of her life in the molt perfect inactivity. In fine, the male is an infect properly fo called, his whole body is interfected by incifions that are very confpicuous: the female is a fpherical mafs, fixed to a branch, that one would be apt to take for an excrefcence or gall nut of this branch. You will imagine that I am fpeaking of gall-infeits, whofe name fo well explains their deceitful appearances. They are found in great numbers on the branches of many trees and fhrubs. They are greatly diverfified; but always affect the form of gallnuts more or lefs round. They imbibe the juice
of the tree by the affiflance of a little pumps. which they keep fixed to the bark. They lay. fome thoufands of eggs, which are piled up under the mother's belly, as they iffue from it. When the whole number is laid, the gall-infect dies, and its carcafe remains. faftened to the branch. This is only a cod full of eggs, which one might ftill take for a living gall-infect, fo fmall an appearance of life is there in this ftrange animal. The young are hatched in a fhort time, when there immediately appears a multitude of very fmall animated membranes, either oval or circular, which are borne on fix legs, and difperfe themfelives on all fides with a wonderful celerity.
6. Several of the fpecies that live in fociety, prefent us with three forts of individuals; to wit, males, females, and neuters, or individuals that remain always deprived of fex. This we obferve. in the republics of bees, wa/ps, and ants. We know that each fwarm of bees has but one female, which bears the name of queen; the males which are cahled drones, pretty often amount to. four or five hundred; the neuters, which are much more numerous, are fometimes forty or fifty thoufand in number. Thefe are the ilotes, of the little fparta; they are charged with all the labour. The queen and drone are wholly taken up in furnifhing the fate with citizens. She is in. a literal fenfe the mother of all her people; fhe lays in one year upwards of fifty thoufand eggs. She produces three forts of them, from whence are hatched three kinds of individuals of different fhape. The neuters then confruct three forts of. cells, to receive the eggs, and lodge the young to be hatched from them.

Divers fpecies of infects are real hermaphrodites
dites: in each individual both fexes are united, but he cannot fecundate himfelf; and generation depends in this cafe as elfewhere, on the concurrence of two individuals.
7. Other infects are hermaphrodites of a more fingular nature; each individual propagates without any commerce with another. We have the firft example of this in the vine-fretter, that deferves fome attention.

You have very frequently feen little flies faftened in great number to the upper extremities and leaves of plants, and twift them round in various forms: thefe are vine-fretters, whofe fpecies are almoft as numerous as thofe of vegetables, and whofe remarkable properties are multiplied in proportion to the attention we pay them.

They bring forth living young ones. Their births are eafy to trace, there needs only good ejes and a little patience. Take up a little one as foon as it is produced: inclofe it immediately in the moft perfect folitude, and in order to be the better affured, carry your precautions to a degree of fcrupuloufnefs; be with refpect to it a more vigilant Argus than the fabulous one. When the little reclufe has acquired a certain growth, it will begin to have young, and after fome days you will find it in the midft of a numerous family.

Make the fame experiment on one of the individuals of this family that you have tried on its chief: the new hermit will multiply like its father, and this fecond generation brought up in folitude will not prove lefs fruitful than the firf.

Repeat the experiment from one generation to another ; abate nothing of your cares, your precautions, and fufpicions; proceed, if your patience will permit you, to the ninth generation, H_{4} and
and they will all prefent you with fecund virgins.
After thefe experiments, fo decifive and reiterated, you are eafily perfuaded that there is no diftinction of fex in vine-fretters. What indeed would be the ufe of fuch a difference amongft a people where all the individuals are conftantly fufficient for themfelves? Natural hifory is the beft logic, becaufe it beft teaches us to fufpend our judgment. Vine-fretters are really diftinguifhed by fexes; there are males and females amongft them, and their amours are the leaft equivocal of any in the world. I do not know whether there are in nature any males more amorous than they.

What then is the ufe of coupling between infeets that multiply without its affiftance? of what fervice can an actual diftinction of fex be to real Androgynes? The clearing up of this point depends on another great fingularity. During the fummer feafon they are viviparous; they all bring forth living young. Towards the middle of autumn they become oviparous; they all then lay real eggs, which are hatched at the return of the fpring. The males begin to appear exactly at the time the females begin to lay. There is therefore a fecret relation betwixt the appearance of the males, and the laying of the females. There are always found in the bodies of the females, eggs and young ready to be produced. The young then were originally inclofed in eggs. During the fine feafon, they are hatched in the belly of their mother, and are brought into the world alive. Plants at that time furnifh them with a proper nourifhment, which they fail not inflantly to imbibe by the help of a very flender trunk. At the approach of cold weather, the young cannot unfold themfelves in the dam's belly
belly, in order to their being produced alive : they remain fhut up in their eggs, where they are preferved the whole winter. Were they to be hatched at the beginning of that feafon, they would foon perifh for want of food. The developement depends ultimately on nutrition. Vinefretters that are produced alive, are more unfolded in the matrix than thofe which are brought forth inclofed in eggs. The former then have received a nourifhment in the matrix, which the others were not able to obtain there. This nourifhment was fufficient to effectuate the entire opening of the germs. Had not coupiing, then, for its primary end, the fupplying the defect of this nourifhment in fuch germs as were not to behatched till after they had iffued from the belly of their mother?

I have treated of fome fpecies of infects, the males of which are winged, and the females. not. This fingularity is alfo to be met with amongft Vine-fretters: but they offer fill more to us with xefpect to this. Some of the males are winged, and others remain their whole life-time without wings. There are likewife winged females, and other females that are not. But this is not all: the males, and particularly thofe that are deftitute of wings, are fo fmall in comparifon of the feinales, that they are feen to walk upon them as a mite upon fruit; to fo great a degree has nature thought fit to abound, with regard to thefeinfects, in fingularities of different kinds.
8. Animals that multiply by fips and /hoots, and that may be grafted, appear to be real zoophytes. or plant-animals.
Of thefe fome have feet or members, others not. We will firf treat of the latter fort.

The fime which covers the bottom of ponds and marfhes, may almoft be deemed a refpectable thing: there the great Being has not difdained to affemble the traces of his power and wifdom. He has connected the exiftence of this vile matter with that of different fpecies of worms. that are deftined to live in and feed upon it, and that will one time or other prefent us with the interefling fight of a new re-production, which we fhall never think we can fufficiently admire, and fhall therefore wonder at it in proportion as our underfanding is enlightened.
All thefe worms are long and flender. They are not unlike the treble fring of a violin: their body is formed of the fucceffion of a great number of little rings, which decreafe gradually as they approach the extremities. They are very foft; their head, which terminates in a blunt point, is fufceptible of various motions. It contracts, dilates, lengthens, and fhortens itfelf at the pleafure of the infect. The mouth is furnifhed with a mufcle that direCts the functions of it, and whofe exercife is pretty perceivable. The anus, which is placed at the oppofite extremity, is a little oblong aperture, bordered with an analogous mufcte. The whole fkin is fo tranfparent, as to admit of its being infpected within, and we may congratulate ourfelves on this circumfance, fince it affords us a great fpectacle. The polypus exhibits nothing that has the appearance of vifcera. All its fubftance feems to be compofed of a mafs of fmall fimilar feeds. Our fiddle-ftrings are minute beings, quite differently organized, and the apparatus of the vifcera, which the microfcope difcovers to us, feems to advance them far above the polypus. A long veffel that goes winding from the head

179)

head to the tail, is what chielly frikes the eye of the obferver. By its regular alternate motions, he will foon know it to be the heart, or grand artery. The liquor that circulates in thefe winding palfages is limpid. It is perceived from the pulfations it excites in every part of the artery comprized betwixt two of the rings. One would be apt to imagine each of thefe portions to be a real heart, and that every artery was a chain of little hearts, placed end to end, and that forced the blood from one part to another. It is feen to run with an unia form motion through all thefe little hearts, and rifes in this manner as by fo many bladders from the tail to the head, near which it finally difappears. In different parts of the arteryare difcovered delicate ramifications of veffels, which may be taken for veins, there being perceived no pulfation in them. Beneath and along the artery there is a canal, whofe diameter varies at different points of its extent. It is the intefinal duct, which comprehends the æfophagus, ftomach, and inteftines. The aliment is there feen to digeft before the eyes of the obferver : he follows it in its paffage: fees it defcend from the mouth towards theanus, and pals through every part of the canal between thefe two extremities. But can machines fo compounded as thefe be taken to pieces without injuring their œeconomy. thereby?

That fuffers not in any refpect on that account. Strictly fpeaking it affects thefe infects no more than being divided in the midft of the body. Each half not only continues to live and move; but. that which had no head prefenily forms another, and we may clearly perceive a new tail fpring forth in that part which was deftitute of one. In. lefs than three days the two moieties become two complete worms.

It is more extraordinary for fourths, eighths, and fixteenth parts of our worms to affume a head and tail : this is fo fpeedily effected, that in a few days all thefe fragments are fo many perfect infects, and after a few weeks attain to the fame length as the intire worm. New rings and new vifcera unfold themfelves, the parties re-produced differ in no refpect from the antient ones. Thus the machine is formed anew by its own ftrength ; and the fection, which might be a means of deftroying them, ferves only to make them confpicuous.

I have not yet fufficiently treated of this particular. The fix and twentieth part of worms, to wit, perfect atoms, are able to re-integrate themfelves extremely well, and in the fpace of fome months are found to be worms of feveral inches in length. In thefe living atoms, as well as in the moft confiderable fragments, the circulation feems to be performed with the fame regularity as in the whole worm. Each atom has its little heart, and we may clearly perceive that this little heart is no other than a very fmall portion of the grand artery of the worm, whereof the atom was before a part.

We may weary ourfelves in cutting the head off the fame individual; we fhall have the fame tafk to repeat continually, becaufe there always fhoots forth a new one. We may even caufe feveral to iffue at the fame time, each of which fhall have their proper functions.

There is another fpecies of thefe worms, amongft which the property of becoming again entire is confined in very remarkable bounds. It forms a head or tail in the middle; but if it be cut into three or four parts, the intermediate
ones pufh forth a tail where a head fhould have been produced. This fuperumerary tail, which is in no repect deficient, cannot perform the office of a head, and the unhappy infect is condemned to perifh with hunger.
9. Look into this rivulet, whofe bottom is covered with broken pieces of plants: what do you perceive upon them? Spots of mouldinefs; do not miftake : this mouldinefs is not what it appears to be: and you already begin to fufpect fo: you think that you greatly ennoble them by advancing them to the rank of vegetables: you conjecture they are plants in miniature, that have their flowers and feeds, and plume yourfelf on being able to judge of thefe mouldineffes in a different manner from the vulgar. Take a magnifying glafs : what do you difcoser? Some very pretty nofegays, all the flowers of which are in bells. Each bell is fupported by a fmall falk, which is implanted in a common one; you now no longer doubt of the truth of your conjecture, and cannot be perfwaded to quit this microfcopic parterre. You have not however fufficiently obferved it. Look ftedfaftly on the aperture of one of thefe bells: you will there perceive a very rapid motion, which you cannot be weary of contemplating, and which you compare to that of a mill. This motion excites little currants in the water, that convey towards the bell a multitude of corpufcles, which it fwallows up. You begin to doubt whether thefe bells are real flowers; and the motions of the ftalks, which appear to be fpontaneous, increafe your fufpicions. Continue your obfervations: nature herfelf will teach you what you ought to think of this fingular production, and will furnifh you with trelh
frefh motives for admiring the fecundity of her ways. That is a bell which detaches itfelf from the clufter, and that floats along in order to fix itfel to fome fupport. Follow it. A fhort pedicle iffues from its extremity: and the beil faftens itfelf by the end of this pedicle. It lengthens and becomes a little flalk. It is no longer a nofegay your are beholding, 'tis a fingle flower. Redouble your attention ; you are juft arrived at the moft interefting moment of infpection. The flower is clofed, has loft its form of a bell, and affumed that of a bud. You perhaps fufpect that this bud is fome fruit, or a feed that has fucceeded to the flower: for you are loth to give up your firf conjeture. Do not lofe fight of this bud; it is now divided by degrees according to its length, and the ftalk is at prefent fupplied with two buds, lefs than the firft. Examine what paffes in both of them. They widen themfelves infenfibly, and you perceive a motion at the edge of the opening, which increafes in fwiftnefs in proportion as the bud unfolds itfelf. The mill appears again, and the two buds have affumed the form of a bell. Can a fruit, which changes into flowers, be a real fruit? Can fuch flowers be real flowers? that fwallow little infects? Sufpend your obfervations, and repeat them a few hours hence. Your flowersare clofed up as the firft was ; you eafily guefs that they will feparate themfelves as before, afterwards open, and prefent you with four bells. That is already effected, and you have a little nofegay, compofed of four flowers. If you continue your infpection, you will fee them augment in bulk by new divifions into two's, and foon after you will count fixteen, thirtytwo, fixty-four flowers. Such is the origin of this microfcopical parterre, which at firt drew your
attention : how much more admirable does it now appear than you then conceived it to be! Whata group of wonders does a fingle fpot of mouldinefs afford! What unforefeen, varied, and interefling fcenes, are tranlacted on a fcrap of rotten wood! What a theatre does it exhibit to a thinking being! But our abode is fo reclufe, that we have but a glimmering view of it; how great would our ravifhment be, if the whole fpectacle difclofing itfelf at once to us, we fhould be enabled to penetrate into the interior ftructure of this wonderful affemblage of living atoms! Our blunted eyes difcover only the moft ftriking parts of them; they only apprehend the grofs parts of the decorations, whilft the machines that execute them remain concealed in impenetrable darknefs! Who fhall enlighten this profound obfcurity? Who fhall dive into this abyfs where reafon itfelf is loft ? Who draw from thence the treafures of wifdom and knowledge concealed within it? Let us learn to be content with the fmall portion communicated to us, and contemplate with gratitude thofe firft traces of human underftanding imparted to us, towards a world placed at fuch a great diftance from us.
10. You cannot quit this fpring, from whence you have derived fo many truths, that are, fo aftonifhing. You difcover in it other microfcopical animals, whofe form refembles that of a funnel. Thefe are likewife polypus's. They do not compofe a clufter; but cleave to fome body by their inferior extremity; you are curious to know their method of multiplying. In order to this, place your microfcope on one of thefe funnels. Of a fingle funnel, there are formed two by a natural divifion; but very different from that of bell poly-

(- 184)

pus's ; fo far has nature thought fit to vary her proceedings with refpect to thele animals. Examine what paffes in the middle of the funnel. A tranf. verfe and oblique ftripe indicates to you the part where the polypus is about to divide itfelf. The divifion then is made flopingly. The fripe points out the edges of the new funnel, and thefe are only the lips of the frefh polypus. You difcover in them a pretty flow motion, which helps you todifcernthem. They approach each other infenfibly, the body colleets itfelf by degrees; a little fwelling forms itfelf on the fide, which is a new head. You already clearly diftinguifh two polypus's. placed above each other. The upper polypus has the former head and a new tail; the inferior one a new head and the former tail. The upper polypus is connected with the other only by its lower extremity. By a motion it gives itfelf, it is at laft detached from the other; and floats: away in order to fix elfewhere. The inferior polypus remains faftened to the place where the funnel was before the divifion.
11. Net polypus's likewife derive their namefrom the exterior form of their bodies; they pretty nearly refemble that of a fifhing-net. They affemble in groups, and faften on all the bodies they meet with in frefh water. They are very tranfparent. In the infide of the polypus there is. formed an oblong and whitifh body. As foon as it is formed, it defcends by degrecs, fhews. itfelf on the outfide, and remains fixed perpendicularly on the polypus. It produces new ones every day; and the group they compofe on the exterior part of the polypus, increafes in growth. If thefe minute bodies be eggs, they are of a fingulax
lar fpecies, they are abfolutely without any covering, and are neither membraneous or cruflaceons. We cannot affirm of thefe eggs, that young are hatched from them, but are under a neceflity of acknowledging, that thefe little oviform bodies unfold themfelves. This developement is accomplifhed in a few minutes, and the poly pus becomes the fame as its mother: imagine to yourfelf a bird that fhould iffue from its mother's belly, intirely naked, rolled together like a ball, whofe members fhould afterwards difplay themíelves, and you will have a reprefentation of the production of net polypus's.
12. Clufter-polypus's propagate by dividing in the middle ; arm-polypus's do not multiply in this manner. They bring forth their young almoft as a tree fhoots forth its branches. A little bud appears on the fide of the polypus. Do not fuppofe that this bud contains a polypus, as the vegetable bud comprizes a branch : it is itfelf the polypus in its growth. It increafes in fize and length, and at laft feparates from its mother. Whilft it is united to her, they both compole one body, as the branch with the tree. You are to underftand this in the ftricteft fenfe. The prey which the mother fwallows, pafles immediately into her young, and imparts the fame colour to it. So that the whole confifts of one little bowel in a great extent. The prey which the young one féizes (for it fifhes for it as foon as it has arms) paffes in like manner into the mother. They nourifh each other reciprocally.

There is fcarcely any polypus without buds. All of them therefore are fo many polypus's, or fo many fhoots that grow on a common trunk.

Whila

Whilf they are unfolding, they themfelves fend forth fmaller fhoots, and thefe fmaller ftill. They all extend their arms on both fides. You think you are beholding a very bufhy tree. The nourifhment received by one of thefe fhoots, is foon communicated to all the reft, and to their common motber; the chief of the fociety and the members are one. The fociety is diffolved by little and little, tie members feparate themfelves, are difperfed, and each fhoot becomes in its turn a little genealogical tree.

Such is the natural method by which the armpolypus multiplies. It may alfo be multiplied by flips. There is no need to mention, that when it is cut in pieces, each piece in a fhort time becomes a perfect polypus. It were better to fav at once, that the polypus, after being cut into fmall pieces, rifes again from its ruins, and the little fragments yield as many polypus's. Being cụt either in length or width, this extraordinary animal is re-produced in the fame manner, and the fources of life are equally inexhauftible.
13. But the following is what fable itfelf has not prefumed to invent: bring to their trunk the heads that have been ftruck off, they will re-unite to it, and you will reftore to the polypus its head. You may alfo, if you think proper affix to it the head of another polypus. The mutilated parts of the fame or different polypus's, when placed end to end, will unite in like manner, and form only a fingle polypus.

What have I hitherto faid? There is fcarce any miracle that may not be performed by means of the polypus; but miracles, when multiplied to fo great a degree, hardly appear to" be fuch. A polypus
polypus may be introduced by its hind part into the body of another polypus. The two individuals unite, their heads become ingrafted into each other; and the polypus, which at firft was double is converted into a fingle polypus, that eats, grows and multiplies.

I have compared the polypus to the finger of a glove: this finger may be turned infide out: fo may the polypus likewife, and being fo /hifted, can fifh, fwallow, and multiply by llips and fhoots.

It will be eafily believed that the polypus does not like to remain thus fhifted. It make an effort to regain its former pofition, and frequently fucceeds either in part, or altogether. The polypus, which is partly turned back again as at firt is a real Proteus, that affumes all kinds of forms, which are all equally frange. Endeavour to reprefent to yourfelf the polypus thus turned again. You remember that the infect is made in the form of a bowel. One part of the bowel then is turned backwards on the other; it there faftens and engrafts itfelf. In that cafe the polypus is as it were' doubled. The mouth encompaffes the body like a fringed girdle; the arms are the fringe. They then point towards the tail. The fore-part continues open; the other is ufually fhut up. You expect no doubt to fee a new head and new arms to grow out of the fore-part; which you have obferved in all the polypus's that have been divided tranfverfely. But the polypus combines itfelf a thoufand different ways, and each combination has its confequences, which experience alone can difcover to you. The fore-part clofes itfelf; it becomes a fupernumerary tail. The polypus, which was at firlt extended in the right line, is
curved more and more. The fupernumerary tail lengthens every day. The two tails refemble the feet of a pair of compaffes. The compaffes are partly open. The ancient mouth is at the head of the compaffes. This mouth, which is faftened to the body, and embraces it like a ring, cannot difcharge it functions. What then muft become of the unfortunate polypus with two tails and without a head? How will it be able to live? Do you think that you have taken nature at unawares? You are miftaken. Towards the upper part of the polypus, near the ancient lip, there are forming not only a fingle mouth, but feveral; and this polypus, concerning which you inquired a minute ago how it couid exift, is now a fpecies of hydra with feveral heads and mouths, and devours with all thefe mouths.
14. What a multitude of phyfiological truths, that were unknown to us in the vegetable kingdom, has the arm-polypus alone unveiled to us? How do thefe truths appear as paradoxes, and yet how evidently are they demonflated? Who can doubt now that there exfts an animal, a very animal, fince it is extremety voracious, whole young grows like branches, and which being cut to-pieces and actually minced, regenerates a new in all its parts, and even in the fmalleft fragments, that may be grafted by approximation or inoculation, turned infide outwards like a glove, afterwards cut, turned back and cut again, without ceafing, to live, devour, grow, and multiply.

It was not a fit feafon therefore to make general rules, to arrange nature, eflablifh diffributions, form fyftematical orders, and to raife an edifice, which future ages, better inflructed, will even dread to project. We have fcarce any knowledge
of the animal, when we would undertake to define it. Becaufe our knowledge is at prefent in fome meafure improved, fhall we prefume to think we thoroughly know it? Polypus's have aftonifhed us, becaufe on their firf appearance there was noidea in our brain analogous to them, and we had taken great pains to difcard from it the very poffibility of their exiftence. How many animals are there that are even more frange than polypus's and that would confound all our reafonings, could we difcover them? It would be neceffary on that occafion to invent a new language, in order to defcribe our obfervations. Polypus's are placed on the frontiers of another univerfe, that will one time or other have its Columbus's and Vesputius's. Shall we imagine that we have penetrated into the interior parts of the continents, becaufe we have taken a flight view of fome coafts at a diftance? We will form to ourfelves more exalted ideas of nature; we will confider her as one immenfe whole, and will firmly perfuade ourfelves that what we difcover of her is but the fmalleft part of what fhe contains. Having been heretofore aftonifhed, we will forbear being fo for the time to come,but will continue our obfervations; we will amafs frefh truths, connect them if we are able, and be in expectation of every difcovery, becaufe we will continually fay, that the known cannot ferve as a model for the unknown, and that models have been varied ad infinitum. Clufter polypus's multiply by dividing themfelves; who can tell but that there may one time or other be difcovered animals, that inftead of dividing themfelves, may unite together, and join themfelves to one another, in order to compofe one fingle animal? Or who knows whether the multiplication of fuch an animal may not have as an effential condition,
the confolidation of feveral animalcules in a fingle one ? We fay that an animal muft have a brain, an heart, arteries, veins, nerves, a flomach, \&c. Thefe are the ideas we have deduced from large animals, and we carry them every where with confidence. We act herein like a French traveller, who fhould expect to find in the Terra Auftrales the modes of his own country, and that would be greatly chagrined on being difappointed. The animal kingdom has alfo its Terra Auftrales, in which probably it is not cuftomary to meet with a brain, an heart, a flomach, \&c. Why do we defire that nature fhould always condefcend to form one animal with the elements of another? She might indeed be conftrained fo to do, did not herfecundity furpals that of our poor conceptions? But the hand, which has formed the polypus, has demonfrated to us, that IT can, when neceffity requires, animalize matter at a much lefs expence. It has defcended by almoft infenfible degrees from thofe great organized maffes we call quadrupeds, to thofe minute organized bodies we itile infect; and by gradual and fkilfully contrived fubtractions, it has at length reduced animality to her fmalleft terms. We are unacquainted with thefe fmalleft terms. The polypus, fimple as it appears to be, is without doubt very much compounded, in comparifon of fuch animals as are placed beneath it in the fcale. It is, if we may be allowed the expreffion, too much an animal, to be the laft term of animality. We know that the brain is the principle of the nerves, that it filtres the fpirits; that the nerves are the organ of feeling; that the heart is the primum mobile of circulation; that the veins and arteries are the dependancies, all this we have feen in great animals, we have again to our lurprize found it in infects: though
though under different forms: we were thus accuftomed to regard thefe various organs, and fume others, as effential to the animal. The polypus, however, exhibits to us nothing fimilar; the beft mi. crofcopes only difcover to us an infinite number of fmall diffeminated feeds in its whole fubftance: and the unforefeen experiment of its fhifting, fufficiently proves that there is nothing in its ftructure common to that of animals before known to us. Were we not capable of imagining, that an animal had been endued with the property of being propagated and grafted like a plant, it would have been much lefs poffible for us to fufpect that there had been granted to it the power of being turned infide out like a glove. The arm-polypus, is neverthelefs a perfeet animal ; its voracity is exceffive; it devours all the little infects that happen to touch it, and feizes them with fuch fkill, as feems to give it anaffinity to hunting animals. The clufer polypus quite differently conftructed, has not the fame advantages, but has relative ones: it can excite a rapid motion in the water, which brings towards it thofe living corpufcles it feeds upon. There are undoubtedly many animals that are fill much more difguifed than the clufter-polypus, and by not affording us any exterior fign of animality, leave us for a long time uncertain of their true nature. When a bulb of fuch a polypus is detached from it, and fixes it by its fhort pedicle to any fupport, fhould we be apt to confider it as an animal production: has not the gall-infect been taken for a real vegetable gall-nut by fuch obfervers has had not feen it in its primitive flate? Is not the pond mufcle deficient in many things we judge to be neceffary for the animal? How many thell-fifh are ftill farther degraded? Nay more, there may probably exift fome
fome animals, which it would be impoffible for us to acknowledge as fuch, even though their whole ftructure, as well internal as external, fhould be laid open to us; the reafon is, that judging only according to our prefent notions, we cannot deduce from this ftructure the opinion of life.
15. I cannot yet quit this fubject. We are not able to conceive all the methods by which the aUTHOR of nature has given life and fenfation to a prodigious number of different beings. Let us judge of them at leaft by a comparifon of a fmall number of animated beings we are acquainted with. How greatly does life differ in the ape and the bell-polypus? What intermediate degrees are there betwixt thefe two terms? Perhaps there are ftill more from this polypus to the laft of animals. I do not examine if fouls have been varied like bodies; but I conceive that organized matter has been modified infinite ways, to which have correfponded as many different methods of participating life and fenfation. I likewife conceive that the fame foul, if placed fucceffively in all the organized bodies that exif, would fucceffively experience all the poffible modifications of life and fenfibility. This foul would pafs through all the degrees of animality; and if the could remember them all, and compare them, fhe would equal the fuperior intelligences in knowledge. She would contemplate our world through all thofeglaffes that have been given to the various beings that in. habit it.
16. Let us draw a general confequence from all this: that analogy, which is one of the great lights of phyfics, is not capable of diffipating the fhades of it. This light is frequently extinguifhed on
the
the approach of certain bodies which we bring to the touch of experiment. To what purpore does analogy ferve in the examination of the bulb-polypus? We cannot even define thefe bulbs; and does the name we give them exprefs any thing more than mere appearances? How can analogy enlighten us concerning the nature of thefe minute - bodies, and the manner by which they are engendered and ingender, whilt the offers nothing to us either in the vegetable or animal kingdom, which bears the leaft relation to thefe productions, fo different from all thofe that were known to us? I affirm as much with regard to the natural divifion of the bells, and of the Jhiftingof the arm-polypus's. This is an intire new order of things, which has its particular laws, which we fhould in all probability be able to difcover, could we find fome means of penetrating into the fecret mechanifm of thefe little beings. We fhould then difcern all the fides by which they are connected with other parts of the organical world.
17. When we confider in a general view the compofition of men and quadrupeds, we fhall prefently difcern that there is with refpect to all of them the fame foundation of ftructure, differently modified in different fpecies. In order to be convinced of this, we need only caft our eyes on thofe anatomical plates, in which are reprefented the fkeletons of divers animals that have been diffected. From man, the ape, and horfe, to the rquirrel, weafel, and moufe, we fhall fee throughout, the fame defign, the fame arra'gement, the fame elfential relations, except in a few particulars. The fpine, which is formed of a leries of parts jointed to each other as by fo many hinges, bears to its upper extremity a fort of bony box, Vol. IV.
of greater or lefs extent. Some bony arches, which on one fide are connected with the fpine, and on the other with a part oppofite to it, form another more fpacious box. The upper and lower extremities are joined likewife to the fpine by different interpofed bands, and maintain the body in thofe various attitudes its exigencies require. This œconomy is fo generally obferved, that it has even been remarked that the vertebre of the neck are feven in number in all the fpecies. Almoft the fame order is to be met with in birds and filhes. It varies more and more in reptiles, fhellfifh, and infects. The latter however have their bones, feveral parts of which feem to imitate the correfponding ones in great animals; but whereas among the latter the flefh covers the bones; on the contrary, among infects the bone covers the flefh. In this numerous clafs of little animals, nature has in an efpecial manner diverfified her models the moft, and difplayed the wonderful fecundity of her inventions. In the large parts of the animal kingdom fhe pretty nearly purfues the fame plan of architecture, and hardly diverfifies any thing but the orders. In one we behold the ftrength and majefty of the $T u f-$ can; in others the elegance and delicacy of the Corinthian. But when the defcends to infects, fhe feems intirely to change her plan, and to retain as little as poffible of her firft models. She feems at lergth to abandon them altogether in her formation of an arm or bell-polypus. She confructs plants on fill different models; but thefe models retain in them fomething of the organization of animals, and particularly that of infects. The organs of refpiration are almoft the fame in the plant and infect. Thofe parts which are effential
effential to life are difperfed throughont the whole body of the plant, as they are in infects, that are reproduced by llips. Thofe plants which appear to be moft elevated in the fcale, exhibit to us a ltalk, branches, roots, leaves', flowers, and fruit. A fwine-bread, an agaric, a liverwort, on the contrary, are fo extremely difguifed, and have in them fo fmall a refemblance to plants, that it is neceffary to have the eye of a ftritt obferver, in order to know and characterize them. Thefe half vegetable productions, if I may be aliowed the phrafe, feem, in the vegetable kingdom to be what the gall-infect, polypus, and the mufcles are in the animal. They do not appear to be more organized than an amianthus, a talc, or a cryflal.
18. The diftance however is much greater from the moft regular foffil, or that moft refembling a vegetable, to the plant in the leaft degree fo, or that is the leaft organized. The foffil does, not grow, properly fpeaking ; it does not receive nourifhment, nor engender. It is formed of the fucceffive appofition of different molecules, which by uniting together under certain relations, determine its figure. The plant is a body truly organized, which of itfelf works the molecules, deftined ed to incorporate themfelves with its fubflance, and to extend it every way, and contains little bodies refembling it, which it nourifhes, caules to expand themfelves, and by means of which it multiplies its being. Nature then feems to make a great chafm in paffing from the vegetable to the foffil. \&c. There are no bands, no links hitherto known to us, which unite the vegetable to the mineral kingdom. But fhall we form our judgement of the chain of beings by our prefent degrees
of knowledge? Becaufe we here and there difcover in it fome interruptions, fome void fpaces, fhall we conclude from thence that they are real? Shall we imagine that a comet has fplit the fcale of our world, and deftroyed the harmony of it? We are only beginning to furvey the vaft cabinets of nature; and amongft that innumerable multitude of various productions which fhe has affembled, how many are there which we have not fo much as feen, and can frame no idea of their exiftence? Shall we haften to decide concerning the refult of thefe productions before we have examined them all, or formed an exact lift of them? The vacancy we fuppofe left betwixt the vegetable and mineral, will in all probability be one day fupplied. There was a fimilar void betwixt the animaland vegetable: the polypus now fills it up and fets in a confpicuous light the admirable gradation there is among all beings. It is true we can't form any mean idea betwixt the plant and the foffll ; we do not imagine there is any fhadowing between growth and appofition: but had we formed any conception of the properties of the polypus? If thofe marine productions, which have been called fony plants, were real plants, they were in fome meafure one of the links requifite for uniting the vegetable to the mineral kingdom. But late difcoveries have informed us, that thefe pretended plants are only works of certain polypus's, that have the art of confructing cafes for themfelves. Thofe coral flowers, fo much celebrated, -were real polypus's, and this is another truth wherewith the polypus has enriched the phyfical world.
19. Organized bodies are tiffues which are more or lefs fine pieces of net-work, or pieces of ftuff, whofe
whofe warp itfelf forms the woof, by an art which we fhould think we could never enough admire, were we acquainted with it. Foffils are a kind of inlaid work. We do not know where the organization ends, nor which is its fmallef term. But by ceafing to organize, nature does not ceafe to difpofe and arrange. She even feems to organize when the has made an end of doing fo. One would be ready to imagine that fibrous and leaved ftones were vegetables in part difguifed. The conftant regularity of falts and chrytals frikes us in an equal degree. We may be alfured, that the cryftal is formed of the repetition of an infinite number of fmall, regular and pyramidal bodies, properly laid on each other, which reprefent, in fome meafure, the whole exactly in miniature. We fhould, notwithftanding, be very much miftaken, were we to confider thefe little pyramids as the germ of the cryftal; it is ftrictly fpeaking no more than an element or conftituent particle of it. It does not unfold itfelf, it remains as'it was; but it ferves as a fupport to other fimilar pyramids which are to be joined to it, and thus to augment the cryftaline mafs by fucceffive aggregates. The cryftaline juice is not received, wrought, and alfimilated by ftrainers or veffels that are more or lefs fine, or more or lefs folded together, within the pyramid; it is already intirely prepared when it procures the union of different molecules into one pyramidal mafs, by virtue of the laws of motion and attraction. This is the primary character which diftinguifhes brute from organized bodies; a character which we ought never to lofe fight of, when we compare together beings of thefe two claffes.
20. Thus the bodies of plants and animals are fpecies of looms, machines more or lefs compound-
ed, which convert into the proper fubflance of the plant or animal the various matters fubjected to the action of their fprings and liquors. Thefe machines, which are fo fuperior in ftructure to thofe of art, feem ftill more fo when compared in their effential effects. Thofe matters which organical machines work, they likewife affimilate and incorporate with themfelves; they grow by this incorforation, augment in their dimenfions every way, and during their growth, all their parts preferve among themfelves the fame relations, the fame proportions, the fame exercife; all continue to difcharge their proper functions; the machine remains in its extended fate, what it was in miniature. It is a fyftem, a wonderful alfemblage of an almoft infinite number of tubes, differently formed, calibered, and interwoven, that like fo many filtres, purge, fafhion, and refine the nutritious matters. Each fibre, what am I laying? Each fibrilla is in itfelf a machine in miniature, which by performing analogous preparations, appropriates to itfelf the alimentary juices, and gives them the arrangement fuitable to its form and their functions. The whole machine is in forme meafure only the repetition of all thefe leffer machines, whofe united ftrength confpires to the fame general end. The excellence of organical machines appears in a confpicuous light from other fill more friking inftances. They not only produce, from their own foundation, machines fimilar to them, but a great number of them reproduce of themlelves thofe parts they had been deprived of, which various parts become afterwards as many machines, equally perfect with thofe whereof they before made only a part.
21. To

(199)

21. To conclude: the fame general defign comprizes all parts of the terreftrial creation. A globule of light, a molecule of earth, a grain of falt, a particle of mouldinefs, a polypus, a fhellfifh, a bird, and a quadruped, man, are only different ftrokes of this defign; and reprefent all polfible modifications of the matter of our globe. My expreffion falls greatly beneath reality: thefe various productions are not different ftrokes of the fame defigns; they are only fo many vaious points of a fingle ftroke, that by its infinitely varied circumvolutions, traces out the aftonifhed eyes of the cherubim, the forms, proportions, and concatenation of all earthly beings. This fingle ftroke delineates all worlds, the cherub himfelf is a point of it; and that adorable hand which drew this froke, alone poffeffes the method of defcribing it.

CHAP.

(200)

C H A P. IX.

Continuation of Animal Oeconomy confdered in
In feets.

1. N the feventh chapter you have feen the earth-worm regencrate; you have contemplated the progrefs of this regeneration; you have remarked a little bud that grew at the fore-part of the ftump, which unfolding itfelf by degrees, became a vermiform appendage, a kind of little worm, that feemed to be ingrafted on the ftump.

This animal bud has difcovered to you the firft arigin of the part that is re-produced. You have perceived that it was lodged in miniature under the flefhy parts of the fump, and that the latter does not contribute more towards this production than the earth does to the plants that have taken root in it.

Thus the earth-worm contains, like the polypus, a multitude of germs, which begin to unfold themfelves as foon as certain accidents convey towards them the nutritious juices. The fources of reparation are here in proportion to the accidents that may threaten the animal. But the re-production of the earth-worm is much more aftonifhing than that of the polypus. It is not only an enormous coloffus in comparifon of the polypus, but its fructure is alfo much more compounded. It affords a more numerous appa ratus of vifcera, veffels, trachea
chex, mufcles, \&c. It has real blood, and this: blood circulates. But it is befides an hermaphrodite; it unites at once all the organs peculiar to the two fexes. This infe ℓ, which in appearance is the moft contemptible, would aione be fulficient to exhauft the fagacity of the ableft obferver, though applying himfelf folely to the contemplation of it. What a gainer would phyfiology be from fuch an enquiry,? What a number of truths, concerning which we fhould have no doubt, would then augment the treafures of our phyfical knowledge?
2. The regeneration of frefh water worms prefents us with the fame phænomena as that of the earth-worm, and their flructure is likewife very much compounded, Several fpecies of them are principalty diftinguifhed by their colour. All of them do not poffefs in the fame degree the property of multiplying by Jlips. In general, the polypus greatly furpaffes them in this refpect; perhaps, becaufe its fructure is more fimple; and it may alfo be owing to its having a more ample provifion of germs. Be that as it may, when we cut off the head or tail from the worms we are treating of, they do not themfelves become worms; but all or the greateft part of the intermiediate picces, how fmall foever they be, very. eafily regenerate themfelves, and in a fhort time produce an equal number of compleat worms.

Regeneration begins by a little puffing up of the anterior extremity: this puffing feems analogous to the vegetable roll. The wound clofes and quickly, confolidates. A little bud appears in the center of the roll. This bud increafes in

(202)

in fize and length by degrees. New rings and new vifcera begin to appear. You fee from the reft what is to follow.

You alfo very eafily comprehend after what manner each piece vegetates of itfelf. It has in miniature the fame vifcera as the whole exhibited at large. You have not forgot that the parts effential to life are here difperfed throughout the whole body, and that circulation is performed in the fmalleft pieces as in the whole worm.

Little buds or tubercles fometimes rife on the bodies of thefe worms, and give room to think that they are young ones growing from them, Лlips refembling thofe of the polypus, having the fame origin and end.

This fpecies of worm, from certain pieces of which a tail fhoots forth in the part where a head fhould have been produced, affords a very fingular phænomenon, which the frequency of it does not permit us to confider as the mere effect of chance. It alfo proceeds lefs from chance than the production of this fupernumerary tail. It is too well organized not to bave the fame origin as that which fhoots forth at the pofterior extremity. But we cannot pretend to fay what are the caufes which here determine a tail to take the place of a head. We only know, that this kind of worm is very much expofed to the lofs of its. hind part : it is therefore in all probability furnifhed with more means for repairing this lofs, than that of the fore-part.
3. It would feem as if nature had propofed to herfelf a kind of diverfion in the formation of infects. She hạs lavihly beftowed on them members and organs, which fhe has diftributed but fparingly

Pparingly to other animals; to one the gives two hundred legs; to another twenty thoufand eyes; to a third feveral hundred lungs, \&c. The production of new legs, new rings, a new head, and new vifcera, feem in thefe inflances to be attended with no greater labour or difficulty than the production of new hairs or new feathers.

She often likewife difguifes the fame infect, and prefents it to us fucceffively under fuch oppofite forms, that they feem to compofe fo many diftinct beings. This leads us to the metamol phofis of infects.
4. We have had frequent occafion to acknowledge, that the proceedings of nature are not always uniform, and that fhe can accomplifh the fame end by very different ways. Look at this little oblong, black, fmooth, and fhining cone. It moft refembles thofe cones which many infects conftruct to metamorphofe themfelves in. However, it differs from them in fome effential particulars. . View it through a microfcope; you will then perceive in it fome amnular incifions, but not very deep, which difcover to you its true nature, and at the fame time informs you, that it is nothing butt the fkin of a worm, which is become round, and has contracted a hardnels. Open it gently with the point of a needle, you find nothing in it but a kind of pap, in which you are able to difcover nothing. The infect has but lately loft its form of a worm; how has it been reduced into that foft fubftance? How will that become an infeet? Sufpend your queftions, and open a cone that is lefs recent than this. What do you difcover in it? A little mals of oblong whitifh flefh, in which
you cannot perceive, even through a magnifying: glafs, the leaft fign of members or organs. In a word you have before you an oblong ball. Do not imagine that this ball is a cafe that contains anymph : it is itfelf a nymph that is much difguifed. Prefs the ball a litte: the legs begin now to fhow themfelves: they come out of a little focket, that is at one of the extremities of the ball. Augment the preffure by degrees; you will force all the parts of the nymph to appear. They thereforeexift already; but they were funk and infolded: within the ball, almoft as the fingers of a glove might be in the hand of the glove.

If you could make the fame experiment on the oviform bodies of net-polypus's, and on the buds. of arm-polypus's, that you have lately made on the oblong ball, you would probably oblige thelittle polypus to produce itfelf, and by that meano accelerate the time of its birth.
5. Infects that pafs through the ftate of an oblong: ball can therefore form themfelves a cone of their own fkin. All the parts of the nymph feparatethemfelves by little and little from this fkin . It grows round and hard about them; and under this fingular arch they make an end of perfecting themfelves. They are at firf only of the confiftence of a pap. This thickens by degrees It affumes the form of an oblong ball; and when all the members of the nymph have acquired a certain confiftence, they iffue one after another from the infide of the ball; and arrange themfelves like thofe of other nymphs.

By becoming a kind of cone, the fkin of the infect does not lofe in all the fpecies, the form that was proper to the worm; fome of them prefeave

(205)

ferve it fo well, that the metamorphofed worm fcarcely differs at all from the worm that has not been yet transformed.
6. A hen that Ghould lay an egg as large as herfelf, from which a cock or a hen would be hatched, may offer to us fuch a prodigy, as we fhould find fome difficalty in believing. A fly that is troublefome to horfes, and whofe form has caufed it. to be named the /pider-fly, affords us fuch a prodigy; and it fhould not feem the lefs Arange, becaufe it takes place only in an infect. Were there a law in the organical kingdom, towhich we knew no exception, it would afluredly be that which ordamed every organized body to grow after its birth. Neverthelefs, here is a fly that lays a fpecies of egg, from which is produced another fly as Farge and as perfect as the mother. This egg is almoft round, white at firft, and afterwards of a black or ebony colour. The thelf is firm and polifhed-but I muft undeceive my reader : this is not a real egg, but has only the appearance of one ; it is the infect itfelf that has affumed the form of an oblong ball, in a cone made of its own fkin. The thing is not the lefs wonderful on that account. All infects that metamorphofe themfelves go through their various transformations, out of the belly of their mother. They are indeed to grow confiderably hefore they undergo their firft transformation, but do not grow at all alterwards. We have then an infect that transforms itfelf in the very belly of its mother, and acquires no farther growth after it has iflued from it.

Thefe cones of the fpider fly, thefe pretended cggs bave been opened at different times; and ins them.

(206)

them have been found the fame things that are difcerned in the oblong ball-nymphs, when obferved at their different ages. Moreover, there have been difcerned figmata in this fpecies of cone that might be taken for a real egg, which is an evident proof that it was the fkin of a worm that has transformed itfelf under this very fkin. An egg is without motion : our cone has fome that are very vifible, and in certain circumflances the infide admits of their being feen, which attracts the attention of the obferver. He feems to difcern little clouds that fucceed each other without interruption, and that pafs with a progreflive and uniform motion, from one end of the cone to the oppofite one. In the cones that are laid before the time, thefe fhadowy layers have a contrary direction from that which they have in the cones at the full time. You have feen that the circulation varies its courfe in the nymph: fince our fhadowy layers change their's likewife, they pretty clearly indicate to us, that the abortive cone is the worm itfelf, that has not yet gone through its metamorphofis. This worm is in truth a very fingular being; it has neither head, mouth, nor any member: it is in appearance nourifhed like the eggs of birds, in the trunks that inclofe them. A nice diffection demonftrates the ovary of the fly, and the worm lodged in the middle.
7. When animals were divided into viviparous and oviparous, it was thought that all the fpecies were comprehended. The vine fretter came firf to clafh with this famous divifion, and convinced us that an animal was at the fame time viviparous an oviparous. The arm-polypus next appeared, and
and prefented us with an animal, that multiplying by flips, might with good reafon be called ramiparous. There have even been obfervations made which feem to prove that it is likewife oviparous. Another fpecies of polypus, that multiplies alfo by flips, and is extremely well characterifed by a fort of plume, lays real eggs. Thefe eggs may be preferved in a dry place for the face of whole months, like the feed of filk-worms; and if afterwards fown in water, there will be produced from them as many polypus's. The bulb-polypus may be depicted by the epithet of bulbiparous. Bat how fhall we defcribe the multiplication of other clufter-polypus's, that of the net-polypus's, and of the millipes? Lafly, the /pider-fly prefents us with another method of multiplying, in which there is nothing that is common with any of thofe abovementioned, and which is attempted to be expreffed by the term nymphiparous. How many other methods of propagating will there be difcovered every day for which it will be neceffary to create new terms!
8. One animal does not differ more from another than a worm from a nymph. And what renders this metamorphofis fill more furprifing is, that it feems to be performed inftantaneoully.

What then is the procedure of nature in this refpect? She in other inflances advances by degrees. An infenfible developement brings all organized bodies to a flate of perfection. Can this law, which is fo univerfal, fuffer any exception? A fact which I am going to relate will help us to penetrate this myftery.

Let us confine ourfelves to caterpillars; they are fufficiently known to us, fince the filk-worm
is a real caterpillar. The catterpillar from time to time changes his flin, and that is common to him and mof other infects. Thefe moultings. are termed maladies in the filk-worm, and they are fo in effect. But it is very material to obferve, that the Ikin which the caterpillar cafts off at each moulting is fo complete, that it feems to be of itfelf a real caterpillar. There is found in it a head, eyes, a mouth, jaws, legs, armed with hooks fligmata, and generally all the external parts proper to the infect.

How is the caterpillar enabled to diveft itfelf of fo many organs, and cloath itfelf with new ones refembling the firft? Nothing can be more fimple than this: new organs were lodged in the old ones, as in fo many cafes or heaths. In changing its fkin, the catterpillar had occafion only to draw them away, and drew them away accordingly, becaufe the cafes proved too frait.

This jointing is fo real, that it may be perceived by the naked eve. It may even be demonftrated by a very eafy experiment. If on the approach of the moulting, we cut off theformer legs of the caterpillar, fhe will iffue from her fpoils without any legs at all. Thus this caterpillar, which we confidered as a fimple and fingular being, was in fome mèafure, a multiplied being, or compofed of feveral fimilar beings jointed into each other, and that fucceflively unfold. themfelves.
9. Hence arifes a very propable conjecture: may not the chryjalis be lodged under the laft fkin the caterpillar is to caft off? May not this: fkin be a mafk that conceals it from our fight?

A celebrated obferver has, by a decifive expe-
riment, affured himfelf of the truth of this conjecEture. He has removed the malk, and has by this means difcovered the chryfalisina manner very ealy to be diftinguifhed. He has feen the fix legs of this chrylalis to grow out of the fix former legs of the caterpillar, and all the other members of the latter to be wrapped together under different parts of the former.

The metamorphofes of infects, then, enter anew into the order of developements, and confirm it. The chry/alis, or rather the butterfly, for it is in the frictefl fenfe but a fwaddled butterfly; the chryfalis, I fay, pre-exifted in the caterpillar. It does no more than unfold itfelf in it, and the caterpillar is a kind of machine prepared for performing afar off this developement. It is in fome refpects, to the chryfalis, what the egg is to the chick.
10. In truth an infect that muft moult five times before it is invefted with the form of a chryfalis, is a compound of five organized bodies, inclofed within each other, and nourifhed by common vifcera, placed in the center.

As the bud of a tree is to the invifible buds it enclofes, fo is the exterior part of the caterpillar newly hatched to the interior bodies it conceals in its bofom. Four of thefe bodies have the fame effential fructure, and this fructure is that which is peculiar to the infect in the flate of a caterpillar. The fifth body, which is very different, is that of the chryfalis. The refpective flate'of thefe bodies is in proportion to their diftance from the center of the animal. Thofe that are fartheft off have more confiftence, or unfold themfelves fooneft.

When the exterior body has attained its fult growth, the interior, which immediately follows,
is confiderably unfolded. It foon finds itfelf lodged in too narrow a compafs. It flretches on all fides the fheaths that encompafs it. The veffels which convey the nourifhment to thefe coverings being broken or flifled by, this violent diftention, ceafe to act. The fkin wrinkles and dries up. At length it opens, and the infect appears cloathed with a new fkin and new organs.

A faft of a day or two precedes each moulting. It is probably occafioned by the violent flate in which all the organs then are. Perhaps it might be alfo neceffary in order to promote the fuccefs of the operation, and prevent obftrūCtions. Be this as it may, the infect is weak after every moulting. All its organs are yet affected by the flate they were in under the covering they are juft difengaged from. The fcaly parts, as the head and legs are almoft entirely membranous, and are all imbued with a liquor that infinuates itfelf betwixt the two fkins, and facilitates their feparation. But this moifture evaporates by degrees: all the parts acquire a confiftence, and the infect is in a condition to act. The firlt ufe that fome fpecies of caterpillars, which live only on leaves, make of their new teeth, is to devour greedily their fpoils: fometimes they will not even wait for doing it, till their jaws have received their full degree of ftrength. Can thefe fpoils be a proper aliment to renew and increafe their frength ? Some caterpillars have likewife been feen to gnaw the fhells of their eggs after they have iffued from them, and even that of the eggs of fuch caterpillars as have not been hatched.
11. When we have once conceived that all the exterior parts of the fame kind are jointed into each other.
other, or laid one on another, the production of new organs has nothing embarraffing in it; and with regard to this, there is not any effential difference betwixt the five moultings that precede the transformation. Nothing more is requifite in all that, but a fimple developement.

But it is not abfolutely the fame with refpeet to changes that happen in the vifcera before, during and after the metamorphofis. Here the light that fhould guide us is almoft extinguifhed, and we are conftrained to grope in the dark.

It does not appear that the infect changes its vifcera as it does its fkin. Thofe which exifted in the caterpillar, exift likewife in the chryfalis; but they are modified, and it is the nature of thefe modifications, and the manner by which they are performed, which elude our refearches.

A little before the metamorphofis, the caterpillar rejects the membrane that lines the infide of the inteftinal bag. This bowel which has hitherto digefted grofs food, muft hereafter digeft that which is extremely delicate. The blood that circulates in the caterpillar, from the hind part towards the head, circulates a contrary way after tranfformation. If this inverfion be as real as obfervations indicate, what idea does it not give us of the changes the infide of the animal experiences? Thofe which the circulation of the blood in a newborn infant undergo, are in a manner nothing in comparifon of them.
12. Whilft nature is labouring to change the vifcera, and to give them a new life, the is employed at the fame time in the developement of divers organs, which were ufelefs to the infect while it lived under the form of a caterpillar, and which
which the new flate whereunto it is called renders necelfary for it. The better to infure the fuccefs of her different operations, fhe caufes the infect to fall into a deep fleep, during which fhe carries on her work at leifure and by infenfible degiees.

The little wounds which the rupture of feveral veffels has occafioned in divers parts of the infide, confolidate infenfibly. Thofe parts which had been put into a violent exercife, or whofe forms and proportions had been modified to a certain degree, conform themelves gradually to the $\int \mathrm{e}$ changes. The liquors which are obliged to pafs through new channels, take that direttion by little and little. Lafly, the veffels which were proper to the caterpillar, fome of which occupied a confiderable place within it, are effaced or converted into a liquid fediment, which the butterfly rejects after having laid afide the fheath of the chryfalis.
13. When we confider the metamorphofes of infects, we are furprifed at the fingularity of the means which the AUTHOR of nature has thought proper to make choice of, in order to bring the different fpecies of animals to perfection.

Wherefore is the butterfly not bred a butterfly? Why does it pafs through the flate of a caterpillar, and that of a chryfalis? Why do not all the infects that metamorphofe themfelves underyo the fame c anges? Whence does it happen, that amongft the fpecies that affume the form of a nymph, fome fhed the fkin of the worm, whilft others retain it? How does it alfo come to pafs that among fuch infects as pafs through the flate of the wormאin nymph, fome take that form in the very belly of their mother?

Thefe queftions, like all thofe which may be flarted concerning effences, derive their folution
from the general fyftem which is unknown to us,
Without endeavouring then to penetrate into the caufe of metamorphofes, let us obferve attentively the fact, and its immediate confequences.

Let is confider the variety which thofe metamorphofes difperfe throughout nature. A fingle individual unites within itfelf two or three different fpecies. The fame infect fucceffively inhabits two or three worlds: and how great is the diverlity of its̀ operations in thefe various abodes!

Let us alfo remark to what degree the relations which the fly or butterfly maintains with the beings that furround them, are multiplied by their metamorphofes. Let us fix our attention on the cone of the filk-worm; and admire what a number of hands and machines this little ball fets to work. What prodigious riches fhould we have been deprived of, had the butter-fly of the filk-worm been originally produced in that form!

Infects that undergo transformations, have not yet afforded us any fpecies that multiplies by fips and /hoots. This will not furprize us, when we reflect on the great compofition of the bodies of thefe infects. But let us not be too hafty in our judgment, nor conclude that the property of multiplying by flips and fhoots is incompatible with metamorphofes. Nature is too little known to us, to give us a right to form fuch conclufions. Vine-fretters and polypus's have furnifhed us with. good prefervatives againft too general conclufions.

CHAP.

C $\mathrm{H} A \mathrm{P} \quad \mathrm{X}$.

Parallel between Plants and Animals.

'IN our refearches into the gradual progreffion of beings and organical œconomy, we had frequent occafion to compare vegetables and animals with each other. Let us here collect in one view thofe various marks of analogy which are fcattered hither and thither: let us reprefent them as in a picture, wherein by a nearer defcription of them, they will agreeably attract our attention. We wilf afterwards enquire if there be any charatter which effentially diftinguifhes the vegetable from the animal.
2. A Jeed is an organized body, which under various coverings, thicker or thinner, and more or lefs numerous, contains within it a plant in miniature. A whitifh fubftance, of a fpongy nature, fills the capacity of the feed. Small veffels which proceed from the germ, are in every part of this fubftance, dividing and fubdividing it. After being laid in the earth, moiftened and warmed to a certain degree, the feed begins to fhoot up. The moifture, which has penetrated its outward folds, diffolves the fpungy fubflance, and mixes with it. Of this mixture is formed a kind of milk, which being carried to the embryo by the little veffels, furnifhes it with a nourifhment adapted to ins extreme delicacy. The radicle or little root begins by this means to unfold itfelf. It increafes in bulk and extent every day. In a fhort time it becomes fenfible

Fenfible of too clofe a confinement: it makes an effort to come forth. A fmall orifice, made inr the exterior furface of the feed, facilitates its egref. The root infenfibly finks into the earth, and derives from thence more fubflantial and copious nourifhment. The fmall falk, which till this time lay hid under the coverings of the feed, now begins to thew itfelf. The teguments unfold themfelves in order to admit a free palfage for it. Strengthened by an acceffion of frefh juices, it pierces through the earth, and advances into the air.
3. An egg is an organized body, which under divers teguments, of various frength and number, inclofes an animal in miniature. A fluid matter of a glutinous nature, fills the infide of the egg. A number of infinitely fmall veffels fpread themfelves out in this matter, and are connected with the germ by different branches. Being warmed in a fufficient degree, either by nature, or art, the infide of the egg begins to receive life. By means of a gentle heat, the matter furrounding the germ infinuates itfelf into the fmall ramifications, from whence it paffes into the heart, whofe motion it augments. Thus the animal becomes a living creature. It increafes in fize and frength every day, by receiving frefh fupplies of more nourifhing and perfect juices. After thefe juices are exhaufted, the animal has acquired all the growth it was capable of in the egg. It finds the apartment affigned it to be too narrow. It endeavours to fet itfelf at liberty. Nature has provided it with an eafy method of effecting this, either by arming it with inftruments proper for piercing

(216)

or tearing the coverings which inclofe it, or by giving to the egg fuch a fructure as favours its efforts. The animal is produced, and enjoys a new life.
4. The feed then is to the plant what the egg is, to the animal. But the plant is not only oviparous but likewife viviparous; and the fatus is the fame with refpeet to the animal, as the bud is to the vegetable.

Being concealed under the rind, the bud there receives its firft growth. It is minutely ihclofed in membranous teguments, analogous to thofe of the feed. It adheres to the bark by fmall fibres, which cranfmit a nourifhment to it, adapted to its fate. When it has arrived to a certain bulk, it penetrates the rind in order to come forth. At its firft appearance, it bears the infolding coverings along with it, from which it is foon releafed. However, being as yet too feeble to fubfift with out the aliment provided by the mother, it continues to cleave to her; and cannot for a long time be feparated, without endangering it.

Being lodged in the matrix, the fatus there receives its firft growth. It is there contained at firft in miniature, in the membranous inclofures refembling thofe of the egs. It fhoots forth fmall veffels in the matrix, which convey thither the nourifhment neceflary to promote its growth. When it has arrived to a certain fize, it burfts thefe inclofures, and comes into the world. Sometimes thefe inclofures accompany it at its iffuing forth. After it is produced, the little animal is not always able to provide for itfelf without the affiftance of the dam. She mult ftill furnifh it

[217]

with fultenance, which it cannot difpenfe with: the want of, for a certain time witheut danger.
5. The plant is nourifhed by the izcorporation of fubftances received from without: thefe matters are very heterogeneous, Being pumped by the pores of the roots, or by thofe of the leazes, they are conveyed into , the utricali, where they ferment and digeft. They pals into the ligneous fibres, which tranfmit thein to the proper vales, where they appear under the form of a juice, which is more or lefs coloured. The ramifications of the proper vafes afterwards diftribute them into all the parts, to which they are united by new filtrations.

Tubes made of a filvered thade, which are elaftic, and turned fpirally like a fpring, acconpany the veffels which contain the fap in their couffe. Being appointed for the purpofe of refpiration, thefe tubes introduce a frelh elaflic air into the plant, which prepares and fubtilizes the fap, and probably colours it, befides contributing to its motion: the fuperfluous matter, or that part which is not fo proper to be mixed with the plant, is conveyed to the furface of the leaves, wherce it evaporates by an infenfible but very copious tran/piration. Globules, eveficles, or other excretory organs, which are diftributed among the young hoots or leaves, procure an evacuation of the groffer matter, and fuch as is of a ftronger confiftence.

The animal is nourifhed by the incorporation of matter which proceeds from without. This matter is very heterogeneous. Being received by Vol.IV.
the mouth, it is conveyed into the fomach and inteflines, where it undergoesdifferent preparations: it paffes into the latteal veins, and their dependencies, or into other like veffels, whereby it is tranfmitted into the blood-veffels, where it appears under the form of a fluid more or lefs coloured, or flowing. The ramifications of the blood-veffels afterwards difperfe it into all parts, with which it incorporates itfelf by new preparations.

Pipes compofed of cartilaginous rings, or of a filvered and elaftic blade, turned fpiral-wife, communicate with the blood-weffels, or follow them in their courfe. As they are appropriated to re/piration, they introduce into the animal a frefh and elaftic air, which prepares attenuates, and probably colours the blood, contributing likewife to its motion. The fuperfluous matter, or fuch part of it as is improper to be united with the animal, is carried to the furface of the $/ k i n$. from whence it evaporates by an infenfible but very copious tran/piration. Glands, or other emunctory organs, placed in different parts of the body, procure the evacuation of the groffer matter.
6. The plant grows by unfolding, or the gradual extenfion of its parts in length and width. This extenfion is followed by a certain degree of hardnefs contracted by the fibres. It diminifhes as the hardnefs increales. It intirely ceafes when the fibres are fo far hardened as not to yield to the force which tends to enlarge their furface.

The plants which become hardened the latef, are thofe which are the longeft time in growing. Herbs grow and harden fafter than trees. Some of them ceafe to grow at the end of a few weeks, or even a few days. Among the laft, fome continue to grow for a great number of years, and eyen for ages.

We obferve ana'og ous differences between individuals of the fame tpecies. Some harden fooner, grow in a lefs degree, or continue fmaller ; others harden later, and become larger.

The bud has nothing ligneous or woody in it. Being herbaceous in every part of its fubftance, it becomes ligneous by degrees. Its flalk is formed of a prodigious number of concentric blades one in another, which are difpofed according to its length, and compofe different bundles of fibres, which are themlelves formed of a prodigious number of leffer fibres.

At the center of the flalk is placed the pith; and the fpaces which are left between the blades, are likewife filled with a pithy fubftance.
From the thicknefs of the blades refults its growth in width; from the lengthenins of the blades its growth in length proceeds. All the blades grow and harden one after another. Every blade grows and hardens alike fucceffively throughout its whole Jength. That part of every blade which grows and hardens firft of all, is that which compores the bafe of the flalk. The blade which grows and hardens firft, is the innermoft, or that whick immediately encompaffes the pith. This blade is again covered with another, which, being more ductile extends itfelf the more. A third blade inclofes this laft, which as it hardens ftill later, is a longer time in its growth The cafe is the fame with regard to a fourth fifth, or fixth. All thefe thus diminithing in thicknefs, and inclining to. wards the axis of the ftalk as they approach its upper extremity, form fo many little cones ingrafted into each other, from whence proceeds the conic figure of the flalk and branches.

From the affemblage of linte cones which become hardened during the firt year, is formed a cone of a woody nature, which determines the growth of that year. This cone is inclofed in anather herbaceous cone, which is only the sind, and which the following year will produce a fecond ligneous cone, \mathcal{E}^{3} c. When the wood is once formed, it does not extend itfelf any farther. So that in cicatrices, grafis, and different kinds of tumaurs, the rind is the only part that is employed. By fretching, thickening, or fwelling ufeif, the rind infenfibiy forms a roll, and produces excrefcences which are more or lefs confiderable, in proportion to the eafe with which it is diftended, or according to the quantity of juices it receives.
7. The animal grows by expanfion, or by the gradual extenfion of its parts in every fenfe. To this extenfion there fucceeds a hardnefs in the fibres. The extenfion diminifhes as the hardnefs increafes. It ceafes when the bardnefs has arrived to fuch a pitch, as not to admit of the fibres, giving way to the force which contributes to enlarge their coats.

Thofe animals, in which this hardnefs is formsd lateft, are longelt in their growth. Infects grow and harden in a much lefs time than great animals. Some of them ceafe growing at the end of fome weeks, and fometimes in a few days. Of the latter fome continue growing for a great number of years, and even fome ages,

One may obferve analogous differences in the growth of individuals of the fame fpecies : fome of which, that barden later than others, acquire a greater bulk.

The

The fatus, in its original fate, contains nothing of a bony nature. As it is membranous throughout, it only becomes bony by degrees. The bones are compofed of a prodigious number of blades, folded in each other: lying, according to the length of the bone, and forming various collections of fibres, which are themfelves compofed of the re-union of a great number of little fibres.

In the centre of the bone is placed the inarroa. The fpaces left between the blades are filled with a medullary /ubftance.

From the thickening of the blades the growth of the bone procedes. From the lengthening of them, their extending in length. All thefe blades grow and harden after one another. Each blade grows and becomes hard in a tike fucceffive manner throughout its whole length. That part of the blade which grows and hardens firft, compofes the body of the bone. Which immediately inclofes the. marrow. This blade is again covered with a fecond, which being more ductile Atretches itfelf. in a greater degree. A third blade again infolds this, which as it hardens later than the others, is a: longer time in its growth. It is the fame with refpeet to a fourth, fifth, or fixth. As-they all thus diminifh in thicknefs, and detach themfelves from the axis of the bone, the nearer they approach to its extremities, they form fo many litle columns infolded within each other, which encreafe in diameter at their extremities. From hence we deduce the figure peculiar to long hones.

The growth of the bone during the firft year, is attributed to the number of blades which become hardened in that year. This bone is covered over again with a great number of membranous

(222)

Hades, that bear the name of periofecum, which as they gradually extend and harden, conduce to the increafe of the bone in every part of it. The bone when it is once formed, extends itfelf no farther.

Thus in fraclures, anchylafes, and the different fpecies of excrefcences, whether natural or accidental, the periofeum is the only part of the bone that labours. By Atretching, thickening, and fwelling itfelf, the periofteum reftores the bone infenfibly, produces a calofity, and forms greater or lefs tumours, in proportion to the facility wherewith it extends iffelf, or as it is more or lefs fupplied with juices, or with fuch as are more or lefs vifcous.
8. The duf or fine powder of the famina, is. the principle which fertilizes the feed. The piftil is the place where this fecundation is performed.
Being contained in certain veficles, the fecundating duft is difcovered in them by a microfcope, under the appearance of a groupe of minute regular bodies, for the moft part of a fpherical or eliptic form, which being moiftened, open themfelves, and emit a thin vapour, in which there floats a great number of exceeding fmall feeds, which feem to move on all fides. The duft itfelf, when put into a drop of water, moves feveral ways with great rapidity.

The piftil is compoled of three principal parts; the bafe, the cups, and the top. The ba/e contains one or more cavities, where the grain is lodged. The cups are long tunnels, whofe bafe or aperture is turned towards the top. Tbis is generally furnifhed with feveral nipples, each of which is perforated ${ }_{3}$
ted, having their diameter correlponding with that of a fmall grain of the duft.

Being in the lower part of the cup, the minite grains are preffed in them more and more by the It raitnefs of thefe pipes. They are therein moiftened with a juice that lines their fides. They open themfelves, and eject the feminal vapour, which penetrates to the jeed, and promotes lecundation.

Several feecies of plants have two forts of individuals; viz. 1. Such individuals as only bear famina, and thefe are males; and two individuals that have only the pifil, which are females.

In a great number of feecies, every individual is an hermaphrodite, which unites both fexes, the flamina and the pifil. Sometimes this union happens in the fame flower; then the flamina furround the piftil, At other times it is only effected on the fame branch; fo that the famina are placed on one part, and the piftil on another.
9. The feminal liquor is the principal of fecundation in the egg. The matrix or ovaries are the places where it is performed.

Being inclofed in the feminal vefels, the fecundating liquor appears in them, through a microcope, like a mafs of fmall regular bodies, of different lengths which feem to feparate themfelves into a great number of extremely minute grains, moving different ways. Sometimes thele corpufcles refemble cafes with fprings, which when moiftened, open themfelves, and dart forth a limpid matter abounding with a great number of very fmall grains.

The matrix confifts of three principal parts, or dependencies; the fundus or botom, the fallopian tubes and the ovaries. The fundus contains one or more cavities, in which the embryos receive nourifhn:ent, and expand themfélves: if has an orifice in the fore-part. The fallopian tubes are a kind of long funnels, whofe aperture is directed towards the ovaries, where it eands. The ovaries are a mafs of veficles that are real eggs

When the mofl fubtle part of the feminal liquor has arrived through the fallopian tutes to the ovaries, it there fecundates cone or more eggs. Thefe afterwards defcend by thele tubes into the matrix, where they are fixed and unfold themfelves. In oviparous females the eggs are contained in a kind of bowel, wherein they receive their growth: the feminal liquor makes them fruitful.

Moft animals confif of two forts of individuals; male and female. But there are other fpecics, of which every individual is an hermaphrodite, which unites the two, although it cannot fecundate itfelf. In fome fpecies, where a diftinction of fexes is obferved, there is no coupling, properly fo called; the male only communicates his liquor to the eggs which the female bas depofited. Finally, fome fpecies are propagated without any apparent or external fecundation.
10. A plant does not only multiply by feeds and buds; it is likewife propagated by fuckers and jprigs. It say alfo be multiplied by flips, and by engrafting,

A tree

225)

A tree fends forth finall buds from raricns pate of its furface. Thefe buds increafe in bulk; thev open and difclofe the hoot, which extends itfelf every day. While it is expanding itfelf other ath fmaller fprigs fhoot from it. Thefe in their turn are fucceeded by leffer ones; all of which are fomany trees in mimiature; and the nourithment received by one of thefe fprigs is communicated to the whole plant.

When it has attained to a certain fize, and is feparated from the trunk either by nature or otherwife, thefe fhoots fuftain themfelves, and become fo many difinct trees. Being cut into pieces according to their width, or even their length. thefe fhoots will grow again of themfelves, and will become as many trees as they were made flips of. The leaves themfelves when feparated from their thoots, may afford fo many complete plants. Being faftened clofely to each other, or inferted in one another, feveral of thefe thoots, whether taken from the fame or from diffesent individuals, will unite together in fo intimate a manner, that they will receive reciprocal nourifhment, and form one individual whole.

The animal is not only propagated by eeggs and living young, but likewife by fhoots, It may alfo be multiplied by fips and ingrafiings. A potypus fends forth little buds from different parts of his body. Thefe buds grow big and lengthem infenfibly. Every one of them is a young hoot. While it is unfolding itfelf, there fprings from it other fmaller thoots. Thefe in their turn produce fmatier flill. All thefe fhoots are fo many little polypufes, and the nourifment one of
thefe polypufes receives; is communicated to their whole number. When they have arrived to a certain fize, they feparate themfelves from the trunk, and become fo many individuals.

Being cut inte little bits, either tranfiverfely or length-wife, the polypufes grow up again from the ruins, and become as many complete ones as they were pieces. The very fkin, or even the lealt fragment of them, is capable of affording, one or feveral polypufes.
11. The generation of vegetables is not conftantly regular. The laws by which they operate are fometimes infringed. From them arife various fpecies of monflers. Sometimes there are com: pounded leaves, whofe fmaller ones are more or lefs numerous, or more irregularly fhaped, or diftributed with lefs fymmetry than ufual. Sometimes there are flowers whicb have neither famina nor pifil, and whofe petals being greatly multir plied, feem to have abforbed thefe elfential parts. Sometimes two fruits cleave together by: a natural graft, or are inclofed in each otherSometimes there are flowers or fruils whofe form differs widely from that which is peculiar to the fpecies. Laftly, There are productions which do not properly belong to any particular feecies, becaufe they derive their original from feeds that have been fecundated by dufl of a different fpecies.

The generation of animals is not conftantly regular: the laws by which it is governed are fometimes difturbed; whence are produced the different fpecies of monfors.s. Sometimes there are. hands and feet, whofefingers or toes are fewer or
more in number, or formed in an irregular man ner, or otherwife difpofed than ufual. Sometimes there are fatufes, in which the parts of generation are obliterated. Sometimes there are two eggs or two fotufes that cleave to each other by a naiural cohefion, or that are contained in one another. Sometimes there are eggs or fietufis whore form is greatly different from that which is peculiar to the fpecies. Laltly, there are productions that partake of two fpecies, becaufe they are produced from fuch females as are fecundated by males of different 〔ecies.
12. The laws refpecting the nutrition and growth of vegetables are liable to greater diforders, than thofe of generation. From hence are derived the different kinds of maladies the plant is fubject to. Some of thefe maladies only attack the leaves, and produce on them /pots of different colours, wrinkles, puffules, /iabs. Others attack the principal vif cera, and oicafion choakings, ob,fructions, At:rnations, tumors, cancers, effufion. Others take cheir feat in the flower or fruit. Others affect the ligneous bodies, which they caufe to moulder away, whilit the bark remains whole: Others come from little plants or divers infects, which being on the ontfide or infide of vegetables, convert their nourithment to their own advantage, or change the organization of it. Others derive their origin from a change of climate, aliment, or culture.

The laws of the nutrition and the growth of animals are more frequently: difurbed than thofe of generation. From hence proceed the various fpecies of diforders to which an animal is expofed Among thefe maladies, there are fome which atK 6
tack

(888)

tack only the /kin, and produce /pots of various colours, zurinkles, pufintes, pimples. Others attack the principal bowels, and occafion oppreffons, obftruttions, ftagnations, tumors, abjeeffes, overflowings. Others are feated in the organs of generation. Others feize the bones, and beget rottenne/s in them, whilft the periofteum continues found. Others have their fource from different infects, which, being lodged either without or within the animals, divert the nourifhment of them to their own benefit, or atter the conflitution of them. Others are caufed by the change of climate; nourifhment, or bleeding.
13. Finally, the plant after having efcaped a vaxiety of maladies which threatened its life, cannot elude the effects of old age, that creeps into it, nor the flroke of death, the inevitable confequence of it. Being hardened by time, the veffels lofe their exercife, and are fuffed up. The liquors contained: in them no longer move with the fame facility, nor continue to be filtred and pamped out with the fame precifion. They flagnate and corrupt; and this corruption being foon communicated to the veffels that inclofe them, the vital functions ceafe, the plant dies and crumbles into duat.

Lafly, the animat, after having been preferved: from thofe difeafes which confpired againf him, cannot efcape old age, nor death that follows in: his train.

When the veffels are grown hard through timethey lofe their ataion, and are fopped up. The liquors do not circulate in them with the sume degree of quicknefs, and they are filtred and praped.

(229)

pumped up but in a very imperfect manner. They ftand ftill and are altered, and this alteration foon communicating itfelf to the veffels that contain them, circulation ceafes, the animal dies, and is reduced to duf.
14. We have carried the parallel between plants and animals from their birth to their death. The parts of which they confift very evidently eftablifh the great analogy there is betwixt thefe twe claffes of organized bodies.
But there are other fources of comparifons we have either avoided to dwell upon, that we might not render our defcription confufed, or have only flighty touched upon; under certain points of view. Such are thofe prefented to us by place, number, fecundity, form, firucture, circulation of liquors, loco-motive faculty, feeling, and nutrition.

We will take a tranfient furvey of thefe fources, and without endeavouring to exhauft them, content ourfelves with barely pointing out their moft remarkable and charatterifical contents.

Vegetables and animals refide in the fame dwelling-place. Being appointed to people and adorn our globe, they are difperfed over its whole furface, and are placed near each other, in order to enable them to afford a reciprocal affiftance. Like two great trees growing in the fame foil, the animal and vegetable kingdoms intwine their branches together, and extend their boughs and foots to the extremity of the world.

The outfide and infide of the earth, mountains and vallies, barren and fertile places, countries, undifcovered

230 y

difenvered and hid in dark obfeurity, the regicnsof the north and fouth, rivulets, Tivers, ponds, lakes, and feas, have their vegetables and animals.

Many fpecies of plants and animals feem to thrive alike in different climates. Other fpecies are amphibious, and live as well out of the water as in it. The bulrufh and frog flourihh in meadows, and at the bottom of ponds. Others are parafites, and are nourithed by the juices they extract from different fpecies. Such are the milletoe and the loufe.

Lafly, Some parifte fecies fupply their neceffities, in their turn, from other parafites. The mifJeltoe has hisliverworts, and certain lice have their lice.
15. There are upwards of twenty thoufand fpecies of plants known to us. and new difcoveries of them made every day. : A microfcopical botany has extended the dominions of the ancient. Mofjes, mufhrooms, liverworts, whofe families are innunerable, now take place anongft vegetables, and prefent the curious with flowers and feeds which before they were unacquainted with. The microfcope difcovers plants to our view, where wenever fufpefted them. Free-ftone is often covered with fpots of different colours, commonly brown. or blackifh. Glafs, notwithftanding its fine polith, is not exempt from fuch fpots. We obferve hoarine/s on alinoft all bodies. Thefe fpots and this. hoarinefs are found to be gardens, meadows, and forefts in miniature, whofe plants that are infinitely fmall, afford us neverthelefs fome profpeet of their flowers and feeds.

But:

But atthough vegetables are very numerous in their fpecies, yet they are much lefs fo than animals, Every fpecies of plant has not only its particular fpecies of animals, but there are many fpecies of planits which nourifh feveral fpecies of animals. The oak alone finds nourifhment for above 200 fpecics of them. Some attack the roots of this tree, which they dig into, and produce therein various tubercfities. Others fix themfelves in the trunk, where they make crooked furrows. Some infinuate themfelves into the bark and wood; whilft others penetrate the interior parts, whence they extract the juice. Some ieed only on the leaves. Others fold or roll them up with a great deal of art. Some form them inta nuts. Others find both lodging and nourilhment in the fruit. Nay, gather but a flower by chanceeither a dai/y, poppy, or rofe, and you will oblerve. on it a multitude oi infects.

In fhort, where can we turn our eyes without beholding animals? Nature has ftrewed them every. where with a bountiful hand. They were her moft excellent productions; fhe has been liberal of them. She has inclofed animals within animals; fhe has ordained one animal to be a world. for others, which fhould find therein nourifhment. in proportion to their wants, The air, vegetable and animal liquors, corrupt matter, dirt, dung, dry wood, thells, and even ftones, are all animated, all fwarm with inhabitants. What do I fay? The fea itfelf fometimes appear to be one entire collec-tion of animals. The light, which glitteringly reflects on it in the night-time, during hot weather, is produced by an infinite number of very minute glow-worms of a yellowifh brown colour, and foft fubftance, not unlike caterpillars, every part of which, after being divided, and even putrified, fhines

(2gz)

Thines with the fame brightnefs as when the, worms was whole and living. A fpecies of fea-fleas are alfo luminous, and commenicate their lufre to the waters. There iffues from within them a globular matter, which is likevire phofphorous.

Herbs are more numerous in their fpecies and individuals than Jhrubs and trees. Injets are more numerous, in refpect to their fpecies and individuals, than birds and quadrupeds. There are more ranunculufes than rofe-bufhes, and more blades of $\mathrm{gra} / \mathrm{s}$ than caks. There are more buttefflies than fowls, and more vine-fretters than dog.
16. The magnificence of the creation flines in no part of it with greater luffre, than in the prodigious fecundity of a great number of plants and animals. One fingle individual may give birth to thoufands, or even millions of individuals like itfeff. Being formed agreeable to thofe proportions which are only known to that Adorasle WisDOM that has eftabiflhed them, this great people was at firft inclofed within the narrow compars of a rind or ovary. In this dark abode they receive their firft life, begin to grow, and are difpofed to appear on the vaft theatre of the vifible world.

If we confider things in a general view, vegetables will be foumd to be more fruitful than animals. We fhall be farther convinced of this, by comparing trees with quadrupeds.

Trees produce annually, fometimes for many ages, and their productions are always very numerous. Large quadrupeds, as the thephant, the
ware, the hind, the cow, E3c. have feldom more than one at a time, rarely two, and the number they breed is always very moderate. Lefler quadrupeds, fuch as the dog, the hare, the cat, the rat, increafe in a much greater degree; but their focundity is but inconfiderable, when compared to that of ligneous plants. The elm produces yearly upwards of three hundred thoufand feeds; and this atonifhing multiplication may continue above a century.

Fijhes and infects nearly refenble vegetables in fecundity. A tench lays about ten thouland egys; a carp, twenty thoufand; and a cod, a million. An infect which produces the itch, lays four or five thoufand eggs; a female boc, forty-five or fitty thouland.

To this amazing fecundity is oppofed that of the wild poppy, muftard, fern. And we muft not forget, that moft vegetables are propagated different ways; whereas animals are for the mult part propagated only by one.

A tree may be made to form as many trees as it has branches, boughs, and even leaves. Plants, which are principally defigned to fupply the neceffities of animals, cannot be endued with too great a degree of fecundity.
17. There is hardly any fight more interefting, than that which the infinitely varied forms of plants and animals afford. If one compares the lefs perfect fipecies with more perfect, or the fpecies of the fame clafs with each other, he is equally ftruck with the diverfity of models, by which sature bas
has performed her works in the vegetable and animal kingdoms. He palfes with aftonifhment from the /winebread to the /en/itive plant, from the mu/hroom to the carnation, from the night/fhade to the ouk, from the ivy to the fir-tree. He confiders with furprize the prodigious multitude of mufhrooms and liverworts, and can never enough admire the fecundity of nature in the production of thefe plants.

As he goes on to plants that are more elevated in the fcale, he ftops with pleafure to examine thofe plants that have ftalks, from the grals which grows between the fones to that precious plant, whofe car furnifhes us with the mof wholefome food. He confiders the various plants that creep, from the tender bind-weed to the vine branch which crowns our hills. He likewife takes a furvey of thofe trees which bear fruit with fones, from the wild plum-tree to the peach, whote fruit does not excite our admiration more by the foftnefs of its velvet covering and beautiful colour, than by the abundance and exqrifite tafte of the tiquor it yields.

If from the vegetable, he tranfports himfelf into the animal kingdom, the profpet becomes ftill more interefling. He fees oppofed to each other in the fame portrait, the polypus and fea dog, the day-fly and flying.fifh, the dancing-bird and eagle, the gra/shopp:r and flying /quirrel, the ant and fag, the cricket and rhinoceros, the woodloufe and crocodile, the jcorpion and the ape.

Another picture prefents him with a view of the prodigious number of butterflies and fies; in confidering which, he is aftonifhed at Nature's complaifance in thus diverfifying thefe little ani-
mals
mals, fo different from the great ones by their forms, and which have been treated as defettive or imperfect beings.

Transferring next his furvey to thofe fpecies of animals immediately higher, he contemplates Shell-jfh, from that whofe precious liquor dyes the garments of kings, to the failor that rows with fo much grace and fill on the inconttant wave. He obferves the different fpecies of fifh, from the dangerous cramp-fifh to the powerful nerial, and from the pretty golden.ffh of China to the dolphin, that cleaves the billow with the fwiftnefs f a dart.

He likewife takes a review of thofe birds that live on herbs or feeds, from the linnet, that delights us with his melody, to the peacock that pompoufly difplays in our court-yards the gold and azure with which he is enriched. He alfo obferves the birds of prey, from the fierce merlin to the eagle, whofe ftrength and courage have raifed him to the fovereignty over the birds. He next reviews the quadrupeds, from the light aud timorous hare to the elephant, whofe enormous corpulency attracts every eye, and from the wily fox to that noble and generous quadruped which feems formed to have dominion over the animal crea. tion.

Plants, though prodigioully various in their forms, yet are lefs fo than animals. There are fewer gradations from the truffle to the fenfitive plant, or from the nighthade to the oak, than there are from the oyfter to the oftrich; or from the
the fea-netle to the oran-outang. Plants, being effentially more fimple than animals, have not given birth to fo many combinations.

The forms of animals afford us a fingularity which is extremely remarkable, and fufficient ta diltinguifh them from vegetables; I mean thofe admirable metamorphofes which the fame infects exhibit to us, which are fometimes fo oppofite, that it does not appear to be the fame animal.

But may we not compare the bud in which a plant or flower is infolded, to the covering of a chry/alis which conceals the butterfly from our fight? And as the plant cannot produce feeds till the flower has iffued from the bud, fo meither can the butterfly propagate tillit has calt off the fheath of the chryfalis.
18. It is not fo eafy to compare plants and animals in their interior forms or fruature, as it is. in their exterior. We may judge of the one by a fingle glance of the eye: we muft beftow a particular attention, to judge of the other. We penetrate with greater difficulty, into the isfide of a plant, than into that of an animal. The microf cope, fcalpel, and injections, which are fo ferviceable to us in the anatomy of animats, affilt us very imperfectly in that of plants. It is likewife, true, that this part of organical œconomy has been tefs Rudied.

But how imperfect foever the anatomy of plants may be, we are able to difcover fome of their principal veffels. Thefe may be ranged under two general claffes; the longitudinal that extend

237)

the whole fength of the plant; and the tranfiverfe veffels, or furch as are placed acrofs it. The /appy veffels and tractican belong to the firft clafs; the wetriculi or infertions to the fecond. The veffels containing the fap feem defigned to convey the juice. The atriculi, or little bags, appear intended for digefing it.

Some plants feem to be intirely compoled of atriculi: fuch are certain \{pecies of roots and fea plants, whofe texture is almot attogether veficular. It is the fame with thofe animals which feem to confift of ftomach only, as the polypus and tape-worm.

One of the principal charafters by which we may difinguifh infects from large animals, is, that the former have no bone within them. What they have of a bony or fcaly nature is placed on their ounfide for a fupport or defence to the more delicate parts underneath, or to fuffain the body with greater advantage. Thus we fee that in almoft alt infects, properly /o called, the head, corllet, legs, rings, $\mathcal{E C}$. are either whotly, or for the mol part doubly covered with fcales.

Herbs differ from trees as infects from large animals. They have no ligneous body in their center. What they have of a ligneous nature, appears on the outfide, and ferves to protect the weaker parts of the plant. Thus we find plants with tubes are firengthened by knots placed at regular diffances ; fo that the lowermoft knots which are defigned for the bafe, are ftronger and nearer each other than the upper ones. It is on the fame account that the roots of many herbaceous plants, as well as the calixes of flowers, and the capfutes or covermags of the feeds, are made almoft ligneous.

Herbs

Herbs grow and become hard fooner than trees. Infects than great animals. Herbs and infects, being of a fofter confiftence than trees and large animals, extend themfeives with greater eafe, and fooner arrive at the period of their extenfion. Befides, the concentric beds of the bark of trees, and thofe of the perioftcum of animals, being far more numerous than the relative beds of herbs and infects, muft needs require a longer time for their growth.

We may diftinguifh two kinds of parts in organized bodies; to wit, fimilar and diflimilar. The former are compofed of fibres of the fame kind; the latter, of fibres of various forts. The nerves, arteries, veins, lymphatic veffels are the fimilar parts of our bodies; the brain, heart, lungs, fomach, the difimilar. Plants are almoft entirely compofed of fimilar parts. The veffels containing the fap, the trackea, and utriculi, are of this kind. Thefe different veffels are pretty uniformly difperfed throughout the whole body of the plant: they enter into the compofition of all its pats. They are to be met with in the root, flalk, branches, leaves, flowers and fruits. The leaft fragment, the fmalleft leaf, is a reprefentation of the whole, an abridgement of the plant.

There are likewife animals which are nearly compofed of /imilar parts. Of this number are many fpecies of long worms, and fome aquatic millifedes, nettles, and jea-ftars, polypujes, moths, earth-worms. All theie animals are formed in fuch a manner, that each part of them, even the fmalleft, correfponds in miniature to the whole in all its parts.

In the long worms I juft mentioned, we oblerve. very diftinctly a flomach, an heart, and fume very fmall vellels which feem dependent on the latter. There is likewife no room to doubt that there is beneath the ftomach, a medullary ftring, like that obferved in other fpecies of worms and caterpillars. Their vi/cera are not dilltibuted into certain regions of the body; they are univerfally difperfed throughout its whole length; fo that we may truly affirm that thefe infects are all brain, all ftomach, all heart. But this brain, flomach, and heart, appear extremely fimple; the firft is fcarce any thing more than a nervous piece of net-work, the fecond a membranous bag, and the third a grand artery.

Polypufes, which are more fimple in their fructure, are only a kind of bowel, fown with an infinite number of fmall feeds, which are tinged with the colour of the aliment.

Tape-worms partake of the fructure of polypufes, but feem to be more compounded. They are formed of a chain of flat, membranous, and whitifh rings, jointed together like the divifions of a reed. Each ring has on its upper part, or on one of its fides, a more or lefs ferfible eminence, in the center of which is a fmall round aperture. The middle of the ring is full of veffels of a purple or whitifh colour, which perform a labour that attrakts the attention of the obferver. The reft of the ring is filled with an infinite number of fmall white feeds. Such is elfentially the Atructure of the tape worm in its whole extent; there is no perfett variety or refemblance between all the rings
rings, the affemblage of which compofes a kind of ribband or face, which extends fometimes feveral hundred feet in length.

Earth-warms are, of all the infects 1 have mentioned, thofe whofe infide feems to be the moft compounded, chiefly becaufe in thenr the two fexes are united: birt the moft effential organs of life are diftributed in them Hikewife through the whole length of the amimal.

Organized bodies, whofe flruture is fo fimple and uniform, that each part of them has in a Imall compafs an organization refembling that of the whole in a greater extent, enjoy divers prerogatives that have been denied to organized bodies of a more complicated ftructure. The firft of thefe are not deftroyed when divided afunder. Their different portions continue to live, and the wounds which have been given to them eafily confolidate. Thefe parts vegetate, receive nourifhment, produce new organs, and multiply. Such wonders as thefe the vegetables and infects we have lately treated of exhibit every day: wonders which we have not fufficiently admired in the former, and which perhaps we too much admire in the latter,

Large animals do not furnifh us with the fame phianomena. The confolidation of their wounds, and the re-union of their fractures, although of entimes attended with circumftances which render them very remarkable, ftrike us but nightly when compared with what we obferve analogous in polypufes, and other infects that mukiply by flips. The motions we perceive in certain
*ertain parts of great animals, when feparated from the body, or after the death of the animal, affect us only with a flender degree of furprize, when we confider the motions of different parts of worms, or thofe of fome millepedes.

But may there not be fome mifconception in thefe different judgments? We judge of the effett produced, as confidered in itfelf, and feparate from the circumflances accompanying it; whereas we fhould judge of it with relation to the greater or lefs degree of compofition whereof the body, in which this effect is produced, confifts. There is as much, and indecd more to be admired in the confolidation of certain wounds, or in the re-union of certain fractures of our body, than there is in the confolidation of the wounds of polypufes, or in the re-union of parts which have been feparated from them. A very fimple machine is caffly repaired; a machine that is extremely compounded, cannot be repaired with the fame facility. When we reflect on the prodigious number of fimilar and diffimilar parts contained in the compofition of the bodies of great animals, and particularly in that of the human body; when we attend to the frict connexion of all thefe parts, and to the degrees of compofition in each of them, we cannot fufficiently wonder that the various accidents which happen to thefe bodies are not attended with greater confequences; we fhall at the fame time perceive the reafon why they are not enabled to propagate like bodies whofe organization is more fimple.

But independently of the greater or lefs degree of the compofition of paris neceffary to life, as Vol. IV
foon
oon as thefe parts are found placed in differents regions of a body, and are not difperfed through- ${ }^{-}$ ourfits whole length, fuch a body cannot be multiplied by flips. The Author of Nature, by denying, in his wifdom, this property to large animals, by confining the fources of life in them within a narrow circle, has fecured them from harm by many advantages. Compare the refult of the motions or actions of a fea-worm with that of the motions or aftions of an ape, and you will foon perceive which of thefe animals has been moft favoured.

Finally, organized bodies, to which a power has been granted of multiplying by a method which feems to tend to their deftruction, are fuch as are expofed to the greateft dangers, and whole life is neceffarily threatened every moment with a thoufand various accidents.
19. Amongf the motions we obferve in the animal machines, that of the circulation holds the firft rank, either by its importance, or its nature, duration, and the number of organs by means whereof it is performed. There is in this motion an air of grandeur that feizes forcibly on the mind, and which, by making it fenfible of the narrow limits of human underffanding, penetrates it with the moft profound refpect, and fills it with the higheft admiration of the Infinite Mind which illuffrioufly fhines in the Divine AuTHOR of it.

In the center of the breaft, between two fpongy mafies known by the name of lungs, is depofited a flefhy
a Aefhy pyramid, whofe bafe bears two fma!l fu'snels like ear-rings, which communicate with two cavities contained in the infide of the pyramid, and which divide it according to its length into two chambers or ventricles, the right ventricle and the left. This pyramid is the heart, the main fpring of the machine. It has two principal orders of mufcular fibres; fome of which pafs obliquely from the bale to the point, others cut the latter tranfverfely. From the excrife of thefe fibres two oppofite motions refult; one of dilatation, the other of contraction. The heart feems to execute thefe motions by turning on itfelf like a fcrew. Its point moves towards or from the bale, by rifing or falling obliquely.

Two great veffels, ziz. an artery and a vein, communicate with each ventricle. The artery, \dagger which communicates with the right ventricle, conveys the blood to the lungs. The vein, \ddagger which communicates with the fame ventricle, forms the principal trunk of the veins, and carries back the blood from all parts to the heart. The artery,* which goes into the left ventricle, is the chief trunk of the arteries, and that which conveys the blood to all parts. The vein.\| which ends at the fame ventricle, tranfimis to it the blood that has been conveyed from the lungs.

The principal trunks of veins and arteries, are divided into feveral branches at a fmall diftance from the heart. Some tend towards the upper extremities, others towards the incerior.

The arteries and veins decreafe in diameter, and are ramified more or lefs according to their
L_{2} diflance

[^4]diflance from their origin. There is no part. to which thefe do not diftribute one or more ramifications.

When they have arrived at the moft remote parts, the arteries have an intercourfe with the veins.

The arteries are compofed of feveral membranes, placed on each other. The veins have fimilar membranes, but more flender, and weaker. The veins were not defigned to exercife the fame power as the arteries. Thefe latter muft neceffarily, like the heart, and for the fame end, dilate and contract themfelves: they have therefore been provided with a very elaftic membrane. The exercife of the veins fhould not be violent.

At the root of the arteries, and in the inner part of the veins, are placed little fluices or valves, which by finking and rifing again open and fhut the canal. Thefe valves are depofited in the veins, in a contrary fenfe from that for which they are in the arteries. We fhall prefently account for the caufe of this difference.
20. After laving been mafticated and diffolved in the mouth and fomach, the aliment defcends into the inteflines, where it receives a new preparation by the mixture of two liquors, one of which is furnifhed by the liver, and is called the bile; and the other by a fpecies of * gland fituated under the fomach.

The aliment is thus converted into a kind of greyifh pulp, which has received the name of chyle. Being fhifted from place to place by the vermicular or perifaltic motion of the inteftines,

[^5]and frongly preffed againft their fides at the inflant of their contraction, the chyle penetrates into es treme fmall veffels, \ddagger which open themfelves in the internal membrane of the inteftinal canal. Thefe veffels tranfmit the chyle to very fmall glands which are covered with a kind of membrane \|f fituated in the midft of the inteflines, and round which they are in a manner rolled. After being filtred in thefe glands, the chyle is received by other veffels, § which convey it into a concavity * placed along the fine, and which pours it into a vein fituated under the left clavicle. There it enters into the blood, and lofes the name of chyle. From this vein the new blood paffes into the upper branch of the principal trunk of veins, which carries it towards the heart. It paffes into the right lobe, which opens at its approach, and by clofing immediately, forces it into the right ventricle, which is dilated in order to receive it. The heart inflantly contracts itfelf; the valves with which the ventricle is furnilhed, raifing themfelves to oppofe the reflux of the blood into the lobe, it is compelled to pafs the artery, which is appointed to carry it to the lungs. The valves, which are placed at the entrance of this artery, fink down; the artery dilates, and the blood advances into the cavity. The valves rife again, and prevent its return towards the heart. The artery contracting itfelf, the blood is impelled farther, and, by thefe alternate dilatations and contractions of the veffel, it is conveyed to the lungr, where it runs through every part of them. The L 3 ramifications

[^6]samifications of the tracha, * which are difperfed in the vi/cera, carry thither a freth and elaftic air, which, by atting on the lungs, dilates, winds them about, extends and opens them, and by that means facilitates the courfe of the blood into the fmalleft ramifications of the artery. Befides, being impregnated with this air, the blood becomes thereby attenuated, is cooled, and receives a more lively colour. After its arrival.at the extremities of the artery, it paffes into that of the pulmonary vein, which conducts it to the left ventricle of the heart. Thislatter, by contracting itfelf, puthes it into the aorta, + which !,y continually dividing and fubdividing itfelf, diflributes this balfamic liquor to all the parts, in order to promote their growth, or fupport, and occafion different fecretions.
21. Such is the admirable mechanifm of the circulation of the blood in men, and in thofe animals which we are beft acquainted with. But how greatly does this imperfect fketch fall fhort of the reality! How incapable are thefe outlines of exprefling the beauties of this noble fubject! And who can account for the manner by which the ftrength of life is repaired and recruited? Who can conceive the caule of that perpetual motion of the heart, which continues without intermiffion for the fpace of feventy, eighty, or an hundred years, which has lafted for ages in the firft race of men, and which remainsalmoft as long in fome fpecies of animals? Have we difcovered the exact part where the artery is changed into a vein? Have we difclofed the myftery of the fecretion of thofe fpirits, whofe prodigious fubtilty and activity give them

[^7]them a near refemblance to light? Can we even determine in what manner the groffef fecretions are performed? Do we underfland the true mechanifm of mufalar motion? Have we been able to find out the fource of that great frength which often fo far exceeds that of the heatt? All the fe dependencies on circulation are yet unrevealed to us. The gloom of night ftill wraps thefe regions in dark oblcurity, and you are earneftly defirous of chafing it away from before that fun which alone can difpel thefe fhades. Will the dawn of that day ere long gild the horizon of the learned world ? Or is the time of its breaking forth upon us yet afar off?

But if we are not able to difcover the whole, we may at leaft fee enough of it to excite our admiration; and the fketch which I have juft drawn of the circulation, is fufficient to enable us to conceive the higheft ideas of the Sovereign Mind, which has appointed the manner, duration, and end of it.

Far lefs magnificent in its plans, lefs fkilful in the execution of them, hydraulics offer to us but faint images of this miracle, in thofe machines by means of which water is raifed above the mountains, in order to its being diftributed into every quarter of a great city, and made to circulate and iffue forth, under an hundred various forms, into thofe gardens which art and nature vie with each other in adorning: and embellifhing:

The works of the Creator muft be compared with the works of the Creator. Ever fike Himself, He has impreffed on all his productions.
ductions a character of noblenefs and excellence, which demonftrates the grandeur of their origin. From that immenfe mals of water which encompaffes the great continents, there inceffantly arifes an ocean of vapours, which, being rarefied by the combined action of the fun and air, fpread themfelves in the upper region of the atmofphere, where they remain fufpended in equilibrio, being intermixed with the fluid in which they float, and gravitate with it. Collected afterwards into clouds more or lefs denfe, and borne on the wings of the winds, they fly acrofs the celefial plains, which they adorn with their rich colours, and continually variegated forms. Fixed at length on the mountain tops, they pour upon them abundant rains, which being collected in the valt refervoirs embofomed within them, furnifh, by a happy circulation, a fupply to fountains, rivers, lakes and feas. Like veins and arteries, the rivers flow meandering, and branching on the furface of the earth, they run through immenfe countries ; water, fertilize, and unite them by a reciprocal commerce, and majefti-. cally rolling their waves toward the fea, plunge themfelves into it, in order to be again exhaled in vapours, and re-enter afrefh into the channels of this magnificient circulation.
22. Does the fap circulate in plants as the blood circulates in animals? Is this new mark of analogy between thefe two claffes of organized bodies as real as it has appeared to be? Small bladders full of air which have been thought to be difcovered within the leaves, have convinced us that they were the lungs of the plant.

But there have not been difcovered in plants veffels analogous to veins and arteries. No organ has

249)

has been feen in them capable of performing the functions of the heart. A tree which is planted a contrary way, with the roots a top and the branches in the ground, lives, grows, bears fruit; from its roots, branches fhoot forth, from its branches, roots, The fame is obferved with refpect to llips and layers. A young branch, or young fruit, after being grafted on a fubject foreign to itfelf, incorporates with it, and derives from thence the fame degree of growth it would have received from the plant whence it was detached. Experiments demonflrate, that the motion of the fap depends entirely on the alternatives of heat and cold, and the viciffitudes of day and night. It is evident that the fap rifes in the day from the roots to the leaves, and falls in the night from the leaves to the roots. In a word, the courfe of the fap nearly refembles that of the liquor contained in the tube of a thermometer. All is reduced to a fimple counterpoife.
23. The nourifhment of the more perfect animals requires to be more wrought than that of plants. Hence the neceffity of the circulation of the blood: The preparations of the fap do not require fuch a punctual, regular, and conftant motion; bare poifings fuffice. Large animals eat but at particular times: a preffing fenfation which induces them to take nourifhment, does not continually act upor them. The different preparations their aliment fhould undergo, would be difturhed or interrupted, were a frefh fupply to be received within them before the former was fufficiently digefted.

Plants, on the contrary, are in a flate of perpetual fuction; they draw in nourifhment continually, and in a very great quantity, in the day-time by their

$$
\text { L } 5 \text { roots, }
$$

roots, in the night by their leaves. There is $\$$ plant which receives and tranipires, in the fpace of twenty-four hours, twenty times more than a man.

But if plants differ fo much from large animals by circulation, on the other hand fome fpecies of animals feem nearly to refemble plants by their want of this circuitation. Not the leaft appearance of this motion is to be perceived in the polypus, the tape-wiorm, the pond-muficle, and divers other thell-fifh.
24. One of the ancients defined a plant to be a rooted animal. He would undoubtedly have defined an animal to have been a wandering plant. The loco-motive faculty is one of thofe characters. which prefent themfelvès firft, when we compare the vegetable kingdom with the animal. We feo plants that are conflantly fixed to the earth. Being incapable of feeking their nourifhment, it is ordained that this nourifhment fhall feek them. The greateft part of animals on the contrary, are fubjected to the care of providing their own fubfiftence. Nature has not always depofited near them fuch nourihment as was necellary for their fupport. She has thought proper to oblige them to procure it for themelves, often with much labour. And the different methods by which the has infructed each fpecies to obtain this end, much diverfily the fcene of our world.

Whilf the plawman opens the earth, to intrufts with it the feeds ne el ary to fupport him, the mole and m.. crick: a re clearing for themfelves different rou:\%, in th: i me, to fearch for the food allotted to thim. Tue huntfman purfues his prey with

(251)

with an obftinate refolution : triumphing in his. fwiftnefs and ftrengit. At other times preferring craft he becomes mafter of it by laying fnares for it. The tyger ruthes on the fawn fporting in the meadow. The cat vatches motioniefs and filent, till the young moufe iffues forth from its retreat, that the may dart upon it in a moment, Some fpecies of animals, refembling mankind by their prudence, lay up provifions againft a time of fcarcity; build themfelves magazines, in which are obferved fuch juft proportions, as to give us caufe to doubt whether it was the workmanthip of a brute, were we not convinced that this brute hfelf is the work of Sovereign Reason.
25. How great is the diffance in this refpect from the beaver and bee to the gall or cochineal infect, the oyfter, the fea-nettle, and feveral other kinds of infects and fhell-fith ? The gall-infeet *, being confounded by his immobility and form with the tree on which he lives, contents himfelf with extracting its juice. Carried by the wave to the fea-lhore, the oyfter remains fixed there, and all its motions confift in opening and elofing its fhell. The fea-nettle, and all the different polypufes with pipes, being continually fixed to the lame place, open and fhut like a flower; extend and contract themfelves like a fenfitive plant; fretch out arms, by means of which they feize infects. This is their principal character, and the leaft equivocal character of their animabity.

Thus it appears that the loco-motive faculty is, not more proper for diftinguifhing the veL 6 getable

[^8]getable from the animal, than thofe other characters which we have before treated of. In the mean time, what can be more diftina in appearance than a plant is from an animal? Or what more eafy to characterife in the fight of the major part of mankind? But when once we are convinced that every thing in nature is fhadowed over, we are not furprized at the difficulties we meet with in our attempts to diftinguifh beings. We expeet to fee the fpecies enter again into each other; and confine ourfelves to the fmalleft latitude, or to that which is attended with the leaft uncertainty. In this principle we will conclude the parallel: let us fee whether feeling, and the manner by which animals and vegetables are nourifhed, will furnifh us with any thing more characteriftical.
26. If there be any faculty which feems peculiar to the animal, it is certainly that of feeling. Being united to an organized fubflance by ties which perhäps are known to God only, this foul compofes with this fubftance a mixed being, a being which partakes of the nature of bodies, and of that of fpirits. As a portion of matter, it is a machine which is admirable in its fructure, and on which corporeal objects aft mechanically. As a fpiritual fubftance, it is affected at the prefence of fpiritual objects in a manner which does not feem to have any relation with that by which material fubftances act on each other. From the expreffion of external objects on the machine, there refults a certain motion in the machine. From this motion there follows a certain fenfation in the foul, which is fucceeded by the re-attion of the fpiritual fubftance on the corporeal; a re-action
which manifefts feeling from without, and which is the expreflion or $/ \mathrm{l}_{5} n$ of it.

The various fenfations in the animal may be reduced to thefe two general claffes, pleafire and pain, feparated from each other by degrees which are frequently infenfible, and iffuing from the fame origin. The expreffion of pleafure and pain is not alike in all animals; becaufe the organs, by means whereof the foul manifetls her fentiments, are not the fame in all.

There are fpecies in which feeling is manifefled by a greater number of figns; more varied, more expreffive. What expreflion for inftance, is there in the air, the motions, and the various attitudes of an ape, an horfe, a dog, a cat ? There is not much lefs expreffion in birds than in quadrupeds. Fifhes do not exprefs themfelves with the fame clearnefs and energy; they form a dumb people, amongft whom the language by figns is little practifed: but the extreme vivacity of their motions feems in part to compenfate for their flerility of expreffion. Reptiles, fhell-fifh, and infects, which are fill at a greater diftance from us than fifhes, exprefs to us their feelings in a more obfcure manner ; but which, notwithftanding, we can conceive to a certain degree, and often acknowledge to be very expreffive.

On the contrary, we do not difcover in the plant any fign of feeling. All in that feems to be purely mechanical. Its life appears to be lefs a life than a fimple duration. We cultivate a plant, or we deftroy it, without experiencing any thing fimilar to what we meet with when we cherifh an animal, or put it to death. We fee the plant fhoot

Thoot forth, grow, fourifh and bud, as we perceive the hand of a clock to have paffed over the points of the dial.

Thefe confiderations lead us to confider feeling as a charatter proper for diffinguifhing the vegetable from the animal.
27. Since then the faculty of feeling furnifhes us but'with a doubtful character for diffinguifhing the vegetable from the animal, which is that we: fhould have recourfe to with this view? I think we have exhaufted them all; we have at leaft: treated of them all in a curfory manner.: But we have not examined them all under their various afpets. There is one of them, which being confidered in:a certain point of view, may perhaps. procure us what we have in vain fearched for in. the others.

We may now confider the pofition of thofe organs by which plants and animals receive their nourifhment. The fe organs in plants are the roots and leaves. Boin of them are furnifhed with: pores, by means of which they pump in the nutritious juice. Thefe pores terminate at finall veffels, which tranfmit the juice into the inner part : or, xatier, theie pores are only the extretnity of thefe veffels.

Animals have organs which are entirely analogous to roots and leaves; I mean lacteal veins, or weffels which anfwer the fame purpofe. Thefe veins open themfelves in the inteftines, and pump the chyle into them, which they convey into the channels.
channels of circulation. An unimal is then an organized body, which is nourithed by roots placed within him. A plant is an organized body which receives its nourifhment by means of roots placed on its outfide.

Yet an animal which is nourifhed by pores diftributed on its outfide, renders this charater ambiguous. The tape-worm feems fuch an animal. It forms in the inteftines a great number of plaits: and fometimes intirely fills the capacity of this canal. Each of the rings that compofe it, and whofe length is rarely more than one or two lines, is pierced with a fmall round aperture, by which one may fee the chyle iffue, which the worm is full of, and which conftitutes its principal nourifhment. If this aperture is a kind of fucker, by the help of which the infect pumps the chyle that furrounds it, this method of nourithing itfelf varies but little from that of plants.

But without feeking very far for examples of animals that are nourilhed like plants, this is the cafe of all animals, whether oviparous or viviparous, whilft they are inclofed in the egg, or in the belly of their mother. The umbilical veffels may be confilered in the egg or in the matrix, as roots which imbibe the nourilhment. It is the fame with refpect to infects that multiply by fhoots. Whilf the young one fill adheres to its mother, it is nourifhed in a manner little different from that which is peculiar to branches. Aniunal grafts nearly refemble vegetable in this particular.

Laftly, The fkin of the human body imbibes, like the le ives of plants, the vapours with which the air abounds : and although men draw in much lefs
bels nourifhment by this means than vegetables, it is neverthelefs true that their Ikin and leaves have; in regard to this circumftance a great affinity to each other. Perhaps we may be able fome timeor other to difcover animals which are nourilhed by their fkin only, as certain plants are by their leaves.
28. Do we then in vain feek for a peculiar charakter whereby we may diftinguif the vegetable from the animal? I perceive a new property, which will perhaps furnifh us with what we feek for.

A miafcular fibre contracts of itfelf on the touch of all bodics, whether folid or liquid.. This property is known by the name of irritability. It has nothing in it common to fenfibility. The parts which are moft fenfible are not irritable, and the parts which are moft irritable, are not Jenfible. Neither ought we to confound irritability with elafficity. A dry fibre is very elaftic, and not at all irritable. Animals purely gelatinous are not elaftic, and are notwithttanding very irritable. In Short, the fibres of old men, though much more elaftic than thofe of infants, are much lefs irritable:

We have feen that the heart is a real mufcle. If we extract it from the breaft, it will continue to move till it has loft its natural heat. The heart of a viper or tortoife beats ftrongly for the fpace of twenty or thirty hours after the death of the animal. Water or air, when introduced into the ventriclo, are fufficient to reflore to the heart the motion it has loft.

The

The perifaltic motion of the inteflines is likes wife owing to their irritability. But the following is what we fhould not have gueffed at. It they are plucked haftily from the lower bel!y, and cut into pieces, all thefe pieces will crawl like worms, and contraft themfelves on the flightelt touch.

So that not only every mufcle, but alfo every fragment of a mufcle, and even every mufcular fibre, contratt themfelves more or lefs on being touched by any body whatfoever, efpecially if that body be of a ftimulating nature. And as the fibre contrakts fo it likewife recovers of itfelf, and this alternate exercife lafts for a time proportionable to the degree of irritability.

It is evident, from all the experiments that the vital parts are the moft irritable. The heart is the moft irritable of all, and next to that, the inteftines and diaphragm.

The nature of irritability is unknown: we only judge of it by its effects. It probably refides in the elaffic fluid which is interlperfed between the lamelle of the fibre. The nerves are not irritable; but if a nerve be pricked, the mufcle at which it terminates will contract itfelf. The nerves may then give motion to the mufcles; but they do not commanicate an irritability to them which they are not poffeffed of themfelves; they only put it into action, and thus they are the minifters of the affections of the foul.

Irritability then feems to be what confitutes the vital power in the animal; and this property has not been perceived in the vegetable. Is it not then the diftinguijhing character we feek for?

CHAP.

258)

C H A P. XI.

Of the Induftry of Animals.

1. TITHERTO we have fcarcely confidered animals in any other light than with refpe ℓ t to organization, and the immediate and general confequences of it. We will now contemplate their induftry, which is fill more interefting to us.

Some arfimals feem reducible to feeling only. Others have all our fenfes, and rife almoft to underftanding. The diftance from the polypus to the ape appears enormous.

Imagination and memory are oblervable in divers fpecies: imagination, in their dreams; memory, in the recollection of fuch things as have affetted them. Places, perfons, animate and inanimate objects are traced out in their brain, and they act agreeably to thefe reprefentations.

The degree of knowledge in each fpecies anfwers to the place it occupies in the general plan, The fphere of this knowledge extends to all cafes which the animal may naturally meet. And if the animal happens to be drawn from his natural cirele, and neverthelefs is not intirely removed out of it, we may conclude that this new fituation has a relation to one of the cales to which the fphere of his knowledge extends.

The way whereby animals vary their proceedings as neceflity requires, furnifhes ote of the flrongeft arguments againf the op non which transforms them into mere machine . The philofopher who attributes to them a foul, founds his judgment on the analogy of their or gans with ours, and of their actions with feveral of ours. Thofe who make the foul material, forget that even feeling is incompatible with the properties of matter.

The greater the number of cafes is to which the knowledge of an animal extends, the higher is this animal elevated in the fcale.

The prefervation of life, the propagation of the fpecies, and the care of their young, are the three principal branches of the knowledge of aninals; but all are not alike to be admired in thefe refpects.

The oyfter knows only how to open and clofe its fhell.

The ./pider fpreads a net for his prey: waits like an huntfman, till fome infedt falls into the fnare: hardly has he touched it, before he darts upon it. Is he armed, or too nimble? He faftens the lines to him with wonderful fkill, and thus difables it either from flying or defending itfelf.

Divers fpecies of animals live from day to day, without taking any thought for the fucceeding day. Others feem endued with a kind of forefight, conftruct magazines with abundance of art, which they fill with various kinds of provifions: fuch are the bee and the beaver.

Among animals that live by prey, fome, like the eagle and the lion, attack with open force. Others, as the hazuk and the fox, join craft to ftrength.

Arength. Some fave their lives by flight; others by hiding themfelves under the earth or water; while others ftill have recourfe to divers ftratagems to facilitate their flight, and evade the purfuit of their enemy.

Thofe philofophers, who take a great deal of pains to define infinit, are not aware, that in order to do it, they fhould fpend fome time in the head of an animal, without becoming the animal iffelf. To fay in general, that inftinct is the refult of the imprefion of certain objetts on the machine, of the machine on the foul, and of the foul on the machine; is to fubflitute terms that are a little lefs obfcure, inftead of a very obfcure term: but the idea does not iffue from the thick darknefs that covers it. We well know what is not inftinct, but are utterly ignorant what it is. It is not underftanding, or realon. The brute has neither our notions, nor our mean ideas; becaufe it has not our figns.
2. At the fame time that Nature has taught divers animals the method of attacking and purfuing their prey, fhe has inftructed them in that of félf-defence or efcaping. If we were converfant in the books of nature, we fhould there fee, without doubt, that the profit always makes amends for the lofs. A regifter of the births and deaths of fome fpecies, put this truth beyond all controverfy.

Thofe fpecies which multiply moft, have the greateft number of enemies. Caterpillars and vinefretters are attacked as much within as without; by I know not how many infeets, that are always'

(261)

bent on deftroying the individuals, without being able to effect the deftruction of the fpecies. Many fpecies feek their living or retreat in the inner part of the earth, or in that of plants and animals. Others build themfelves nefts or fhells with amazing art, where they pals their time in weaknefs and inactivity.

Some that are more fkilful, can, like us, make themfelves cloaths, and even procure matter for their nourifhment. They ftrip our cloths and furs of their hairs, and make a kind of fuff of it, wherewith they clothe themfelves. The form of their drefs is very fimple, but very commodious. It is a fort of muff or cafe, which they can lengthen or widen as they find occafion. They lengthen it by adding to each end new layers of filk and hair, and widen it as we do a glove, by cutting it in the middle according to the length of it, and by ingrafting a piece. You mav imagine that I am fpeaking of houfe-moths; field-moths, which clothe themfelves with leaves, furpals them in induftry.

Several kinds of fighes and birds change, at a flated time, their dwelling-places. We have feen numerous fhoals of herrings and cod-fifh, and flocks of geefe, quails, and crows, refembling thick clouds, that fometimes darken the air. By fuch periodical emigrations the fecies are preferved, and in their long pilgrimages Nature is their pilot and provider.
3. The grafhopper, lizard, tortoife, and crocodile furnifh examples of animalls that fcarce take any care of their eggs, and are almoft wholly unmind-
ful of the young that are hatched from them. They lay them in the earth or fand, and leave the fun to communicate the warnth neceflary for them. Shell-fifh practife the fame method: fome Epawn in the water; others between fones, or in the fand.

The inftint of the different fpecies confifts in depofiting them in places where the young may find proper nourifhment at their birth. The mothers commit no miftake with refpect to that. The butterfly of the cabbage-caterpillar never lays her egge on meat, nor the fefh-jly on the cabbage.

The gnat, that flutters in the air, was at firft an inlabitant of the water. For this reafon her eggs are always depofited in the water. The mafs formed by them refembles a little veffel which the infett fets afloat. Each egg is in the form of a keel. All the keels are vertical, and are difpofed back to back. The gnat lays but one egg at a time. We cannot devife how the can caufe the firft egg or keel to remain on the water. Her method is neverthelefs very fimple, but much more ingenious. She ftretches out her long legs behind her, crofles them, and by thus forming an angle of them, receives the firit egg, and holds it at pleafure. A fecond egg is foon placed next the firf; then a third, fourth, \&c. The bafe of the pyramid thus widens by little and little, and at length is capable of fuftaining itfelf.

Some fpecies glue their eggs with great fymmeary and propriety round the branches or fmall thoots of trees, like rings or circles. One would be apt to fay, that fome fkilful hand had been diverting
diverting itfelf in fitting pearl bracelets on the fprigs. A caterpillar, which, from the diftribution of its colours, is called livery, transforms itfelf into a butterfly, that difpofes her eggs in this manner, and forms thefe pretty bracelets of them.

Other butterflies do fill more: they ftiip themfelves of their hair, and make with it a kind of neft for their eggs, where they lie foft and warm. Such in particular is the induftrious workmanfhip of the butterfly, proceeding from that called of the co:nmon caterpillar, becaufe it is in fatt moft common in thefe countries.
4. Certain fpecies are fo attached to their eggs, that they carry them about with them every where. The wolf fpider inclofes hers in a hittle filk purfe, which fhe bears on her hind-part. Does any one deftroy it, or take it from her? Her natural vivacity and agility abandon her: fhe feems to fall into a kind of languor. Has fhe the happinefs to recover the precious truft? She inftantly feizes it, carries it away, and betakes herfelf to flight. As foon as the little fpiders are hatched, they collect and arrange themfelves fkilfully on the back of their dam, who continucs for fome time to beftow her attention on them, and to tranfport them with her wherever the goes.

Another fpider lodges her eggs in a little fill: purfe, which the wraps up in a leaf. She fixes herfelf on this purfe, and fits on her eggs with amazing affiduity. Another, to conclude, inclofes her's in two or three little filk balls, which fhe fufpends by threads; but has the precaution to hang before, at a fmall diftance, a little bunch of dry leaves, to conceal them from the infpection of the curious.

5. Dive

5. Divers fpecies of folitary'ไlies are not lefs to be admired, as well for their forefight in amafling provifions for their little ones, as for the art difplayed by them in the nelts they prepare for their reception. The ma/on bee fo called becaufe, like us, fhe underfands the art of building, performs fuch works in mafonry, as one would imagine muft greatly furpafs the ftrength of a fly. With fand, collected grain by grain, and glued together with a kind of cement much preferable to ours, The erects a houfe for her family ; a very fimple one indeed, but extremely folid and commodious. It is divided within into feveral chambers or cabins, on the back of each other, without any communication between them. One general foldage, a wall of inclofure, comprehends them all, and leaves no opening without. This wall muft be broke before the apartments can be feen, and it is found to be as hard as a ftone. Thefe nefts are very common on the fronts of houfes: they there refemble little oval hillocks, of a different grey from that of the fone. The fly that is the architect of thefe buildings depofits an egg in each chamber, and fhuts up in it at the fame time a fock of wax or pafte, which is the nourifhment appropriated to her young.

Another fly, which may be called the carpentor * bee, becaufe the works in wood, likewife builds apartments for her family, but in a different tafte from that of the mafon. Sometimes the diftributes them into ftages; fometimes difpofes them in a row. Cielings or partitions, artfully made, feparate all thefe ftages or chambers,

[^9]and there is an egg depofited in each of them, with the quantity of pafte necelfary for the young.
6. Thefe various kinds of work require in general lefs fkill and genius than labour and patience. There is a very different degree of art and fagacity difplayed in the neft conftructed by another fly with fingle pieces of leaves only. This neft is a real prodigy of induftry. When it is taken to pieces, and narrowly examined in all its parts, one cannot conceive how a fly fhould be able to cut them out, turn, and put them together with fo much propriety and exactnefs. When viewed on the outide, this neft very much refembles a toothpick cafe. The infide is divided into feveral little cells, in the form of a thimble, fet in one another as thimbles are in a tradefinan's fhop. Every thimble confilfs of feveral pieces, which are feparately cut from one leaf, and whofe form, circumference, and proportions tally with the place each is intended to occupy. The fame method is ufed with refpect to the pieces that form the cale or common cover. In a word, there is fo much exactnefs, fymmetry, uniformity, and fkill in this little mafter-piece, that we fhould not believe it to be the work of a fly, did we not know at what fchool fhe learnt the art of conftructing it. We may naturally conjecture that each thimble is a lodging for a little one; but we could not have imagined that the pafte which the mother provides for it is almoft liquid, and that the little cell, which is entirely compofed of fimall pieces of leaves, is notwithflanding a veffel fo well clofed up, that this pafte never fpills, even when the veffel is fooped.
7. Many brutes act in concert with each other. A drove of oxen is grazing in a meadow: a wolf appears: they immediately form into a battalion, and prefent their horns to the enemy. This warlike difpofition difconcerts him, and obliges him to retire.

In winter, hinds and young fags affemble in herds, in the more numerous companies as the feafon happens to prove fevere. They warm each other with their breath. In the fpring they feparate, the hinds concealing themfelves in order to bring forth. The young harts remain together, love to walk in company, and are only parted by neceflity.

Sheep that are expofed to the fultry heat of the dog-days in an open plain, keep near each other, fo that their heads touch; they hold them inclined towards the earth, and fnuff up the frefh air which comes from beneath them.

Wild ducks, that are accuftomed to change their climate, range themfelves in their flight in the form of a wedge, or an inverted V , that they may cleave the air with the greater eafe. The duck at the extreme point leads the flight, and cleaves the air firft of all. After a certain time he is relieved by another, the fecond in his turn by a third, \&c. In this manner each bears a fhare in the laborious part of this office.
8. Animals to whom the company of their own kind is ufeful, have been rendered fit for this commerce. - And if the Author of Nature had man in view. with refpect to this particular, as
we may without pride fuppofe, the means will be found to correfpond perfectly well with the end. In effect, how many embarraffments and inconveniencies would have accompanied the divers fervices we deduce from domeftic animals, if individuals of the fame fpecies had not power to cohabit together!

The fpirit of fociety is not altogether limited to individuals of the fame fecies, but extends likewife in a certain degree to thofe of different fpecies, and from thence man alfo derives fome advantage. The cuftom of feeing each other, of eating their meals in common, of repofing under the fame roof, confirms the natural difpofition of domefic animals to live in fociety. The connections which refult from it become fo much the ftronger, as they began earlier or nearer to their birth. Thus animals that are not appointed to live together, may notwithfanding form a fort of fociety: the natural inclination each of them has to live with thofe of a like kind, is fufceptible of modification or extenfion.

Every individual knows his like; thofe of the fame fociety likewife know them. It is obfervable, that if ftrange fowls are brought into a poultry-yard, thofe of the place will perfecute them, till cohabitation has made them members of the fociety.

The outfide of the body exhibits divers characters, by means of which individuals of the fame fociety may know each other, and diftinguifh ftrange individuals. But among thefe phyfical characters, there may be fome mixed ones, or fuch as belong as much to the foul as the body,
which the animals of the clafs we are treating of, are capable of feizing; fuch are the air, potture, gait. The individuals of that fpecies which are not yet become familiar in their new habitation, feem fearful or embarraffed; this fear or embarraffment detêts them, and excites or encourages others to attack them.

That kind of fociety in which domeftic animals live, gives room for a remarkable obfervation; the young lamb diftinguifhes her mother from amongft 3 or 400 fheep, although there does not appear to be any fenfible difference betwixt them.
9. Nothing is more wonderful than thofe legions of flying creatures, that at a flipulated time pafs from one to other very remote countries. What inftinet affembles them? What compafs directs them ? What chart points out their way? We prefently conceive that the change of the ieafon, and the want of fuitable nourifhment, advertife thefe different fpecies of birds to Chift their abode. But whence did they learn that they fhould meet with in other regions a climate and aliment proper for them? In order to be able to anfwer thefe queftions, and all fuch as may be afked on this interefting fubject, we fhould carefully examine every circumftance that attends the marches of thefe birds. The degree of cold or heat that accelerates or retards them, deferves to be particulaly attended to; for there is no room to doubt that they are moft of all influenced by this. There is perhaps a fecret relation between the temperature which fuits with certain fpecies, and that which is necefflary for the production of the food that nourifhes them.

But we have not carried our inquiries deep enjugh
nuad into thefed
finsol paladye.
10. Among the f alid, fome depen of men, if not alt mfo with refpe
They do not owe
but folely to natu them are not on
and that for a ll
much fronger
the animal, or of its life; I
the individual
one and the 0
Aate of fociet diferent \{pe Atructed to la of admiratio

$$
\begin{aligned}
& \text { Societies } \\
& \text { two clafle } \\
& \text { principal e } \\
& \text { viduals; } \\
& \text { preferex } \\
& \text { young, } \\
& \text { Seve } \\
& \text { of wory } \\
& \text { ants, } \\
& \text { Ther } \\
& \text { Coris } \\
& \text { focie }
\end{aligned}
$$

enough into thefe different fpecies of birds and filhes of paffage.
10. Among the focieties of brutes improperly fo called, fome depend on chance, or on the agency of men, if not altogether, at leaft in part. It is not fo with refpect to focieties properly fo called. They do not owe their origin to any human act, but folely to nature. The members that compofe them are not only united by common neceffities, and that for a fhort time; but they are fo by a much flronger tie, which fubfifts to the death of the animal, or at leait during a confiderable part of its life; I mean, the natural prefervation of the individual, or that of its family. Both the one and the other are neceffarily attached to the flate of fociety. It is for this great end that thefe different feecies of fucial animals have been inftructed to labour in common on works fo worthy of admiration.

Societies properly fo called may be divided into two claffes; the firft comprehends thofe whofe principal end is limited to the prefervation of individuals; the fecond, thofe whofe fiope is, the preferivation of individuals, and education of their young.

Several fpecies of caterpillars and fome fpecies of worms belong to the former of the fe two claffes; ants, wafps, bees, beavers, to the fecond.

The firft clafs will have under it two principal forts; one of which will comprehend temporary. focieties; the other, focieties for life.
11. A butterfly depofits her eggs, about the middle of funmer, on the leaf of a plum-tree; M_{3} the
the number of thefe eggs is three or four hundred. After fome days, there iffues from each of them a very fmall caterpillar. They are fo far from difperfing themfelves on the adjoining leaves, that they all continue together on that whereon they firft received their being: the fame fpirit of fociety unites them. They apply themfelves immediately in concert in the fpinning of a web, which at firft is very thin, but they afterwards make it ftronger, by gradually adding new threads to it. This web is a real tent fpread upon the leaf, under which the young caterpillars fhelter themfelves. As they increafe in bulk, they extend their lodging by frefh layers of leaves and filk. The fpaces contained between thefe layers are apartments, all of which communicate by doors made on purpofe. In this neft they pafs the winter, placed near each other, without motion, till the returning fpring enlivens them, and invites them to brouze on the fprouting leaves. Laflly, towards the month of May, the fociety is diffolved; every caterpillar feparates from his companion, and fpends the remainder of his life in folitude. Being then become fronger, a ftate of fociety is no longer necefflary for them.
12. The caterpillars, that live on the oak, and Whofe focieties are much more numerous than thofe of the common, are very fingular in their proceedings. They fet out from their neft at funfet, and march in proceffion, under the conduct of a chief, whofe motions they follow. The ranks are at firft compofed only of one caterpillar, afterwards of two, three, four, and fometimes more. The chief has nothing in him that may diftinguilh him from the reft, but by being the firf, and that
te is not confan! ' I.las may in his dier having take annd the:n, the lame order ; and
Fie of the caterp
th heir full gro cone, where it
ind diterwards
Thefe metamor whicceed io th different from
This is an principal end
13. There are true rep ners, and ge of different make them their meal Others lis which the have cor them, it where.

The make are $\{\mathrm{Cl}$ and idlen reek whi afte fro H
he is not conftantly, becaufe every other caterpillar may in his turn occupy the fame place. After having taken their repaft on the leaves around then, they return to their neft in the fame order; and this continues during the whole life of the caterpillar. When they have arrived to their full growth, each forms for himfelf a cone, where it is transformed into a chryfalis, and afterwards affumes the form of a butterfly. Thefe metamorphofes caufe a new kind of life to fucceed to the flate of fociety, which is very: different from the primitive one.

This is an example of focieties for life, whofe principal end is the prefervation of individuals.
13. There are feveral kinds of eaterpillars that are true republicans, and whofe difcipline, manners, and genius, diverfify them as much as thofe of different people. Some of them, like favages, make themfelves hammocks, in which they take their meals, and even pafs their whole lives. Others live like the Arabs and Tartars, in tents, which they erect in the meadows; and when they have conlumed all the herbs that grew about them, they go away and pitch their camp elfewhere.

The nefts which the republican caterpillars make for themfelves are perfect retreats; they are fcreened in them from the injuries of the air, and are all clofely flaut up in times of ination or idlenefs. But they go out at certain hours to feek their nourifhment. They feed on the leaves which furround them, which they confume one after another. They often go to a great diftance from their dwelling, and by different turnings. However, they can always find it again, when they M_{4} have
have occafion. Nature has provided them with a method for regaining their lodging, which anfiwers exactly to that ufed by Theseus for fetching Ariadne out of the labyrinth. We pave our ways; our caterpillars line theirs with tapeflry. They never walk but on filk carpets. All the paths that lead to their neft are covered with filk threads. Thefe threads form tracks of a glofly white, which are at leaft two or three lines in width. By purfuing thefe tracks in a row, they never lofe their way, how intricate foever the turnings and windings of their paffage may be. By putting a finger on the track, we fhould interfea the path, and throw the caterpillars into the greateft perplexity. They fop on a fudden at this place, and exprefs all the figns of fear and diftruft. Their march is fufpended, till fome caterpillar, more bold than the reft, croffes over the fpoiled path. The thread the fpreads in croffing ferves as a bridge for the next to pafs over. This in palfing fpreads another thread; a third another, and thus the way is foon repaired.

Yet there is a great difference between the method of the republican caterpillars, and that of Thefeus. They do not fpread a carpet over their paths, to prevent their miffing their way; but they do not mifs their way, becaufe they fpread fuch a carpet. They fpin continually, becaufe they have always occafion to evacuate the filky mater, which their nourifhment produces again, and which is inclofed in their inteftines. By fatisfying this want, they are affured of being in the right path, without attending to it. The confruction of the neft is likewife connetted wath this want. Its architecture is adapted to the form
of the animal, to the fructure and exercife of his organs, and to his particular circumflances.
14. Ants feek their provifions and aliment at a great diftance from their abode. Various paths, which are often very winding and intricate, terminate at their neft. The ants pafs over them in rows, without ever miffing their way, any more than the republican caterpillars. Like the latter, they leave tracks wherever they pafs. Thefe are not difcernible to the eye; they are much more fenfible to the fmell; and it is well known that ants have a very penetrating one. However, if we draw a finger feveral times backwards and forwards along the wail by which the ants pals and repals up and down in rows, they will be ftopped on a fudden in their march, and it will afford fome amufement to oblerve the perplexity they are in. It will happen in the fame manner with regard to the proceflions of thefe ants, as has been before related concerning thofe of the caterpillars.
15. The fight of a bee-hive is certainly one of the fineft that can offer itfelf to our eyes. There appears in it an aftonifhing air of grandeur. One can never be weary of contemplating thefe workfhops, where thoufands of labourers are conftantly employed in different works. We are fruck in a particular manner with the geometrical exactneis of their works; as we likewife are at the fight of their magazines, which are replenifhed with every thing necelfary for the fupport of the fociety during the rigorous feafon. We likewife fop with pleafure to behold the young ones in their cradles, and to obferve the tender care of their nurfing mothers towards them.

But what chiefly attracts the attention, is the queen : the flownefs, I had almoft faid gravity, of ber march, her ftature, which is a more advantageous one than that of the other bees, and, above all, the various homage paid her by the reft. We can fcarcely believe what our eyes are witnefles of, in the regard and affiduities of the neuters for this beloved queen. But our amazement is greatly heightened when we fee thefe laborious, active infects entirely ceafe from their labour, and fuffer themfelves to perifh, as foon as they are deprived of their fovereign.

By what fecret engagement, by what law fupexior to that whereby each individual provides for its own prefervation, are the bees attached to their queen in fuch a degree, as abfolutely to neglect the care of their own lives, when they happen to be feparated from her? This law feems to be nothing more than the grand principle of the prefervation of the fpecies: the neuters do not engender; but they know that the queen enjoys that faculty: they confruct thofe cells, whofe proportions we fo much admire, for the reception of the eggs fhe is ready to lay. Nature has infructed them as much with regard to the young that is to be hatched from them, as fhe has the mothers of other animals in favour of their offfpring.
16. Of all animals that live in fociety, none approach nearer to human underftanding than beavers. We are at a lofs to determine what is moft worthy of admiration in their labours, whether the grandeur and folidity of the undertaking, or prodigious art, fine views, and general defign fo excellently
excellently difplave execution. A foci academy of engin plans, which they neceflary, purfuing as precifion ; are and unite their will one common ent good of the fociety nefles of their pert them capable of th rant of them, and bitations, will thir induftrious favage

The mole or b : of immenfe labou brutes are able to Reprefent to you
hundred hundred feet in w break the force o throw up a bank dred leet in len bafe. Nothing likely: and whe fill willing to re to enforce our b

The maft co confift of twent fuch are but ra ten or twelve.
trict, and admi
When any
fices of the b
excellently difplayed throughout every part of their execution. A fociety of beavers feem to be an academy of engineers, that proceed on rational plans, which they rectify or modify as they judge neceffary, purfuing them with as much conflancy as precifion; are all animated by the fame fpirit, and unite their will and flrength for the promoting one common end, which is always the general good of the fociety. In a word, we muft be witneffes of their performances, before we can judge them capable of them. A traveller that is ignorant of them, and happens to meet with their habitations, will think he is among a nation of very induftrious favages.

The mole or bank which they raife, is a work of immenfe labour, and it is inconceivable how brutes are able to project, begin, and complete it. Reprefent to yourfelf a river of fourfcore or an hundred feet in width. Their firf bufinefs is, to break the force of the current. The beavers then throw up a bank or caufeway eighty or an hundred feet in length, by ten or twelve feet at its bafe. Nothing is more certain than this, nor lefs likely : and when we have repeatedly feen it, are ftill willing to renew our infpection of it_{2} in order. to enforce our belief.

The moft confiderable towns of the beavers, confift of twenty or twenty-five lodgments, though fuch are but rare. The moft common have only ten or twelve. Each republic has its peculiar diftrict, and admits of no accidental guefts.

When any great inundations damage the edifices of the beavers, all the focieties without exM6.
ception
ception unite together for making the neceffary repairs. If hunters declare a cruel war againt them, and entirely deffroy their banks and cottages, they difperfe themfelves about the country, betake themfelves to a folitary life, dig burrows or trenches under-ground, and never fheir any marks of that induftry we have been admiring.
17. Beavers feem to be formed with a view to confound our reafonings. Their affociating themfelves into great bodies, for working in concert on their iminenfe works; their feparating into
laree of plaiter and propriety;
dant appeftr:; malls for differ
and fupply the dilisence wha public works, grand body
reparations; which feem
hight, whic the animal little families, or particular focieties, charged with the conftruction of the huts; the nature of thefe works, their extent, folidity, propriety, and approbation fo conducive to one general end, comprehending fuch a number of fubordinations; in a word, their almolt perfect refemblance with works erected by men with the fame intent; all concur to give the labour of the beavers an undoubted fuperiority over that of the bees. In fact, to fell trees chofen on parpofe, to lop them, and cut off their projections, to make great crofs pieces of timber of them, difpofing them in their proper places ; to cut finaller trees like ftakes, plant feveral rows of thefe ftakes in a river, and interlace them with branches of trees, in order to ftrengthen and connett them together; to make morter, and with it folidly to compact the infide of the pile; and to all this to add the form, proportions, and folidity of a great bank; to form fluices thereon, and open or fhut them according to the water's elevation or abatement ; to build behind the bank little houfes one or more ftories high, founded on an entire pile-work; to build them folidly without, and incruft or cement them within by ar layer
layer of plaifter, applied with equal exactnefs and propriety; to cover the flooring with a verdant tapeftry; to contrive lights and outlets in the walls for different purpofes; to ereटt magazines, and fupply them with provifions; to repair with diligence whatever breaches may happen to the public works, and re-unite themfetves into one grand body for the effecting in common thefe reparations; are aftonifhing marks of indultry, which feem to imply in the beavers a ray of that light, which raifes man fo far above the reft of the animal creation.

CHAPL

C H A P. XII.

Continuation of the Induftry of Animals.

1. WE fhall in the next place treat of the proceedings of folitary animals. If they do not affect that extraordinary air of reflection and prudence, that brightnefs of genius, and that appearance of policy and legillation which we admire in fociable animals, they neverthelefs attract our regard, either by their fimplicity and fingularity, or their diverfity and appropriation to one common end, for the attaining of which they ufe the ingenious and natural means. After having contemplated the government, manners, and labours of a republican community, we may fill find fome pleafure in confidering the life and occupations of a Jolitary one, thus pafling from the monuments of Rome to the cottage of a Robinfon. Thofe works that are performed by the fociable animals, and which aftonifh us as much by their fize, as by the beauty of their difpofition, refult from the concurrence of a number of individuals. They all pafs through various hands: fome fketch them, others bring them to a greater perfection, and a third fort finifh them. The works of folitary animals fpring from one head only; and the fame hand that begins them, continues, finifhes, and repairs them. Each individual has his particular tatent, and degree of fkill, whereby he provides for
for his own fu with all neceffa
We will her
ings relative affair of great is to prepare hir him of any du alone exhibit proceedings wh this kind. this clafs in, pa
2. There are fupported them the meth girdle round of filk threads fixed to the means they fa of filk. It is chryyalis muf pillar was. chivy Ialis fuff rations.
3. Other thefe give the to relemble of a filk.wor expreflion,
boat-wife co
like,
fhells,
and proprie
and formed
minute filk
which
for his own fubfiftence, and furnifhes himfelf with all neceffaries.

We will here confine ourfelves to the proceedings relative to the metamorphofis: this is an affair of great importance for one of our hermits to prepare himfelf for, the moft interefting to him of any during his whole life. Caterpillars alone exhibit to us examples of almoft all the proceedings which nature has taught to infects of this kind. We will limit our examinations to this clafs in.particular.
2. There are fome caterpillars whofe bodies are fupported by a prop, and nature has taught them the method of effecting this. They wind a girdle round their body, compofed of a number of filk threads collected together, whofe ends are fixed to the prop that fuftains them. By this means they faften their hind legs in a little heap of filk. It is eafy to imagine after this, that the chryfalis muft be tied and grappled as the caterpillar was. The girdle is loofe, and leaves the chryfalis fufficient room to perform its litte operations.
3. Other caterpillars form cones. Some of thefe give their cone a more exquifite form, fo as to refemble that of an inverted boat. The cone of a filk-worm is made, if we may be allowed the expreffion, of a fingle piece. The cones made boat-wife confift of two principal parts, fhaped like fhells, and joined together with great dkill and propriety. Each fhell is worked feparately, and formed of an almoft infinite number of very minute filk rings. On the fore-part of the cone, which reprefents the bind-part of the boat, is a
ledge that juts out a little, in which we may perceive a very narrow crevice, which denotes the aperture contrived for the exit of the butterfly. By means of that, the two fhells may part afurrder, and leave room for the butterfly to pafs through them. They are confructed and put together with fo much art, that they are of the nature of a fpring, and the cone from whence the butterfly has lately iffued appears as clofe as that which it fill inhabits. By this ingenious artifice the butterfly is always free, and the chryfalis in fafety. We fhall hereafter come to treat of proceedings which are analogous to thefe, but more fingular.
4. Our fpinners have not all an equal provifion, yet all feem to endeavour at concealing themfelves from fight. Such as are not rich enough to make themfelves a grood lodgment of filk, fupply the want of it by different matters of a coarfer or finer texture, which they are fufficiently fkilful to caufe to contribute towards the conflruction of the lodge. Some content themfelves with giving it a covering of leaves, which they connect together without any art. Others do not confine themfelves to the amaffing thefe-leaves, and difpofing them indifcriminately; but range them with a kind of regularity. Others think proper to powder the whole of their cone with a matter they yield from behind them, and which they caufe to penetrate betwixt the thread. Others ftrip themfelves of their hairs, and form a mafs of a mixture of filk and hairs. Others, after having ftripped themfelves, plant their long hairs about them, and make of them a fort of cradle fence. Others add a greafy matter, which they:
they procure
hairs; with this and it ferves as themfelves int conflruct for grains are conn which have filt in it like a co a kind of glue

Another fpe than the forme not too much fribed thofe c boat: this is give to their tirely of filk. with their teet even and alik and propriety principal parts
likewife forme frall inlaid wo together with fancy that we piece of inlaid
live The mo live in the inf one caterpilla the caufe of know, that a to caufe cater they furiounly
met. It is met. It is th
pofition of th
they procure from their infide, to the filk and hairs; with this they ftop up the ings of the weft, and it ferves as a varnith for them. Others thruit themfelves into fand or fmall gravel, and there conftruct for themfelves cones of fand, whofe grains are connetted with the filk. Others, laflly, which have filk, pierce the earth, make a cavity in it like a cone, and fmear the fides of it with a kind of glue or pafle.

Another fpecies, which is far more induftrious than the former, perform a work which we cannot too nuch admire. You have lately feen defrribed thofe cones which refemble an inverted boat: this is likewife the form that this fpecies give to their cone; but they do not make it intirely of filk. They frip off little pieces of bark with their teeth, of a rectangular figure, nearly even and alike, and difpofe them with all fkill and propriety; with thefe they compofe the principal parts of the cone. Thefe great parts are likewife formed of a confiderable quantity of very fmall inlaid work, placed end to end, and joined together with filk. In a word, we are apt to fancy that we are looking at an inlaid floor, or a piece of inlaid work.
5. The moft folitary of all infects are fuch as live in the infide of fruits. Each fruit lodges only one caterpillar or worm. We are ignorant of the caufe of this remarkable fact. We onlv know, that a curious obferver having attempted to caufe caterpillars of this fpecies to live together, they furioufly engaged each other as often as they met. It is then incontellably true, that the difpofition of thefe caterpillars is antifociable. Se-
veral have metamorphofed themfelves in the very fruit that has ferved them for a retreat and for provifion; they dig cavities in it, which they line with filk, or in which they fpin their cones. Others, which are the greater part of them, quit the fruit, and metamorphofe themfelves in the earth.
6. Thofe infeets that roll up or fold the leaves of a great number of plants are alfo perfect hers mits. This proceeding is common to many caterpillars. They thus procure for themfelves little cells, which are convenient lodgings for them, in which they are always fure to find nourifhment, for they eat the walls of the cell; but they are always very careful never to touch that part which is deflined to cover them. The different methods in which thefe caterpillars lodge themfelves, give room for diftinguifhing them into tyers, foiders, and rollers.

The art of the tyers is in general the mof fimple. It confifts in joining feveral leaves together with filk threads, in order to form them into one intire parcel, in the center of which is the lodge of the little hermit.

The procedure of the folders fuppofes more refined operations. They fold the leaves either in the whole, or in part. In the whole, when the portion folded is turned back flat upon another part of the leaf: and in part, when they only fimply bend the leaf more or lefs.

But the labour of the rollers is moft of all to be admired. They live in a kind of roll, whofe dimenfions, form, and pofition vary in different fpecies. Some give it a cylindrical figure; others, the form of a cone, which is likewife as wellmade
made as thofe the grocers ufe. The leaf is always rolled fically, or as wafers are. The rull or cone is commonly laid on the leaf; but fometimes, which is very remarkable, it is fixed on it like a nine-pin.

Does my reader imagine that mechanifm prefides over the conftruction of thefe various works? Does he conceive in what manuer an infeet, that has no claws, is able to roll up a leaf, and to keep it fo ? We know in general that caterpillars fpin: and can in fome meafure difcover, it is by the affiftance of their threads that our ikilful rollers caufe the leaves to take the form of a cylindrical or conical tube. We fee in effect parcels of threads diftributed from one diffance to another, which hold the roller confined to the leaf. But how can thefe threads, which feem only to perform the office of fmall cables, be capable of rolling up the leaf? This we imagine ourfelves able to guefs at, but without effect. We fuppofe, that by faftening threads to the edge of the leaf, and drawing thefe threads towards her, the caterpillar forces the edge to rife and turn itfelf; which is by no means the cafe. The ufe the induftrions infect makes of its ftrength, confifts of a more refined mechanifm. He fixes a number of threads to the border of the leaf, but does not draw it to him. By means of them he bends the other extremity to the furface of the leaf. The threads of one and the fame parcel are nearly parallel, and compofe a little ribband. By the fide of this ribband the infect fpins a fecond, which palfes over and croffes the former. This then is the fecret of its mechanifm. In pafling over the firft ribband in order
order to extend the fecond, it bears on the firft with the whole weight of its body; this preffure, which tends to force down the ribband, obliges the edge of the leaf to which it is faftened, to rife. The fecond ribband, which is at the fame time fruck on the flat part of the leaf, preferves on the edge that alteration or bending which the infect was difpofed to give it. If we narrowly examine thefe two ribbands, their effect will be vifible. The fecond will appear very tight, and the firft very flack; the reafon is becaufe the latter has no greater degree of action, nor indeed ought to have. You now comprehend that the roll is gradually formed by the repetition of the fame operations on different parts of the leaf. But it often happens that the coarfer edges refift too much; the infect knows how to weaken them by gnawing them here and there. In order to form a cone, fome more performances are neceffary. The roller cuts with her teeth, on the leaf, the part that is to compofe it. She does not detach it altogether from it; it would then want a bafe; fhe only feparates that part which is neceflary to form the foldings of the cone. The part is properly a flip, which fhe rolls as fhe cuts it. She raifes the cone on the leaf, almoft in the fame manner as we erett an inclined obelifk. She fixes threads or little cables near the point of the pyramid; fhe preffes on them with the weight of her body, and thus forces the point to raife itfelf. You may form an idea of the reft; the mechanifim is the fame as that employed in making a roll.

Thefe cells, in which the caterpillar lives, ferve likewife as a retreat for the chryfalis. This latter would not probably be fufficiently well accommodated
commodated wit caterpillar lines Other Ipecies I
7. Some lea than paper. V infects Skilful thin leaves as from the inju them a vaft for themfelve they mine miners do in have taken are extrem clafs of cat They cann fake of co themfelves They find They eat a way for crooked Others oblong teeth a fome refemb fpin, are t mine. Buit, are 1 gold colo reg
commodated with a bare covering of leaf. The caterpillar lines the cell with filk tapeftry. Other fpecies fpin a cone for themfelves in it.

Abstract

7. Some leaves of plants are fcarcely thicker than paper. Would any one imagine there were infects fkilful enough to provide a lodging in fuch thin leaves as thefe, fo as to fhelter themfelves from the injuries of the weather? A leaf is to them a vaft country, wherein they make roads for themfelves that are more or lefs winding; they mine in the fubitance of the leaf, as our miners do in the earth. From hence allo they have taken the name of miners of leaves. They are extremely common: fome belong to the clafs of caterpillars; others to that of worms. They cannot bear to be naked; and it is for the fake of covering themfelves that they infinuate themfelves between the two foldings of a leaf. They find their fubfiftence there at the fame time. They eat the pulp of it, and, in eating, trace out a way for themfelves. Some dig there frait or

 crooked trenches. Thefe are gallery miners. Others mine round about them, in circular or oblong fpaces, thefe are miners at large. Their teeth are the inftruments they mine with; but fome worm miners dig by means of two hooks refembling our pick-axes. Several of thefe infects fpin, within the mine, the cone wherein they are to transform themfelves. Others quit the mine, and metamorphofe themfelves ellewhere. Butterflies that proceed from mining caterpillars, are little miracles of nature. She bas lavifhed gold, filver, and azure upon them ; with other colours that are more or lefs rich; though we regret that the has not performed thefe mafterpieces in a more extenfive form.8. But
9. But miners have fomething fill more wonderful to offer to us. Beftow your attention on thofe vine leaves that are before you. They are pierced with oval holes, which feem to be made in them by a gimblet. The mining caterpillars bored thefe holes, by ftripping two pieces of fkin from the leaf, with which they make a cone: that cone is there placed perpendicularly on a vine-prop, at a pretty confiderable diftance from the leaf that furnifhed the materials. How was it cut, fafhioned, detached, and conveyed? Let us not vainly attempt to guefs this: let us rather endeavour to furprize the induftrious labourer on her working bench. She mines by way of gallery, and conftructs her cone at the extremity of the gallery. It is compofed of two pieces of leaf of an oval form, very thin, even, and like each other. The caterpillar prepares thefe places; makes of them a thin texture, by clearing them of the pulp; the models them, lines them with filk, cuts them with her teeth as with fciffars, joins and unites them. They already have no connection with the leaf, notwithftanding which, the cone does not fall: the caterpillar has taken the precaution to fuftain it by fome threads of the fame fpecies with its border. When the cone is finifhed, the caterpillar applies herfelf to difengage and tranfport it from its place. She has left a fmall aperture at one end of it. She caufes her head to come out at this opening, bears it forward, feizes a part of the prop with her teeth, and by an effort draws the cone to her. The threads that hold it give way, and the caterpillar carries her little houfe about with her as the fnail does her fhell. Behold her walking; her march is a new myftery. It has been faid that all caterpillars have at leaft ten legs: this is abfolutely
abfolutely without any, and fhews us what an opinion we ought to entertain of fuch naturalifts. Let us lay in her way a finely polifhed glafs, placed perpendicularly. She is not in the leaft retarded by this, but climbs over the glafs as on a leaf. By what fecret art is fhe enabled to cleave to it, for fhe has neither legs nor claws to grapple it? You have feen caterpillars that fpin little heaps of filk which they fix themfelves to. Our miner fpins the like, at certain diftances, according to the track the is to pafs over. She feizes one of thefe heaps with her teeth, which becomes in part a fupport for her; fhe draws the cone to her, and carries it towards the little heap ; faftens it to it ; thrufts her head forwards; fpins a fecond heap; fixes herfelf to it in the fame manner as to the firft ; makes an effort to difcharge the cone, which the effects, drags it towards the new heap, faftens it likewife to it, and this fecond flep being taken unravels to you the fecret of her ingenious mechanifm. By this means fhe leaves on the bodies over which the paffes little tracks of filk, which fhe fpins from Space to fpace. When the has arrived at the place the is inclined to fix herfelf at, fhe here ftops the cone intended for an habitation, and places it in a vertical fituation. There afterwards iffues from it a very pretty butterfly, as richly cloathed, and of the fame genus, as thofe of other miners.
10. Other infects live in great galleries of filk, which they lengthen and widen as they grow. They cover them with grofs matter, and frequently with their excrements. They conftruct thofe galleries on the various bodies they feed upon, and which differ according to the fecies
of the infect. The name of falfe moths has been given to all fuch fpecies as make thofe inclofures. You are fenfible, that thofe of true moths are portable. The moft remarkable falle moths are fuch as fettle in bee-hives, and deftroy the combs. They are without defenfive arms, and are only fecured with a foft and delicate fkin; notwithflanding which nature has appointed them to live at the expence of a little warlike people that are well-armed, and equally well difpofed to defend their fettlements. Our engineers have frequently recourfe to mines and lap in the reduction of places. It is indeed abundantly neceffary that our falfe moths fhould excel in this kind of attack, and their works prove that they do. They never march but under cover. They fcoop long trenches in the thick part of the combs, in what direction they think proper, wherein they are always in fafety from the enemy. The galleries of this kind are lined within with a very clofe filk tiffue, and covered on the outife with a thick layer of grains of wax and excrements. Thus the fine works of the laborious bees are deftroyed in filence by an enemy which they are not able to difcover, and that fometimes compels them to abandon their hive. The falfe moths have no intention to procure honey: they never penetrate into the cells that contain it. They only eat the wax, and their fomach analyzes the matter which the chymift cannot diffolve. When they have attained their full growih, they make a filk cone at the end of the gallery, which they never fail to cover with grains of wax.

Othir falle moths eftablifh themfelves in our granaries, where they multiply exceflively. They covet
covet our mof valuable commodity. They connect together fevcral graius of corn; they fpin a little tube in the mid!t of this heap, where they lodge. By that means they are always within reach of a plentiful fock of nourifhment. They feed at their pleafure on the grains of which they have been careful to form their cale, and which are hike a covering to it. When their metamorphofis approaches, they abandon this cafe; they neftle in the inner part of a grain, or in the little cavities they dig in the cielings: thefe they line with filk, and there transform themfelves into a chryfalis.
10. There are few infects which claim fo good a right to our admiration as thofe that are equally fkilful with ourfelves in making cloaths, and that undourbtedly learned the art belore us. Like us, they are brought forth naked; but they no fooner come into the world, than they fet about cloathing themfelves. They do not all drefs in the fame uniform manner, nor do they ufe the fame materials in their cloathing. There is perhaps a greater diverfity with refpect to this in the modes of different \{pecies of moths, than in thofe of different people on the earth. The form of their drefs is very convenient: it correfponds exactly with that of their body. It is a little cylindrical cale, which opens at both ends. The fluff is manufactured by the moth : the ground of it is compofed by a mixture of filk and hair: but this would not be foft enough for the infect, it is therefore lined with pure filk. Our woollen furniture and furs fupply thefe moths with the hair they employ in manufacturing their fluffs. They make a careful choice of thefe hairs; cut them with their teeth, and artfully incorporate them in Vol. IV.

N
the
the filk tiffue. They never change their cloaths: thofe they wore in their infancy, they continue to wear when arrived at maturity. They can then lengthen or widen them as they find convenient. They meet with no difficulty in extending them; this they do by only adding new threads and hairs to each end. But the widening them is not fo eafy a matter. They proceed herein exactly as we do in the like cafe. They flit the cafe at the two oppofite fides, and fkilfully infert two pieces of the width required. They do not flit the cafe from one end to the other: . if they did, the fides would flart afunder, and be expofed. They only flit each fide about the middle of it. Reafon itfelf could not exceed this. Their drefs is always of the colour of the fluff from whence it was taken. If therefore a moth, whofe cloathing is blue, paffes over a red piece of cloath, the widths will be red; fhe will make herfelf a harlequin's habit, if the paffes over cloths or fluffs of feveral colours. They live on the fame hairs they cloath themfelves with. It is remarkable, that they are able to digeft them; and it is fill more extraordinary that the colours do not fuffer the leaft alteration by digeftion, and that their excrements are always of as fine a tincture as the cloths they feed on. Painters may collate from our moths powders of all colours, and all kinds of thades of the fame colour, They make little journies: thofe that fettle in cafes, do not love to walk on long hairs, but cut all they meet with in their way, and are always provided with a fcythe as they march. They reft themfelves from time to time, when they fix this cafe with fmall cords, and thus caufe it as it were to ride at anchor. They faften it more firmly, when they
are difpofed to metamorphofe themfelves. They clofe up, intitely both ends of it, in order to cloath in it the form of the chryalis, and afterwards that of the-butterfly.
11. Field moths greatly exceed the domeffic moths in point of induftry. They take the lubflance of their cloathing from the leaves of plants; but it becomes necelfary for them to prepare this matter, and give it that lightuefs and flexibility proper for the garments. Thele moths are of the fpecies of miners; and they infinuate themfelves betwixt the two membranes of a leaf, which are to them what a piece of. cloth is to a taylor; with this difference, that the latter has occafion for a pattern, which the moths can difpenfe with. They remove from thefe membranes all the pulpy fubflance that adheres to them, which membranes they make thin and polifh. They afterwards cut in them, thus prepared, two pieces, which are nearly equal, and tike each other; they labour to give them the hollownefs, windings, and proportions which the form of their cafe requires, and this form is often of an exquifite kind. They connect and unite them with incredible fkill, and conclude by lining them with Gilk. They have then nothing to do but difengage the cloathing from within the leaf. where it was taken and cut, and that requires but a few efforts.
12. Many field and aquatic moths do not prepare the fluff for their cloathing. Bits of wood, little fticks, fragments of leaves, pieces of bark, \&c. placed on each other like tiles, compofe the external cloathing of the cafe, which confifts of N 2
pure filk. At other times it is covered with gravel, pebble-ftones, pieces of wood, little bits of reed, and finall fhells either of mufcles or fnails, and, what is fcarce credible, the fnails and mufcles continue to live in thefe fhells; for, being in a manner chained to the cafe, they are obliged to follow the moth, that carries them wherever it pleafes. Thus a moth in its cloathing does not appear unlike certain pilgrims. Thofe that are covered with wood, gravel, fones, and other unwieldy matters connected together, pretty nearly refemble a Roman foldier in heavy armour. You rightly judge, that fuch kind of clothes muft needs be very roughly formed : but fome of them neverthelefs look very pretty, in which the arrangement of the materials makes amends for their coarfenefs. Aquatic moths reap fome adyantage by dreffing themfelves in fuch a frange manner. They muft be always in equilibrio with the water in the midft of which they live. If their cafe prove too light, they add a little fone to it ; if too heavy, they faften fome bits of reed to it. All thefe moths metamorphofe themfelves in their cafe; fome into butterflies, others into flies, and others into beetles.
13. Some field moths borrow no Arange matters to cloath themfelves with; they drefs intirely in filk; but their tiffue is much clofer, finer, and more gloffy, than that of the mof beautiful caterpillars. It has a fill greater fingularity; being compofed of little fcales, like thofe of fifhes, partly placed on each other. The cafe has fometimes for its laft covering a kind of mantle, which almoft intirely inclofes it, and is compofed of two principal pieces, whofe figure refembles
that
that of a bivalve fhell. Moths that procurc the matter for their cloathing from their own fund, muft be able to lengthein and widen it at pleafure; the expence attending the obtaining of it was too great to admit of their making a new one as often as there fhould be occafion. So that they are able to enlarge it in a wonderful manner. They do not add breadths to it as the domeflic moths do : but fit it from one part of it to another, according to its length, and immediately fill up the intervals with new threads, of a length proportioned to the fpace required. This cafe ferves them likewife as a kind of cone, wherein they transform themfelves into butterflies.

You have taken a furvev of the produce of a multitude of different infects, and are with good reafon aftonifhed at the prodigious varicty contained in them, all relative to one and the fame general end, and all of them likewife as much diverfified as thofe of our artifans. How does it happen, that amongft fo many infects as prepare themfelves for their metamorphofis, fome hang by their hind-part, others fafen themfelves with a girdle, whilft others make themfelves cones? How comes it to pafs, that of thofe that conftruct thefe cones, fome form them of pure filk, and others compofe them of matter of different kinds? Why is the form of thefe cones fo various in different fpecies? Wherefore do fome infects fo artfully rollup the leaves of plants, and others only faften or fold them together? How can we account for the mining of thele leaves by fome only, and that the reff fhould not all mine them in the fame manner? In fhort, how fhall we affign a reafon why the moths are not alt clothed in the fame drefs?

$$
\mathrm{N}_{3}
$$

(294)

All thefe wherefores, and a thoufand others that may be formed on the pioductions of nature, are fo) many enigmas propofed to beings that are banifhed into a corner of the univerfe, and whofe fight, as thortas that of the mole, can only perceive the neareft objects, and the moft direct and moft flriking relations.

It behoves us to remain in the place that has been ailotted for us, from whence we can only difcover fome links of the chain. One day we fhall difcover more of them, and fhall fee them more diftinctly. Mean while we may confider thefe proceedings of infects, fo diverfifred and replete with induftry, as an agreeable fpectable exhibited by nature to the eyes of the obferver, that furnifhes him with an inexhauftible fource of reflective pleafure and ufeful infruction. He is led to the Author of the univerfe by the thread of the caterpillar, and he admires in the variety of their means, and in their tendency to the fame end, the fecundity and wifdom of the Ordaining Mind.

This fight becomes fill more interefting, when the obferver undertakes to bewilder infects, and draw them from their natural track. They then fhew him refources, which he had not forefeen, and that furpafs his expectation. When falle moths of the wax fecies are in want of wax, they can make galleries of leather, parchment, or paper. A caterpillar has been feen to conftruct a cone of little pieces of paper which have been given him, and that have been cut at pleafure. It has taken hold of them with the teeth and fure-legs, traniported them to the place where it intended
intended to fix, ranged them there, faftened them with threads, laid fome of them edje-wile, others flat, forming of the whole, it is true, an afiemblage that appears a little ftrange, but anfwering perfectly to a cone. It would have given it a more regular figure, had it worked with materials fuited to its fpecies. Ere we had learnt to prepare and drefs woollens and fkins of animals, the domeflic moths were not without cloathing. They were then perhaps habied in the fame manner as the field motis.
14. We do not expert to make any material difcoveries from flel $-f i j$ h that are fhut up in an alnoft flony inclofure; they feem very fupid; but they are not all fo Cenfelefs as they appear to be: we fhall with pleafure contemplate the proceedings of fone of them.

Divers fpecies of fea fhell-fifh are furnifhed with two pipes, by means of which they fuck in the water, and which they take great care to keep raifed above the velliel they ate accultomed to fink into more or lefs. Some fpurt out the water to the diftance of feveral feet. That particular part which in fome performs the progreflive or retrograde motion, very much refembles a real leg with a foot joined to it; but this leg is a Proteus, which allumes all kinds of forms to fupply the necellities of the animal. It daes not only make ufe of it to crawl with, fink into a veffel, or relire from it ; but employs it with much greater fkill to perform a motion that one would not imagine a thell-filh capable of. A fhell-filh that leaps, muft appear very extraordinary. 'Tis a tellina that you are now feeing. You may ob-
ferve that the has placed the fhell on the top or point. She ftretches out her leg as far as poffible; fhe caufes it to take hold of a confiderable part of the circumference of the fhell, and, by a fudden motion, finilar to that of a fpring that is flackened, frikes the ground with her leg, and thus leaps to a certain diflance.
15. The catler never creeps: it penetrates perpendicularly into the fand. It there digs itfelf a fort of cell, which is fometimes two feet long, in which it goes up and down at pleafure. Its hhell, whofe form a little refembles that of the handle of a knife, has occafioned it to receive the name of cutler. It is compofed of two long pieces, hollow like a gutter, and joined together by membranes. The body of the animal is inclofed in a cafe. The part whereby it exercifes all its motions, is placed in the center. This is principally defigned to perform the office of a leg, and acquits itfelf exceeding well. It is flefhy, cylindrical, and pretty long. The extremity of it, when neceffary, can roll itfelf up like a ball. View the cutler when extended on the fand. You behold it working, in order to pierce into it. It thrufts out its leg at the lower end of the fhell; flretches it, and caufes the extremity of it to affume the form of a fhovel that is fharp on both fides, and terminates in a point. It direets it towards the fand, and applies the edge and point for introducing it farther. After the aperture is made, it extends its leg fill more, and caufes it to penetrate deeper into the fand: he bends it like a hook, with which taking hold of a fupport, he draws the fhell to him, forcing it upright by degrees, and afterwards caufes it to defcend into
the

(297)

the hole. Is he difpofed fill to continue finking ? He thrufts his whole leg out of the Qhell; fixes in the fand the ball which is then at its extreme part; immediately contracts this leg; his large head, which is ftrongly fixed in the hole, being lefs inclined to reafcend than the fhell is to go downwards, the cutler defcends into the fand, which is his firf ftep into it; he has nothing to do but to repeat the fame operations, in order to advance farther and farther into it. Is he difpofed to go up again to the furface? He pufhes forth the ball, and at the fame time makes an effort to extend his leg; the ball, which is averle to a defcent, preffes the thell towards the top of the hole. It is pretty remarkable, that the cutler, which lives in falt water, dreads the touch of falt. If a pinch of it be caft into his hole, he will come out of it immediately. But if he be caught, and afterwards permitted to re-enter his cell, it will be in vain to throw falt into it, fince be will not quit it on that account. It is faid by fome, that he remembers having been taken; and this is fo true, that when people do not catch him, he may be made to come out at one's pleafure, by throwing fome frefh falt into the hole. It feems, then, that he is aware of the fnare that is laid for him, and is unwilling to be taken by it.
16. Caft your eyes on this fone, which I have juft now taken up from the fea-fhore. A fhell-fifh fixes his habitation in it. Obferve, that on the furface of the fone there is a very little hole; jt is by that the fhell-fifh has entered, and you may judge of the fmallnefs of it by that of the aperture. We will break the fone afundcr, that we may fee the animal that dwells in it. How N 5 great
great mult your furprize be! You behold a great thell-fin, near three feet in length, whofe thell is formed of three fmooth pieces joined together by a ligamentary membrane. It is lodged in a great eavity, that is hollow like a funnel. The upper part of the cone is in the little hole you fee on the furface of the fone. This fhell-fifh is a dail or pholas. How could it be able to pierce fo hard a flone? Or how go through fo narrow a paffage? Draw near this clayey fhell which the wave has juft left. It is pierced through with a multitude of fuch holes as you fee in the fone you have in your hand. All thefe holes are inhabited by young dails, which are only a few lines long. They had then no occafion to penetrate into a hard ftone. Moift clay makes but little refiftance. But the fea infenfibly converted this clay into ftone: the dail, which at firft found himfelf lodged in a foft earth, afterwards perceived that he was within a ftone cell. We have feen that the cutler can come out of his hole when he pleafes: the dail never quits his; nor indeed can he; frace the form of this kind of cell will not admit of it. All that he can do is, to ftretch out two pipes at the opening of the hole, with which he receives and rejects the water. The cutler does the fame. You are impatient to be informed of the inftrument with which the dail hollows his cell. This inftrument has no edge to it : it is purely flefhy, and fliaped like a lozenge.
17. We will quit fhell-fifh for a time. Divers animals of the fea will likewife entertain us with the wonders of their Author. Let us beflow on them the attention they deferve: what we are about
about to relate concerning them, will be found well deferving notice in natural theology.

On the rocks near the fea-fhore you may perceive little flethy maffes, of the fize of an orange, whofe form is like that of a counter-bag, and pretty nearly refembling that of a cone when cut. All thefe malfes feem immoveable, and connected with the rock by their bafe. Some of them are rough, others fmooth. We have juft now compared them to a bag or purfe, in which counters are put; but this bag is not folded together, and is likewife without flrings. They are nettles that you fee; a very fingular kind of animals, that demand a clofer attention. The body of the animal is in effect inclofed within a fort of flefhy purfe. of a conic figure. At the top of the cone is an opening, which the nettle increales or contracts at pleafure.

Let us confider the fea-nettles that we have now before us: there is one that opens and unfolds itfelf like a flower: it has put forty an hundred and fifty flefhy horns, like thofe of fuails, diftributed in three rows round the aperture. You remark, that little water-fpouts iffue from thefe horns; confequently they do not perform the fame functions as thofe of fnails; they are analogous to the pipes of dails, cutlers, and other. fhell fifl which you have feen. You alfo remark, that the form of thefe nettles varies greatly, that their bafe is fometimes circular and fometimes oval, and that the height of the cone varies according to the dimenfions of its bafe. It rifes or falls as the bafe grows narrower or wider. Touch one of thefe blown nettles: fee with what quickN. 6
nefs.
nefs it clofes and contracts itfelf. But you perceive no progreffive motion: are the nettles then condemned to pals their whole life fixed to the fame fpot? The ancients thought fo. What are we to think of them? About an hour ago, this large nettle, which you fee on your right hand, touched this point of the rock : obferve that it is now above an inch diftant from it. You are furprized that you did not perceive it walk, for you looked at it more than once; the reafon of this is, becaufe its progreffive motion is as flow as that of the hand of a glock. We may be curious to know how the nettle performs it. All its body is externally furnifhed with various orders of mufcles. Thofe of the bafe go, like rays, from the centre to the circumference; others defcend from the top towards the bafe. Thefe mufcles are alfo canals, full of liquor, which iffues out on pricking them. They are emptied and filled at the pleafure of the nettle. By the exercife of thefe mufcles or canals, the progreflive motion is performed. Let us follow the nettle when the is difpofed to go forwards. Her bafe is circular. She fwells the mufcles that are on that fide whither fhe is tending. She injeCts her liquor into them, which, by inflating, lengthens them. They cannot extend themfelves unlefs the edge correfponding with the bafe fhifts its plaçe, and advances a little way. At the fame time the loofens the oppofite mufcles, and empties their canals. They contract. This they cannot do, except the edge of their correfponding bafe goes in a little, and exactly in the fame degree as the oppofite one projects. Such is the mechanifm whereby the firft ftep of our nettle is performed. In order to make a fecond, the caufes the bafe again to receive
ceive a circular form, by puffing up equally all the canals: fhe afterwards repeats the fame operations we have juft taken a view of.

The whole progreffive motion of nettles is not confined to this. They have another method of walking, which more nearly refembles that of infeets. They are able to make ufe of their horns like legs. But thefe horns are on the upper part of their body : the nettle is fixed by its bafe againft the rock: how do thefe horns perform the office of legs? The nettle you are following will thew you the method. She turns herfelf upfide down; the bafe abandons the rock, and the cone is placed on its top. All. the horns fhoot forth, and you fee them fix themfelves to the rock. They are glewy and rough to the touch: for which reafon they meet with no difficulty in faftening to it.
18. Would you believe that an animal which is entirely of a flefhy nature, and is provided with no inftrument to open or pierce the fhells, feeds upon thell-fifh ? Nettles that are but of a middling fize fwallow great fhell-filh, and it is difficult to conceive how they are capable of being lodged within the nettle. It is true, the latter being en= tirely flefhy is fufceptible of a great diftenfion. It is a fort of fupple purfe, that may be fretched occafionally. The opening of the purfe is properly the mouth of the nettle. Its infide not being tranfparent, one cannot fee what paffes therein, or by what means the nettle voids the fhellfifh. The moment the has fwallowed it, fhe clofes herfelf. Look at this young nettle that is fhut up quite clofe: fhe has juft fwallowed a pretty large fnail, and is bufy in digefting it. She
is now opening herfelf again, and difcharging the empty fhell. On the fide of her is another nettlewhich befpeaks your attention: fhe has fwallowed a great mufcle, and is making ineffectual efforts to void the fhell. She is not able to effect it : the Shell prefents itfelf in an unfavourable pofition at the aperture, and you begin to be in pain for the unhappy nettle. She has a refource that you did not imagine. Calt your eyes towards the bafe; the fhell is evacuated through a large wound; the nettle is delivered from it by that means, and is no more affected by the great gafh made thereby ${ }_{2}$. than we are by a fcratch.
19. All nettles do not procure a difeharge by fo violent a method: they have another, which they commonly ufe with fuccefs. They turnthemfelves infide out like a glove or flocking,-fo that the edges of the opening, which refemblelips, fold themfelves on the bafe. The mouth is then of a prodigious width, and the bottom of the: purfe almoft uncovered.

Nettles do not thus fhift themfelves merely to get rid of heterogeneous bodies; they put themfelves into the fame pollure when they bring forth. They are viviparous. The young are produced: completely formed; and we fee nettles in miniature appear. The aperture through which they pafs, is fo wide as to admit a multitude of them at the fame time. Notwithflanding which, they always come forth fingly. They are at firft inclofed in certain folds concealed at the bottom of, the purfe.

Do nettles refemble polypufes by the fingular property of being multiplied and grafted bv flips? Experiments have put this beyond all doubt. Of a fingle nettle, divided according to its length or width, are made two or three, which at the end of a few weeks are perfect and complete. They may likewife be gratted; but it will be neceifary to have recourfe to feaming. You are now no longer furprized at the confolidation of that enormous wound made at the bafe of a nettle that iffues out thereat. A wound of this nature is nothing, when compared to that which another animal fuftains when cut in pieces, without ceafing to live and multiply in each piece. Nettles may then be called a fpecies of polypules with arms of a monftrous fize; or, if you preter the expreffion, polypufes with arins are a fpecies of very minute nettles.

Let us quit thefe rocks that fwarm with nettles, and betake ourfelves to that little creek where the fea is very calm. Stoop a little, and oblerve the furface of the water. What do you perceive? A kind of greenifh jelly floating upon it. Its form is like that of a broad mulhroom. It is near two feet in diameter. Take a piece of it betwixt your fingers; handle it for a few minutes: you will fee it diffolve into water. The heat of your hand was fufficient to melt it. Does it enter into your thoughts that this jelly is a real animal, and even a fpecies of nettle? It has been called watndering nettle, becaufe it never fixes, and floats from one fide to the other. Its convex furface prefents us only with an infinite number of little grains or nipples. But its inferior furface, which is concave, is extremely organized: in that we
may fee a great number of canals, which are regularly difpofed, and made with great art, fome being circular, and others difpofed regularly, like the felloes of a wheel, and which are full of a watry liquor, which paffes from one to the other.

This frange animal wanders about in the fea. It is fpecifically much heavier than water. He cannot therein fuftain himfelf, without the affiftance of a fpontaneous motion, which is worth obferving, and cannot be feen but in places where the water is calm. It is fo in this little creek on the extremity of which we are fitting. Look with attention on the furface of that jelly which offers itfelf to-your view. Obferve that it has certain motions, which you are tempted to compare with thofe of the fyftole and diaftole. However, they are not the fame. Their only end is to caufe the nettle to float. You fee that in the fyfole kind, the furface of the animal becomes very convex, and that in the diaftole it becomes fuddenly flat and wide. Such is our glatinous nettle's method of floating. When dried in the fun, it is reduced almoft to nothing. We imagine that ise fee a little piece of parchment or very tranfparent pafte. There is no room to doubt that this ipecies of nettle multiplies, like the reft, by flips; but I do not know that there has been any experiment made concerning this. A jelly mult be attended with greater eafe in regenerating itfelf than organized bodies of the fame genus, that are of a more firm and clofe confiftence.
20. There are no regular or Atrange forms of which the animal kingdom does not afford us models. Here is an animal whofe form is precifely
cifely that by which we paint the fars in the firmament. It is nearly flat. From the mathle of its body proceed four or five rays, which are almoft equal, and refembling each other. Its upper furface is covered with a hard, callous, and very rough fkin. In the centre of the inietior furface is placed the wouth, which is provided with a fucker, that the ftar makes ufe of to imbibe the fubflance of the fhell-fifh fhe feeds upon. Five fmall teeth or pincers hold it confined whilft the fucks them, and perhaps alfift in the opening his fhell. The legs of the ftar are a real curiofity. They are joined to her inferior furface, and diftributed with fymmetry in four rows, each confifting of feventy-fix feet ; fo that each ray is furnifhed with three hundred and four feet, and the whole flar with fifteen hundred and twenty. Yet with fuch a number of feet, the flar goes bat little fafter than the mufcle, which has only one. Thefe legs perfectly refemble the horns of the fnail, both by their figure, confiftence, and exercife. When the ftar is difpofed to walk, fhe fyreads her legs as the fnail does ber horns, and with the extremity of them feizes the various marine bodies on which fhe crawls. She commonly puts forth only one part of her legs; the remainder are kept in referve againd thofe neceffities which may happen. The mechanifm which prefides over their motions is an illuffrious proof of a Creative Mind. Let us open one of the rays by flitting it lengthwife, and we fhall difplay the principal fprings of the machine. An almoft cartilaginous partition, made in the form of vertebra, divides the whole ray. In every part of this partition you perceive two rows of little balls, like pearls of the fineft water. The number of thefe little balls
balls is precifely equal to that of the legs. Thus you fee that each ball anfwers to a leg. You can diflinguifh a limpid liquor in thefe balls; prefs your finger upon them; they empty themfelves; the liquor pafles into the correfponding legs, and they immediately extend themfelves. The far then need only prefs the balls in order to fpread the legs. But they are capable of contraction, and when they contract themfelves, they force the liquor back again into the balls, from whence it may be driven afrefl into the legs, to procure a progreffive motion.

You conjecture, that thefe eggs, which refemble thefe tubes through which divers kinds of fhell fifh relpire, ferve likewife for the fame ufes. But nature, who has been fo lavifh in providing the ftar with legs, has been allo liberal in beflowing on it the organs of refpiration. She has even multiplied them in a greater degree. They are very fmall conic tubes, difpofed in knots, and produce an equal number of little water fpouts.

Ambngt our flars, you obferve there are fome which have only two or three rays, and by looking more narrowly at them, you difcover feveral very minute rays, juft beginning to fhoot out. Are then animals, that are formed a repetition of fuch agreat number of parts, both outward and inward, regenerated like polypus's, whofe fructure appears fo fimple? Nothing is more true, and the fars you are now looking at, will afford you a proof of it. Thefe animals often chance to lofe two or three of their rays, and they are no more affected by this lofs than polypus's are by parting with fome of their arms. We may mangle fars or cut them in pieces, but cannot deftroy them by that method
method. They will recover from their ruins, and each piece becomes a new flar.
21. Sea-hed, ghehors, $_{\text {s }}$ like the land ones, derive their names from their prickles. But thofe of the former are quite different from fuch as belong to the latter.

The form of thefe hedgehogs is that of a round button. It is hollow within, and its furface is elaborately wrought. We might compare the workmanfhip of them to that of certain copper or wire buttons. A multitude of tubercles, like little triangles divide the whole furface of the button. Thefe triangles are feparated by ftripes, which are regularly fpaced, pierced with holes, and diftributed with great fymmetry in feveral lines. Thefe holes pafs through from one part to another, the whole thicknefs of the fkeleton, for the body of our hedge-hogs is a kind of bone-box. Each hole is a focket; wherein is a flefhy horn, like thofe of a fnail, and fufceptible of the fame motions. There are therefore as many horns as holes, and there are reckoned to be at leaft three hundred. The hedgehog, like the fnail, makes ufe of her horns for feeling the earth, and the various bodies it meets with in its paffare. But it particularly employs thein to faften with and caft anchor. The tubercles are the bafes of many prickles or legs, and their number amounts to at leaft two thoufand one hundred. So that there is hardly any part of the body of a hedgehog that is deflitute of a leg. It can for that realon walk as well on the back as on the belly; and ingeneral, let it be in what pofture it will, it has always a great number of legs ready to carry it, and horns to fix it with. The legs it ufes with the greateft edfe are thofe which furround
furround the mouth; but when it pleafes, can walk by turning round on itfelf like a wheel. On the back or the top of the button, is another aperture which is thought to be the anus. This then is an animal that is provided with at leaft thirteen hundred horns, and two thoufand one hundred legs, What a great number of mufcles muft it require to move fo many horns and legs? How many fibres muft there be in each of thefe mufcles? What an aftonifhing multiplication of parts in this little animal! What regularity, what fymmetry, and even harmony in their diftribution! What vaniety in their exercife!

When the hedgehog would advance, he draws himfelf forwards with thofe legs that are neareft the place he would go to, and pufhes himfelf towards it with the oppofite ones. All the reft remain at that time in a fate of inaction. At the fame time that one part of his legs are at work, the horns that are neareft to them exert themfelves to found the way, or find anchorage for the animal.
22. Moft thell-fifh are produced with their cloathing. The fhell they bear grows with them and by them. But Bernard the hermit, a-kind of cray-fifh fo called, comes into the world without a thell, though he has need of one in order to cover the greater part of his body; whofe thin and delicate fkin would fuffer too much from being naked. Has nature then behaved to it as a ftep mother, by denying it fo neceffary a garment? By no means: as fhe is beneficent towards every ether animal, fo has this likewife been the object of her attention. It is true, She has not provided it with a fhell; but has made it amends by enabling
it to cloathe itfelf with one. Taught by fo great a miffrefs, our hermit has the fagacity to take up his lodging in the firf empty fhell he meets with. He applies himfelt indifferenty to all that are of a fpiral conftruction. He often retires fo far into them, as not to be perceived, whereby the fhell appears empty. If the fhell Ghould prove ton narrow, he quits it, in order to feek for another, more fuitable to his bulk. It is faid, there fometimes happen contefts between our hermits about a fhell, and that victory is decided in favour of him who has the ftrongeft claws. Our battles have fcarcely ever a caufe of equal importance for their object.
23. You have been already aftonifhed at the fkill difplayed in the progreflive inotion of feveral fhell-fifh, your amazement will be redoubled when you learn that fome of them can fpin; and you are impatient to fee thern at work. Let us walk on the fea fhore. You there difcover a number of mufcles, fome by themfelves, and others joined in companies. Confider them more attentively you will obferve that fome of them are faftened to ftones or to each other, by a great number of fmall flender ftrings, Let us felect one of thefe mufcles, that we may obferve it more clofely; the better to difcover their operations. Here is one of them endeavouring to fix itfelf to this fone that is near the furface of the water. The fhell is partly open; it has thruft out from it a kind of fupple tongue, which it lengthens and contracts alternately. Remark that it often applies the ends of it to the ftone, and immediately draws it back again into the fhell, that it may again put it forth the next moment. From the root of this kind o tongue
tongue there iffue certain threads, which are equal in fize to an hog's briftle. Thefe threads part from each other as they come out, and their extremity flicks to the ftone. Thefe are as fo many fmall cables which hold our mufcle at anchor. There are frequently an hundred and fifty of thefe little cables employed in mooring a mufcle. Each cable is fcarcely two inches long.

The mufcle herfelf has fpun all thefe cords. The tongue not only ferves them as it does other fhellfinh, for arms to faflen themfelves with, and for legs to creep with; but is alfo the fpinning infrument which produces thofe numerous threads, by means of which the mufcle refiffs the impulfe of the waves. From the root of the tongue to its extremity there is a groove, which divides it according to its length into two equal parts. This groove is a real channel, furnifhed with a great number of fmall mufcles that open and fhut it. In this channel is contained a vifcous liquor, which is the matter of the threads emitted by the mufcle. At its firf appearance this channel is exactly cylindrical, and is, properly feaking; the place where the threads are moulded. The various motions the tongue of the mufcle we are obferving gave itfelf a minute ago, all tended to fix it to the ftone. Thofe threads which are the whiteft and moft tranfparent are fuch as are newly fpun. She has not yet finifhed anchoring herfelf, wherefore you perceive her tongue is again extending about two inches, and the tip of it drawing towards the fone. The vifcous liquor runs in the channel, and arrives at the extremity of it. This liquor is now confolidated, and become a cylindrical thread. The mufcle ficks the end of this thread to the flone; but is defirous of applying it by a wider
wider furface, in order to render it more adherent. For that purpofe, the adds to it with the tip of her tongue, that little pafte which you oblerved. Her bufimefs now is to extend another cable to fome diftance from the laft. The tongue therefore muft quit this latter, in order to work elfewhere. How will the be able to effect this? The channel opens itfelf to its utmoflength, and difcharges the thread. The tongue being difengaged from this thread, quickly draws itfelf together, re-enters the fhell, and the next moment again iffues from it, to fix a new cable a little farther off.

Did you take notice of a mark of fkill expreffed by our mufcle? She has juft now fpread the firft thread; to affure herfelf of the goodnels of it, the immediately puts it to the proof; drawing it frongly towards her, as though the would break: it. It has refifted this effort, and, fatisfied with the experiment, fhe has proceeded to fretch out the fecond thread, which the has tried like the Girf.

Thefe cords which the fea mufcles fpin with fo much art, are in reality as ferviceable to them as cables are to a lhip. You afk me, whethes they can weigh anchor? Divers experiments prove they are not endued with that ingenuity: It was not neceffary for them. But they fometimes drive with their anchors; it therefore behoves them to have freth cables in referve.

Thus the fea has its fpinners as well as the earth. Mufcles are at fea the fame that caterpillars are on land. There is neverthelefs a remarkable difference between them The work of caterpillirs aniwers
anfwers exactly to that of gold wire-drawers. The filk thread is moulded by paffing through the mouth of the fpinner, and the caterpillar gives it what length fhe pleafes, which in certain cones confifts of feveral hundred feet. The labour of mufcles may be rather compared to that of workmen who caft metals. The fpinning inftrument of thefe fhell-filh is a real mould which does not only determine the thicknefs of the thread, but alfo its length, which is always equal to that of the fpinning inftrument or tongue.

The pinna marina, which are a fpecies of very large mufcles, are more dextrous fpinners ftill. Their threads which are at leaft feven or eight inches long, are extremely fine, and curious works are made with them. If mufcles are caterpillars of the fea, pinnæ are its fpiders. The threads of the pinne ferve, like thofe of mufcles, to moor them with, and defend them from the agitation of the waves. They are prodigioully numerous, and being united, form a kind of tuft or fkain, weighing about three ounces. The inflrument that prepares and moulds them, refembles, in the effential properties of it, that of other fhell-fifh of this kind: except that it is much larger, and the groove that divides it lengthwife is much narrower. At the root of it there is a membranous bag, compofed of feveral flefhy layers, that feparate the filk layers from whence the tuft refults.
24. If all kinds of fhell-fifh and fea-animals have not been enabled to moor themfelves with as much fkill as mufcles and pinnæ, nature has made them amends for that by affording them means that are no lefs efficacious. Before we quit this fhore, let
let us fop a little while and examine this fmall fhell-filh which you fee faftened to this rock. It is a goat's eye, or a limpet. Its thell, which confifts of one piece only, is made like a conic chapiter, under which the whole body is fheltered, as under a roof. The animal can raife or lower this covering as it pleafes. When it lowers it, the body is intirely concealed, and it refts immediately on the ftone. A large mufcle that occupies the whole extent of the fhell, and that is as it were the bafe of it faftens the animal to this fone. Try to difengage it from it; you are not able to effect it. It is neverthelefs only fixed to the flone by a bafe of an inch and an half in diameter. Let us hoift a cord round the fhell; and fufpend a weight of twenty eight or thirty pounds to this cord, the fhell-filh will not quit its hold till after fome feconds, and you are furprized that fo fmall an animal fhould be endued with fo great a power of adhefion. You are curious to know from whence he derives this; you examine the fone, and it appears to you to be finely polifhed, whereupon your aftonilhment is redoubled. Can it be that the mufcle is able to infinuate itfelf into the infenfible parts of the fone? Divide the animal tranfverfely: it fill adheres as ftrongly as before. Does it cleave to the flone as two pieces of polifhed marble cleave to each other? But pieces of marble eafily flip each other; and you cannot caufe the fhell-fifh fo to do. This then is the fecret caufe of that adhefion which aftonifhes you. The mufcle is furnifhed with a vifcous himour, which agglutinates it to the furface of the ftone, and which is fenfibly felt by touching it with the finger.

Vol. IV.

But the goats eye has not been condemned to remain its whole life affixed to the fame place. It is neceflary for it to go in fearch of its food. There is one now creeping on the rock : its great mufcle ferves him inftead of legs, and performs the fame fumctions as that you have been made acquainted with in the fnail. The goat's eye then can difengage himfelf when he pleafes. It is-able to break thofe ftrings which are with difficulty disjoined by a weight of eight and twenty pounds. Moiften your finger, and froke the mufcle with it; the natural glutinous fubftance, with which it is endued, can no longer retain its hold. This glue is diffoluble by water. The whole furface of the mufcle abounds with little feeds, filled with a diffolvent liquor. When the animal is difpofed to fhift his quarters, he need only prefs his numerous glands, the diffolvent iflues from them and the cords are broken.

The goat's eye has but one certain provifion of gluey matter. If it be loofened from its place feveral times together, its flock will be exhaufted. and it will not fix any more.

This method of mooring is common todivers feaanimals. It is particularly fo to nettles. Its whole fkin is one entire mafs of glue, which diffolves very fpeedily in aqua vitr. It is with this abundant glue that thefe extraordinary animals faften themielves to the rocks.

Stax-fifhes alfo fix themfelves by the fame method. A vifcous matter is conducted to the extremity of the horns that ferve them infead of legs. Thefe legs become ftrong ties to them by means of the glue that exfudes from them, and when

(315)

when they are once faftened, it is eafier to break than feparate them. The horns of hedgehogs are exactly of the fame nature.

All thefe adhefions are voluntary, and depend folely on the good pleafure of the animal. He joins or disjoins himfelf as circumftances require. But there are other adhefions, which are altogether involuntary. Sea.worms that are called pipe-worms, are inclofed in a round tube, of a fubftance refembling that of fhells, and faftened to ftones or hard fand, or even to other fhell-fifh. This tube follows the turnings of the furface to which it is fixed. The worm never quits this fhell which he lengthens or widens as he grows. They recall to your remembrance the falle moths: this may be termed, a falfe moth of the fea. It emits from its whole body a ftony juice, which is the matter whereof the tube is formed.

Other worms of this fpecies, whofe juice is not of a flony nature, but glutinous, make ufe of it for collecting round them grains of fand, or bits of fhells, and this fhell of inlaid pieces is notwith. ftanding wrought in pretty exact proportion.

Oyfters, and many other Thell-fifh, adhere by a flony liquor to the bodies whereon they reff, and are often by this means cemented to one another. Of fuch a pecies is that univerfal cement which nature makes ufe of, as often as the would erect in the fea, or eftablifh therein a fhell-work againft the violent motion of the waves.

We have acquired but little knowledge of the induftry of filkes. They are not fufficiently within our reach. The greateft part of them inhabit
habit gulphs that are inacceffible to our refearches. We do not prefume to think, that all their intelligence is confined folely to the devouring of each other. Their migrations are alfo as remarkable as thofe of birds. They may have need of a kind of genius to enable them to chafe their prey with fuccefs, and elude the purfuit of their enemies. The cuttle-fifh fcatters about, at a proper feafon, a black liquor, which troubles the water, and hides her from the fight of fuch fifh as attempt to take away her life. Perhaps this liquor may be ferviceable to her in feizing with the greater eafe thofe fhe feeds upon. Other fifhes can with abundance of art penetrate into very hard Thells, and extract from thence the flefhy fubftance contained in them. We are not yet acquainted with the ufe the fword-fifh, the faw-ffh, and the narval or unicorn-fifh, make of thofe enormous inftruments they wear at the end of their fnouts; but they are undoubtedly able to handle them. Has not the cramp-fifh, which fo fuddenly benumbs the hand that touches it, a very remarkable method of providing for its fafety, and an excellent art to propofe to the meditation of the natural philofopher? The flying-fifh, when purfued by others, darts out of the watry element to take refuge in the air, where it is for a time fuftained by its great fins.

It is well known that carp are capable of being tamed. and that they will haften, like fowls, at 2 certain fignal, to receive food from the hands of their provider.

It is probable that fifhes are of all other animals endued with the longeft lives. We have feen carp of an hundred and fifty years old. Fifhes tranfpire

317)

tranfpire and harden but little : they have, properly fpeaking, no bones. But they live in a ftate of perpetual warfare. They all devour, or are devoured by others. Thofe who attain to their age, muft acquire an extenfive knowledge of things relating to the fea. Such Neflors as thefe may be able to procure us fome good memoirs of the fecret hiftory of a people fo little known.
25. We conjecture that the emigrations of birds depend principally on the winds. An exact naturalift at Malta has affured himfelf of this: that the fame fpecies always change their climate with particular winds. In April the fouth-weft wind brings into that illand a fpecies of plovers, and the north-weft, cardinals and quails. Nearly at the fame time, falcons, buzzards and other birds of prey come with the north-weft wind, without fopping, and depart in October with the fouth and weft. In fummer, the cafterly wind conducts the fnipes to Malta, and, towards the autumn, the north and narth-we/t bring thither numerous fquadrons of woodcocks. Thefe birds cannot fly; like the quails, before the wind; fince the north wind, which might carry them into Barbary, obliges them to remain in the ifles. Quails, on the contrary, emigrate before the wind from one country to another. The fouth eaft enables them to pafs, in the month of March, from Barbary into France. They return from France in September, and go to Malta by a South-eaft. The winds, therefore, are the fignals employed by nature for teminding divers kinds of birds of the time of their departure. In obedience to this voice, they fet out, and follow the direftion it points out to them.

What a feries of interefing circumftances would not the conflruction of their nefts alfo prefent us with! A chaffinch or gold-finch's neft would take us up whole hours in contemplating it. We fhould inquire where the gold-finch could furnifh itfelf with a cotton fo fine, filky, and foft, as lines the infide of its pretty neft? After many refearches, we fhould find, that by covering the feeds of certain willows with a very fine cotton, nature has prepared for the gold-finch the down the employs. We fhould never be weary of confidering that kind of embroidery with which the chaffinch fo agreeably adorns the outfide of his neft, and, on viewing it more narrowly, we fhould perceive that it is owing to an infinity of little liverworts, artfully interwoven together, and applied with the utmoft propriety over the whole furface of the nefl. The colour of thefe liverworts, which is moft commonly that of the bark of the tree on which the neft is fituate, would indicate that the chaffinch feems to intend her neft fhould be confounded with the branch that bears it.
26. Shall we vifit the retreats of rats, field mice, badgers, foxes, otters, bears. We hould undertake thereby too tedious a journey. Let us limit ourfelves to the rabbet and monkey, as the moft curious after thofe of the beaver.

The rabbet and hare, which bear fo near a refemblance to each other both in their exterior and interior part, teach us not to truft to appearances. They eafily couple together, and produce nothing. They are therefore diffind fpecies.

Moreover, the feeble hare contents herfelf with the lodging the makes for herfelf on the furfa e
of the earth. The more induftrious rabbet penetrates into the earth, and there procures an affured afylum. The male and female live together in this peaceable retreat, fearlefs of the fox or bird of prey. Unknown to the reft of the world, they fpend their days in happinefs and tranquillity.

The hare might alfo dig the earth, but does not, neicher does the domeftic rabbet fince he has no occafion; his dwelling place being provided for him, he behaves as if he was fenfible of it. The warren rabbet feems to know that he is unprovided, and procures for himfelf a lodgitty. But to perceive the relations thofe retreats have to their prefervation, and to judge that they will fhelter them from all the inconveniencies they labour under, is an operation of the foul that borders on reflection, if it be not reflection itfelf.

When the hare is ready to kindle, fhe digs for herfelf a burrow. This is a winding trench, or one made in zig-zag. At the bottom of this trench the works a great cavity, lining it with her own hairs. That is the foft bed the prepares for her young. She does not quit them during feveral of the firft days; and only goes out afterwards to procure nourifhment. The father at that time knaws nothing of his family: he does not dare ta enter the burrow. When the mother goes into the fields, fhe often takes even the precaution to flop up the entrance of the burrow with earth fteeped in her urine. When they are grown fomewhat larger, the leverets begin to broufe the tender grals. The father at that time acquires a knowledge of them, takes them up in his paws, licks their eyes, polifhes their hair, and
diftributes his careffes and cares equally amongft them all.

Obfervations prove that paternity is greatly refpeeted amongft hares. The grandfire continues to be the chief of the whole numerous family, and feems to govern it like a patriarch.
27. The tricks of the monkey are known to every body. No one is ignorant with what facility fhe is tamed, and taught to dance and fhew poftures on a ftaff. Her ingenious proceedings on the tops of the Alps, where the fixes her abode, in the midft of fnow and froft, are not fo generally known.

Towards the month of October, The enters into winter quarters, and thuts herfelf up for the remainder of the feafon. Her retreat is worthy of obfervation. On the brow of a mountain, the induftrious monkey eftablifhes her dwelling. It is a great gallery dug under-ground, and made like a Y. Thefe two branches, which have each of them an opening, terminate at a corner. Such is the apartment of the monkey. One of the branches defcends below the apartment, according to the floping of the mountain; it is a kind of aqueduct that receives and carries off the excrements and filth. The other branch, which rifes above the habitation, ferves for an avenue and place to go out at. The apartment is the only part of the gallery which is horizontal. It is lined with a thick layer of mofs and hay. It is certain that monkeys are fociable animals, and that they work in common on their lodging. They amals during the fummer ample fupplies of mofs and hay. Some mow the grals, others gather it, and
by turns they fupply the office of a cart to conrvey it to the ftorehoufe. One of the monkeys lies on his back, opens his paws to ferve inftead of racks, fuffers himfelf to be loaded with hay, and drawn by the reft, who hold him by the tail, and are careful to prevent the carriage being overturned on the road. Their feet are armed with claws, which enable them with great eafe to dig into the earth. As foon as they have made a hollow place in it, they throw behind them the dirt they extraft from the mine. They pafs the greateft part of their life in their habitation; they retire into it during the rain, or on the approach of a form, or at the fight of fome imminent danger. They feldom quit it except in fine weather, and go but a little way from it. Whilft fome are fporting on the turf, others are bufy in cutting it, and a third party are acting as fcouts on the eminences, to give notice to the foragers, by 2 whiffle, of the enemy's approach.

During the winter, monkeys eat nothing. The eold benumbs them, fufpends or greaily diminifhes perfpiration, and other excretions. The fat with which their belly is well provided paffes into the blood, and reftores it. We might affirm that they forefee their lethargy, and are apprized that they thall then have no need of nourifhment; for they do not think of hoarding up provifions, as they do materials for furnifhing their lodging.
28. We have greatly admired the ingenious and almoft intelligent mechanifm, by which divers caterpillars roll up the leaves of trees. You fee thefe afh-leaves that are rolled up like a coffin. They are inhabited by a little caterpillar, that has
formed for itfelf therein a cone of pure filk, nearly refembling a grain of corn. We cannot examine this cone without opening the coffin. Let us do it with caution. The cone is lodged in the centre. You perceive little gutters on the exterior part of it. Obferve particularly in what manner this little cone is fufpended in the middle of the coffin, by the help of a thread, one of whofe extremities is fixed to the top of the cone, and the other to its bafe, or the flat part of the leaf. Look narrowly at the place where the thread joins to the flat part of the leaf: you will perceive a fmall piece in it exactly circular, bored in the thick part of the leaf, and that feems to conceal fome fecret defign. This you will find in many coffins; but it often happens that you will fee in that place a hittle round hole, well turned, that appears to have been made by a gimblet. The circular piece is the work of the caterpillar: it has fkilfully gnawn that part of the leaf; and has cut a little piece of it in a circular form, which it has been very careful to leave in its place. You feem to difcern the end of this labour. It is contrived for a private paffage for the caterpillar to go out at, at the fame time that it prevents the entrance of any mifchievous infects. Our induftrious caterpillar then makes a little door into its cell. This door is not to be opened till after the laft metamorphofis. The winding. parts of it being interwoven with the leaf, it remains as it were fubfervient to it. In iffuing from the cone, the caterpillar defcends by the whole length of the thread, which holds it fufpended ; it follows the direction of it, arrives at the door, and burfts it open by pufhing its head againft it. Thefe coffins, which you fee pierced through,

(323)

through, have been abandoned by the caterpitlars.
29. Our grain is liable to be eaten by a very fmall infect, that lodges within it, and is there metamorphofed. The covering of corn is a kind of very clofe box, which the caterpillar lines with filk. But the caterpillar is provided with no infrument to pierce through this box, and would remain prifoner therein, if the infect were not inftructed how to prepare a paffage from it. It proceeds in the fame manner as the roller of the afh; it cuts with its teeth a little round place in the covering of the grain, which it is very careful not to difengage entirely from it. The butterfly need only prefs againft this part, in order to obtain its liberty.

In the center of the capper thifle there is a Jarge oblong cavity, which is commonly inhabited by a fmall caterpillar, that makes a fort of cone therein, where fhe transforms herfelf. The rind of the thiftle is much harder than that of our corn. It would be impofible for the butterfly to force a paffage through it. It would have occafion for very ftrong teeth for that purpofe, and is furnifhed with no analogous inftruments. The caterpillar, which feems fenfible of this, makes a fkilful provifion for the neceffities of the butterfly. It pierces in different parts the walls of its lodge, and makes a fmall round hole in it, oppofite the extreme part of the cone which the butterfly is to go out at. But, were this hole to remain open, the chryfalis would be too much expofed. The caterpillar contrives a very fimple expedient for flopping up the aperture. The whole
whole exterior part of the head of the thiftle is covered with the feeds of the plant. The caterpillar brings fome of thefe little bodies to the outfide of the hole.

In treating of the proceedings of aquatic moths, we have remarked that they transform themfelves in their cafe. There muft be a continual frefh fupply of water in this inclofure: yet, no voracious infect fhould be allowed accefs to it. Inftead of placing a full made door at the entrance of its lodge, the moth puts a grated one there, which anfwers every end. Let us not attribute our method of reafoning to this moth. Does fhe know that voracious infects have a defign againft her life? Is the fenfible that the will put on a form under which the will not be able to fly? No; fhe is ignorant of all this; nor does it concern her to know it. She has been taught to fpread threads that are capable of growth; fhe does fpread them, in fo doing, the provides by a machine againft the inconveniencies which the neither knows or can know. Judge on the fame principle of other facts of this kind. It is always the Author of the infect who alone is to be efteemed wonderful.
30. I need not then endeavour, from the end which we difcover in the work of an induftrious animal, to find a reafon for this work. I would not fay, The /pider /preads a net to catch the flies; but that the fpider catches the flies becaufe fhe Spreads a net, \&c. and the forms a net, becaufe the has occafion to Jpin. The end is not lefs certain, or lefs evident; only, it is not the animal that has propofed it, but the Author of the animal.
animal. What lofs would natural thenlogy fu® tain by this method of reafoning? Would it not, on the contrary, acquire a greater degree of exactnefs? Let us reafon then on the operations of animals as we do on their ftructure. The fame wisdom. which has conftructed and arranged with fo much art their various organs, and has caufed them to concur to one determinate end, has likewife caufed thofe numerous operations, which are the natural effects of the œconomy of the animal, to contribute to one end. He is directed towards his end by an invifible hand; he executes with precifion, from the very beginning, the works which we admire; he feems to act as if he was capable of reafoning, to turn about with propriety, and to change his method as there is occafion, and in all this only obeys thofe fecret fprings by which he is actuated; he is only a blind inftrument that cannot judge of his own action, but is excited to it by that Adorable Mind which has traced out to every infect his little circle, as he has marked out to each planet its proper orbit. When therefore I fee an infect working on the confruction of a net, a cone, or a chryfalis, I am feized with refpect, becaufe I am beholding a fight where the SUpreme Artist is concealed behind the fcene.
31. Many fpecies of folitary bees content themfelves with penetrating into the earth; fcoop out cylindrical cavities therein, and polifh the walls. They depofit an egg there and amafs a fufficient quantity of nourifhment.

There is another fpecies of thefe worms that pierce the earth, whofe induftry is much more remarkable.
remarkable. They do not content themfelves, like the others, with an entire naked cavity. On vifiting the infide of the lodge, immediately after its conflruction, we are agreeably furprized to fee it hung quite round with tapefry of the moft beautiful crimfon fattin, affixed to the fides as our tapeftry is to the walls of our apartments, but with much more propriety. The ${ }_{8}$ bee does not only line in this manner the whole infide of her dwelling; but alfo fpreads the fame kind of tapeftry round the entrance to the diffance of two or three lines. We have obferved many caterpillars that line the infide of their cone or inclofure with filk: our bee is the only infect at prefent known, which, properly fpeaking, hangs her neft with tapeftry, as we do our apartments. It is therefore with good reafon that this induftrious animal has received the name of the tapeftrybee.

You feem at a lofs to know from whence fhe procures the rich tapeftry. Look at the flowers of this wild-poppy, which are newly blown: obferve that they are floped here and there. Comparethem with the tapeftry whofe tiffue you are defirous of knowing, you can find no difference between them: this tapeftry is no other than the fragments of the flowers of the wild poppy; and that is the fecret origin of thofe flopings you remark on the poppies that border upon the neft. Your curiofity is not yet fatisfied; you are defirous of obferving a little the labour of our kilful worker in tapeftry.

The hole, which fhe digs perpendicularly into the earth, is about three inches in depth. It is exactly cylindrical, as far as to feven or eight lines.
lines of the bottom. There it begins to open wider, which it does more and more. When the bee has made an end of giving it the fuitable proportions, fhe proceeds to line it with the tapeftry.

With this view, fhe applies herfelf to cutting, with abundance of art, pieces of petals + of an oval form from the flowers of the wild-poppy. which fhe feizes with her legs, and conveys into

- her hole, Thefe little fcraps of tapeftry, when tranfported thither, are very much crumbled: but the tapeftry-bee knows how to fpread them out, difplay them, and affix them to the walls with aftonifhing art-

She applies at leaft two layers of the petals. She fpreads two tapeftries on each other. The reafon of her furnilhing herfelf with it from the flowers of the wild-poppy rather than from thofe of many other plants, is, becaufe in them are united to a higher degree all thofe qualities which are requifite for the ufe to which the bee defigns. to put them.

When the pieces which the bee has cut and tranfported are found to be too large for the place they are intended to occupy, the cuts off the fuperfluous parts of them, and conveys the fhreds out of the apartment.

After hanging the tapeftry, the bee fills the neft with pafte, to the height of feven or eight lines. This is all that is neceffary for the nourifhment of the worm. The tapeftry is defigned to prevent the mixture of particles of earth with the pafte.

[^10]You expect undoubtedly that the prudent bee fhould not fail to clofe up effectually the aperture of the neft, in order to hinder the accefs of thofe infects into it that are fond of the pafte: this the takes proper care to do : and it is utterly impoffible for you to difcover, from the furface of the ground, the fpot where the neft was, whofe confruction you have juft been contemplating, fuch is the fkill employed by the bee in clofing it. This little white pebble was at the edge of the hole, or very near it; it has not changed its place, and indicates to us the part beneath which the neft is we are fearching for. It feems thenas if we fhould have nothing more to do than to raife up a light layer of earth, in order to expofe to view the entrance of the hole which has beenfo well clofed. Nothing can be eafier or lefs doubtful. How great is your furprife! you have already taken up two or three inches of the earthin depth, and you cannot find the leaf appearance either of the hole or the tapeftry. What can this mean? What is become of the neft that was fo fkilfully confructed, fo properly lined, and was upwards of three inches deep? A few hours fince, you admired the ingenious contrivance of it, and now the whole has difappeared, fo that you cannot difcover the leaft trace of it. What myftery then is this? It is effected as follows:
When the bee has done laying, and amaffed her quantity of pafte, fhe takes down the tapeftry, folds it over the pafte, which the wraps together in it pretty nearly as we fold on itfelf a coffin of paper that is half full. The egg and pafte are by this means inclofed within a little bag of flowers. The bee has then nothing farther to do, but to fill up with earth all the void fpace that is above

329)

the bag; and this fhe performs with fuch wonderful activity and exactnefs, as utterly to conceal the place where the neft was.

If a hare does not poffeff, like the rabbet, the art of digging for himfelf a burrow, he does not however want a fufficient degree of fagacity to enable him to fecure himfelf, and efcape from his enemies. He can choofe for himfelf a form, and conceal himfelf betwixt clods of earth that refemble the colour of his hair. In winter, he takes up his lodging to the fouth, and in fummer time to the north; when flarted by the dogs, he purfues the fame track for fome time, goes the fame way back again, darts afide, throws himfelf into a bufh, and there fquats down. The pack follow the path, pafs before the hare, and lofe fcent of him.

The crafty arimal fees them pafs by and run far from him, he iffues from his retreat, confounds his courfe, and puts the hounds to a lofs. He varies his fhifts continually, and always conducts them as his circumftances require. Sometimes at the cry of the hounds, he quits his form, fpeeds away to the diftance of a quarter of a league, cafts himfelf into a pond, and lies hid among the rufhes. At others he mingles with a flock of fheep, and will not abandon them. One time he conceals himfelf under ground : at another leaps under a ruinous wall, crouches among the ivy, and lets the dogs pafs him. Oftentimes he runs along one fide of a hedge, whilft the dogs go on the other. Sometimes by feveral efforts he fwims acrofs a river. Lafly, at others he obliges another hare to quit the form, in order to fupply his place, \&c.

The

The flag, which by the elegance and lightnefs of his make, by thofe living branches with which his head is rather adorned than armed, his fize, flrength, and noble air is one of the grand ornaments of the foreft, is endued with more fubtlety than even the hare, and finds more exercife for the fagacity of the huntfman.

When purfued by the hounds, he paffes and repaffes feveral times on his track; eludes their purfuit by afforting himfelf with other beafts, darts forward, and immediately flees to a diftance, ftarts afide, and fteals away, and lies proftrate on his belly. The land betraying him every where, he betakes himfelf to the water. The hind that nourifhes her young, prefents herfelf to the dogs, in order to facilitate the efcape of her young, he runs away with fwiftnefs, and afterwards returns to it.
32. The fox, celebrated for his fubtility, is no lefs circumfpect than fkillful, no lefs vigilant than crafty, he weighs cautioufly the leaft of his meafures, fludies circumftances, watches inceffantly, and has always fome contrivance in referve to affift him upon an exigency. His genius is fo fruitful in refources, multiplies almoft to infinity his fhifts and fratagems.

Though extremely fleet in running, he does not truft to his natural fwiftnefs: he judges that that alone would not be fufficient for his prefervation. He works for himfelf a timely afylum under ground: where he takes refuge in cafe of neceffity, and lodges, and brings up his family.

He eftabliihes his dwelling place on the border of woods, and in the neighbourhood of farmhoules

(33^{1})

houfes. He liftens afar off with an attentive ear to the cackling of poultry, directs his fteps accordingly, arrives by feveral winding wars, fquats himfelf down, palfes along on his beily, lies in ambufcade, and rarely fails in his attempt.

If he is fo happy as to penetrate into the inclofure, he employs to good purpofe every moment of his time, and llaughters the whole fock. He immediately retreats, carries away with him one of the prey, conceals it, returns in fearch of another, hides that like the former, and does not ceafe from plundering, till he perceives he has been difcovered.

He is amazingly fkilful in hunting young leverets, furprizing the hares when lying down; in difcovering the nefts of partridges, or quails, and feizing the mother on her eggs.

Equally bold as crafty, he has even the courage to attack bees: he attempts to get their honey, which he is very fond of. Thele warlike infects prefently affail him on all fides, and in a few moments he is entirely covered with them. He retires fome paces, rolls himfelf on the ground, crufhes them by that means, returns to the charge, and at length obliges this little laborious people to abandon to him the fruits of their long labours.

I fhall add but one more inftance: if the fox difcovers that his young have been difturbed during his abfence, he tranfports them one after another to a new place of retreat.

C O N C L U S I O N.

HERE I fet bounds to my defign. I have prefented my readers with a variety of facts of an interefling nature, fufficient to enable them to form an idea of thofe pleafures which refult from the contemplation of nature. But this contemplation would prove fruitlefs, did it not lead us to afpire inceffantly after this adorable Being, by endeavouring to acquire a knowledge of him, from that immenfe chain of various productions wherein his power and wifdom are difplayed with fuch diftinguifhed luftre. He does not impart to us the knowledge of himfelf immediately ; that is not the plan he has chofen; but he has commanded the heavens and the earth to proclaim his exiflence, to make him known to us. He has endued us with faculties fufceptible of this divine language, and has raifed up men who explore their beauties, and become their interpreters. Impri-, foned for a while in a fmall obfcure planet, we only enjoy fuch a portion of light as is fuitable to our prefent condition: let us wifely improve each glimmering ray reflected upon us, nor lofe the fmalleft
fmalleft fpark: let us continually advance in this effulgent light! A time will come, when we fhall draw all light from the Eternal Source of Light and inftead of contemplating the Divine Architect in the works of his hands, fhall contemplate the workmanfip in the Omnipotent Author thereof. "We now fee things as through a " glafs darkly ; but we fhall then fee face to face."

END of VOL. IV.

CONTENTS

> OFTHE

FOURTH VOLUME.

> PART THE FIFTH
> CONTINUED.

C HAP. III.
Of the Properties that are common to all Bodies.

7. Of the Ariftotelic Elements 7
8. Of the Principles of the Chymifts ib.
9. Objections to them 8
10. What is the Primary Element of all Things ib.
C $\quad \mathbf{H} A \quad$ P. IV.
Of thofe Things wherein Natural Bodies differ.

1. Of the particular Properties of Bodies 10
2. Of Light ib.Particles of Light attraEted by thofe ofother Bodies11
Rays of Light differ in various refpetts 13
The Effetts of Light and Sound 16
Remarkable Account of the Effects of
Mufic on Animals 17
The Denfity of Light - 19
Of Elementary Light 20
The inconceivable Extenfion of Light ¿̀3
Of Natural and Artificial Phofphori : theirfurprifing propertiesib.
3. Of Colours 26Of Secondary Colours: with curious Ex-

periments thereon		-
4. Of Sounds		-
5. Of Smells	-	

Page
Mr. Boyle's Account of Smells 3^{2}
Fatal inftance of the Effluvia of Flowers ib.
Effects of the Effluvia of Springs in Eng-land and abroad一33
6. Of Taftes34
7. Of Moifture and Drynefs, Heat and Cold ib.
8. Of Gravity
35
Mr. Hutchinfon's Account of Gravitation 37
Mr. Hervey's ftrong and beautiful Obler- vations on this Head 3^{8}
Dr. Roger's Obfervations thereon 40
\longrightarrow Thoughts on Comets 45
9. Of the other Properties of Bodies 46
10. Of Occult Qualities ib.
11. Reflections 47
On the Heavenly Bodies 48
On the Earth 50
On the natural Inftinct of Animals 53
On Seas and Rivers 53
On Man in particular 54
On a general Review of the whole 55
Abridgment of The Contemplation of
Nature. By Mr. Bennet, of Geneva.
Introduction - - 60
Vol. IV. P CHAP.
(33^{8})
CH A P. I.
Of the FIRSTCAUSE.
Page

1. The Firf Cure 62
2. The Creation ib.
3. The Univerfe confidered with refpect to its greater Parts 62
With respect to the Planetary Syftem 63
4. With refpect to Comets 64
5. Of the Sufpenfion of thole immenfe Bodies in the Air - $\quad-\quad$ ib.
6. Of the Sea, Ilands, \&c. 66
7. Of the Moon, Venus, Mercury, Saturn, and the Sun
8. Univerfal Connection, or Harmony of the Universe 68
g. The Elements acting reciprocally on each other - 69
C $\quad \mathbf{H} \quad$ A P. II.
Of the relative Perfection of Beings.
9. General Diftribution of terreftrial Beings 70
10. Of corporeal Perfection71
11. The terreftrial Life, and the Species of it ib.
12. The immenfity of the Chain of Beings 72
13. Mean Spaces: and their Confequence 73
CHAP.

(339)

C H A P. III.
General View of the gradual Progrefion of Beings.
Page

1. The Elements 75
2. Three Kinds of Compofition in Bodies 76
3. Of Fluids in general, and certain Fluids in particular 77
4. Of fome rude or unorganized Solids ib.
5. Paffage of rude or unorganized Solids into organized - - - 79
6. Of fome Species of Plants, whofe Form differs greatly from that of thofe moft known to us 81
7. Of Plants in general ib.
8. A view of the exterior Parts of Plants 88
9. View of the Infide of Plants 85
10. Tranfition from Vegetables to Animals:
the Senfitive Plant, and the Polypus 87
11. Refleftions on Animal Machines 89
12. Reflections on the Polypus 90
13. Of Worms that may be multiplied by
Slips - - 91
14. Of Infects in general 98
15. The External Parts of Infects 93
16. The Infide of Infects 95
17. Paffage from Infects to Shell-Fifh : Pipe-
Worms
18. Of Shell-Fih - - - 97
19. Paflage from Shell-fifh to Reptiles, and of Reptiles to Fifhes

20. Of Fifhes

21. Paffage from Fiihes to Birds: the Flyingfilh: Water-birds: Amphibious-birds 100
22. Paffage from Birds to Quadrupeds: the Bat : Flying-fquirrel : the Oftrich, \&c. 101

C H A P. IV.
Continuation of the gradual Progrefion of Beings.

1. Of Animals confidered as mixed Beings.

Superiority which the Faculty of Feeling gives the Animal over the Plant 103
2. Difficulty concerning the Conftruction of the Animal Scale. Anfwer to this Difficulty - - 104
3. Of the Extent of Infinct in Animals:

Method of diftinguifhing it - 105 Inquiry concerning Souls - . 106
4. Man endued with Reafon, cultivating the Arts and Sciences - ib.
5. Man in Society - - 108
6. Man in Commerce with God by Religion ib.
7. Gradations of Mankind The Coeleflial Hierarchies
—
$\ldots \quad 109$
$-\quad 110$
111

CHAP.

C H A P. V.

Of the various Relations of Terrefrial Beings.
Page

1. The Union of Souls to organized Bodies: the Perceptions and Senfations115
2. The Paffions: the Temper - 117
3. The Memory and Imagination - 118
4. The Sight - \quad - 120
5. Of Colours: their Confequences 121
6. Of Fire - $\quad 125$
7. Of Air - - 127
8. The Appropriation of Animals to divers Climates, Places, and Matters 129
9. The Union of Terreftrial Beings by their mutual Services ib.
10. The Transformation many Things undergo, particularly by the Action of organical Machines

C $\quad \mathbf{H} A \quad$ P. \quad VI.

Of Vegetable Oeconomy.

1. Of Organical OEconomy in general
2. Nutrition of Plants by their Roots and Leaves
ib
3. Diretion of the Leaves, their Returning, the Folding of the Stalk
P_{3} $\begin{array}{r}135 \\ 4 . A\end{array}$

Page
4. A Sketch of the Theory of the Motions of the Sap - - $\quad{ }_{136}$
5. Germination and Growth - $\quad 138$
6. Multiplication by Seed. Diftinction of Sexes - - - 139
7. Multiplication by Shoots - 140
8. Multiplication by Slips, and Grafting 142
9. Regeneration of Vegetables - $\quad 143$

C H A P. VII. Of Animal Deconomy.

1. The Nerves: the Spirits $\quad 146$
2. The Mufcles $\rightarrow \quad-\quad{ }^{1} 47$
3. The Organs of Nutrition - 148
4. The Organs of Circulation - 149
5. The Organs of Refpiration . - ib.
6. Secretions - - 150
7. Growth - 151
8. The Germs - - - 152
9. The primitive State of organized Beings 156
10. Generation. The Chick - - 158

11, 12, 13. Continuation of the fame Subje氏t - - 159-162
14. The Generation of Mules - 163
15. The Formation of Monfters - 164
16. Accidents may give Birth to Monfters 166
17. Application to Vegetables - 167
18. The Myftery of the Generation of Plants cleared up $-\quad-168$ CHAP.

C HA P. VIII.

Of Animal Oeconomy, confidered in Infers.
Page

1. Introduction - - 169
2. The Mechanifm of Refpiration - ib.
3. The Circulation - - 170
4. The Organs of Generation, and their
Dependences . $\quad 171$
5. Diftinetion of Infects into viviparous and oviparous - 172
6. Varieties of Generation - 174
7. The Vine-fretter - $\quad 175$
8. Zoophytes, or Plant-Animals without Feet. Frefh-water Worms - 177
9. Clutter Polypufes - . - 178
10. Funnel Polypufes - - 183
11. Net Polypufes - - ${ }^{184}$
12. The Polypus with Arms - 185
13. Pbilofophical Confiderations on the Subjet of Polypufes - 186-199 C HA P. IX.
\leftrightarrows Continuation of Animal Oeconomy confderea in Injects. .
14. Thoughts on the Regeneration of Earthworms - - - 900
15. The Regeneration of Frelh-water Worms 201
16. Immenfe Diftinetions in the Gifts of Nature $\quad=\quad=\quad \begin{gathered}202 \\ 4 . \text { The }\end{gathered}$
17. The Metamorphofes of Infects - $\mathbf{2 0 3}$
18. The Metamorphofes into an oblong Ball 204
19. Of the Spider-fly - . . 205
20. Sketch of a Divifion of Infects - 206
21. The Moultings or Difeafes of Infects 207
22. Sketch of a Theory of Metamorphofes 208

10, 11, 12. Refleftions on Metamorphofes 210
to 213
C H A P. X.
Parallel beween Plants and Animals.

1. Introduction
2. The Seed
3. The Egg
4. The Bud, the Fœtus
5. The Nutrition of the Plants, and of the Animal 217
6. The Growth of the Plant - 218
7. The Growth of the Animal - 220
8. The Fecundation of the Plant 228
9. The Fecundation of the Animal

223
10. The Multiplication of the Plant, and of the Animal

224
11. Irregularities in the Generation of the Plant, and in the Generation of Animals $-\quad-\quad 226$
12. Dif-
Page
12. Difeafes incident to Plants and Animals 227
13. Old Age and Death of the Plant and of the Animal 228
14. Other Sources of Analogy between the Plant and Animal 229
15. Their Place and Number 230 16. Fecundity 232
17. Appofition in Variety of Plants and Ani- mals 233
18. The Form and the Struture ${ }^{2} 36$
19. The Circulation 24^{2}
20. The Diftribution of Aliment
244
244
21. Reflections 246
22. Sap circulates in Plants as Blood in Ani-mals-
24^{8}
23. The Neceffity of Circulation 249
24. The loco-motive Faculty 250
25. The Diftinction between Plants and Ani-mals

mals			
26. The Feeling			
27. The Nutrition			
27.	-	-	-
28. Irritability	-	-	-

C H A P. XI.
Of the Induftry of Animals.

1. Treating in general of the Inftinct ofAnimals2582. Wirdom
(34^{6})
Page
2. Wifdom difplayed in the Prefervation of the Species 260 :
3. Of Animals that fcarce take any Care of their Eggs 261
4. Of the peculiar Attachment of other Ani- mals to them 263
5. Of divers Species of folitary Flies 264
6. The different Degrees of Art and Sagacity difplayed in their Work 265
7. That Brutes act in concert with each other 266
8. Reflections - - ib.
9. Birds of Paffage 268
10. Societies of Animals properly and impro- perly fo called 269
11. Common Caterpillars ib.
12. Proceffionary Caterpillars ib.
13. Remarkable Procedure of Caterpillars that live in Society $27:$
14. Ants 273
15. Thoughts on the Policy of Bees ib.
16. Of Beavers 274
17. Reflections on Beavers - 276
C H A P. XII.Continuation of the Induftry of Animals.
18. A fummary Account of the induftious
Proceedings of divers Infects celativeto their Metamorphofes278
19. Caterpillars that faften themfelves with a Girdle
20. Caterpillars that form Cones $\quad \begin{gathered}279 \\ \text { ib. }\end{gathered}$
21. Of fpinning Caterpillars - 280
22. Infeqts that live in Fruits. - 281
23. Infeets that fold and roll up the Leaves 282
24. Infects that are Miners of Leaves $\quad 28_{5}$
25. Wonderful Properties of thofe Miners 286
26. Falfe Moths
27. Of Moths in general. Domeflic Moths 289
28. Field Moths
29. Aquatic Moths
30. Reflections on the various Proceedings of Infeets
31. Proceedings of Shell-Fifh. The Tellina 295
32. The Cutler: its peculiar Methods $\quad 296$
33. The Dails or Pholas

297
17. 'Divers Sea Infęts or Animals. Nettles 298
18. Thefe Nettles feed on Shell-Fih

301
19. Refemblance of Nettles to Polypufes $\quad 3^{302}$
20. Stars
$\begin{array}{lll}\text { 21. Sea Hedge-hogs } \\ \text { 22. Bernard the Hermit }\end{array} \quad-\quad$ - $\quad \begin{aligned} & 304 \\ & 307\end{aligned}$
22. Bernard the Hermit - $\quad{ }_{308}^{307}$
23. Shell-Fifh that fini. Mufcles and Pinne Marinæ
24. Shell-Fiih and other Animals that faften
themfelves by fort of Glue or Stony
Juice

(34^{8})

Page
「The Proceedings of Fifhes 315
25. Of the Proceedings of Birds 317
26. Of the Proceedings of Quadrupeds. The Rabbet 318
27. The Monkey 320
28. The Caterpillar that conitruets his Cone like a grain of Corn 321
29. Analogous Proceedings of other Infects 323
30. Reflections on the Induftry of Animals $3^{2} 4$
31. The Tapeftry-Bee 325
The Subtleties of the Hare and Stag 329
32. The Skilfulnefs and Subtlety of the Fox 330 Conclufion 33^{2}

[^0]: t All this is fpoken on the Newtonian Hypothefis.

[^1]: * Perhaps fo.

[^2]: 7. The moon, the neareft to the earth of all the planets, is that we have the beft knowledge of. Its globe, which is about five and forty times
[^3]: 6. The laft mark of the greatnefs of man, and of his high exaltation above other animals, is the commerce he has with his Creator by religion.

 Wrapped in the thickef darknefs, the reft of the animal creation are ignorant of the HAND that formed them. They enjoy an exiftence, but cannot trace the Author of life. Man alone foars to God the Principle, and proftrate at the foot of the throne of the Almighty, adores with the profoundeft veneration, and with the

[^4]: \dagger The pulmonary artery. \ddagger The vena cava. *The grand artery, or the aorta. || The pulmonary vein.

[^5]: * The pancreas and pancreatic juice.

[^6]: \ddagger The primary lacteal veins. || The mefentery and mefenteric glands. § The fecondary lacteal veins. *The thoracic duct.

[^7]: *The bronchia. t The principal trunk of arteries.

[^8]: * See chap, viii.

[^9]: *The wood-piercing bee.

[^10]: +This is the name given by botanifte to the leaves of flowera)

